
Chapter 7

Polynomial Rings

7.1 Polynomials

A polynomial of degree n over a ring A is an expression of the form

f(x) = anx
n + an−1x

n−1 + · · ·+ a0,

where ai ∈ A and an 6= 0.
(It is better not to think of f(x) as a function, since a non-zero polynomial

may take the value 0 for all x ∈ A, particularly if A is finite.)
We know how to add and multiply polynomials, so the polynomials over

A form a ring.

Definition 7.1. We denote the ring of polynomials over the ring A by A[x].

In practice we will be concerned almost entirely with polynomials over a
field k. We will assume in the rest of the chapter that k denotes a field.

In this case we do not really distinguish between f(x) and cf(x), where
c 6= 0. To this end we often restrict the discussion to monic polynomials, ie
polynomials with leading coefficient 1:

f(x) = xn + a1x
n−1 + · · ·+ an.

7.2 Long division

Proposition 7.1. Suppose k is a field, and suppose f(x), g(x) ∈ k[x], with
g(x) 6= 0. Then there exist unique polynomials q(x), r(x) ∈ k[x] with deg(r(x)) <
deg(g(x)) such that

f(x) = q(x)g(x) + r(x).
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Proof. We begin by listing some obvious properties of the degree of a poly-
nomial over a field:

Lemma 7.1. 1. deg(f + g) ≤ max(deg(f), deg(g));

2. deg(fg) = deg(f) deg(g).

The existence of q(x) and r(x) follows easily enough by induction on
deg(f(x)). To see that the result is unique, suppose

f(x) = q1(x)g(x) + r1(x) = q2(x)g(x) + r2(x)

Then
g(x)(q1(x)− q2(x)) = r2(x)− r1(x).

The term on the left has degree ≥ deg(g(x)), while that on the right has
degree < deg(g(x)).

7.3 Irreducibility

Definition 7.2. The polynomial p(x) ∈ k[x] is said to be irreducible if it
cannot be factorised into polynomials of lower degree:

p(x) = g(x)h(x) =⇒ g(x) of h(x) is constant.

In particular, any linear polynomial (ie of degree 1) is irreducible.

7.4 The Euclidean Algorithm for polynomi-

als

Proposition 7.2. Any two polynomials f(x), g(x) ∈ k[x] have a gcd d(x),
ie

d(x) | f(x), g(x);

and
e(x) | f(x), g(x) =⇒ e(x) | d(x).

Furthermore, there exist polynomials u(x), v(x) such that

d(x) = u(x)f(x) + v(x)g(x).

Proof. The Euclidean Algorithm extends almost unchanged; the only differ-
ence is that deg(r(x)) takes the place of |r|.

Thus first we divide f(x) by g(x):

f(x) = q0(x)g(x) + r0(x),

where deg(r0(x)) < deg(g(x)).
If r0(x) = 0 we are done; otherwise we divide g(x) by r0(x):

g(x)(x) = q1(x)r0(x) + r1(x),

where deg(r1(x)) < deg(r0(x)).
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Since the polynomials are reducing in degree, we must reach 0 after at
most deg(g(x)) steps. It follows, by exactly the same argument we used with
the Euclidean Algorithm in Z, that the last non-zero remainder rs(x) is the
required gcd:

gcd(f(x), g(x)) = rs(x).

The last part of the Proposition, the fact that d(x) is a linear combination
(with polynomial coefficients) of f(x) and g(x), follows exactly as before.

7.5 Unique factorisation

Theorem 7.1. A monic polynomial f(x) ∈ k[x] can be expressed as a product
of irreducible monic polynomials, and the expression is unique up to order.

Proof. If f(x) is not itself irreducible then f(x) = g(x)h(x), where g(x), h(x)
are of lower degree. The result follows by induction on deg(f(x)).

To prove uniqueness we establish the polynomial version of Euclid’s Lemma;

Lemma 7.2. If p(x) is irreducible then

p(x) | f(x) g(x) =⇒ p(x) | f(x) or p(x) | g(x).

Proof. As with the classic Euclidean Algorithm, suppose p(x) - f(x). Then

gcd(p(x), f(x)) = 1.

Hence there exist u(x), v(x) such that

u(x)p(x) + v(x)f(x) = 1.

Multiplying by g(x),

u(x)p(x)g(x) + v(x)f(x)g(x) = g(x).

Now p(x) divides both terms on the left. Hence p(x) | g(x), as required.

To prove uniqueness, we argue by induction on deg(f(x)). Suppose

f(x) = p1(x) · · · pr(x) = q1(x) · · · qs(x).

Then p1(x) | qj(x), and so p1(x) = qj(x), for some j; and the result follows
on applying the inductive hypothesis to

f(x)/p1(x) = p2(x) · · · pr(x) = q1(x) · · · qr−1(x)qr+1(x) · · · qs(x).
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7.6 Gauss’ Lemma

Factorisation of polynomials over the rationals plays an important role in
elementary number theory. The following result simplifies the issue.

Proposition 7.3. Suppose f(x) ∈ Z[x]. Then f(x) factorises in Q[x] if and
only if it factorises in Z[x].

Proof.

Lemma 7.3. Each polynomial f(x) ∈ Q[x] can be expressed in the form

f(x) = qF (x)

where q ∈ Q, F (x) ∈ Z[x] and the coefficients of F(x) are coprime; moreover,
this expression is unique up to ±.

Proof. It is evident that f(x) can be brought to this form, by multiplying
by the lcm of the coefficients and then taking out the gcd of the resulting
integer coefficients.

If there were two such expressions, then multiplying across we would have

n1F1(x) = n2F2(x).

The gcd of the coefficients on the left is |n1|, while the gcd of those on the
right is |n2|. Thus n1 = ±n2, and the result follows.

Lemma 7.4. Suppose
u(x) = v(x)w(x),

where u(x), v(x), w(x) ∈ Z[x]. If the coefficients of v(x) are coprime, and
those of w(x) are also coprime, then the same is true of u(x).

Proof. Suppose to the contrary that the prime p divides all the coefficients
of f(x). Let

v(x) = brx
r + · · ·+ b0, w(x) = csx

s + · · ·+ c0, u(x) = ar+sx
r+s + · · ·+ a0.

By hypothesis, p does not divide all the bi, or all the cj. Suppose

p | br, br−1, . . . , bi+1 but p - bi,

and similarly
p | cs, cs−1, . . . , cj+1 but p - cj,

Then

p - ai+j = bi+jc0 + bi+j−1c1 + · · ·+ bicj + bi−1cj+1 + · · ·+ b0ci+j,

for p divides every term in the sum except bicj, which it does not divide since

p | bicj =⇒ p | bi or p | cj.

So p does not divide all the coefficients of u(x), contrary to hypothesis.

Writing f(x), g(x), h(x) in the form of the first Lemma,

q1F (x) = (q2G(x))(q3H(x)),

where the coefficients of each of F (x), G(x), H(x) are coprime integers. Thus

F (x) = (q2q3/q1)G(x)H(x).

Since the coefficients of both F (x) and G(x)H(x) are coprime, by the second
Lemma they are equal up to sign, and the result follows.
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