0.1 The number sets

We follow the standard (or Bourbaki) notation for the number sets $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$.
Thus \mathbb{N} is the set of natural numbers $0,1,2, \ldots ; \mathbb{Z}$ is the set of integers $0, \pm 1, \pm 2, \ldots ; \mathbb{Q}$ is the set of rational numbers n / d, where $n, d \in \mathbb{Z}$ with $d \neq 0 ; \mathbb{R}$ is the set of real numbers, and \mathbb{C} the set of complex numbers $x+i y$, where $x, y \in \mathbb{R}$.

Note that \mathbb{Z} is an integral domain, ie a commutative ring with 1 having no zero divisors:

$$
x y=0 \Longrightarrow x=0 \text { or } y=0 .
$$

Also \mathbb{Q}, \mathbb{R} and \mathbb{C} are all fields, ie integral domains in which every non-zero element has a multiplicative inverse.

All 5 sets are (totally) ordered, ie given 2 elements x, y of any of these sets we have either $x<y, x=y$ or $x>y$. Also the orderings are compatible (in the obvious sense) with addition and multiplication, eg

$$
x \geq 0, y \geq 0 \Longrightarrow x+y \geq 0, x y \geq 0
$$

0.2 The natural numbers

According to Kronecker, "God gave us the integers, the rest is Man's". ["Gott hat die Zahlen gemacht, alles andere ist Menschenwerk."]

We follow this in assuming the basic properties of \mathbb{N}.
In particular, we assume that \mathbb{N} is well-ordered, ie a decreasing sequence of natural numbers

$$
a_{0} \geq a_{1} \geq a_{2} \ldots
$$

is necessarily stationary: for some n,

$$
\left.a_{n}=a_{n+1}=\cdots .\right)
$$

We also assume that we can "divide with remainder"; that is, given $n, d \in$ \mathbb{N} with $d \neq 0$ we can find $q, r \in \mathbb{N}$ such that

$$
n=q d+r,
$$

with remainder

$$
0 \leq r<d .
$$

(If we wanted to prove these results, we would have to start from an axiomatic definition of \mathbb{N} such as the Zermelo-Fraenkel, or ZF, axioms. But we don't want to get into that, and assume as 'given' the basic properties of \mathbb{N}.

0.3 Divisibility

If $a, b \in \mathbb{Z}$, we say that a divides b, written $a \mid b$, or a is a factor of b, if

$$
b=a c
$$

for some $c \in \mathbb{Z}$.
Thus every integer divides 0 ; but the only integer divisible by 0 is 0 itself.

