
Chapter 14

Pell’s Equation

14.1 Kronecker’s Theorem

Diophantine approximation concerns the approximation of real numbers by
rationals. Kronecker’s Theorem is a major result in this subject, and a very
nice application of the Pigeon Hole Principle.

Theorem 14.1. Suppose θ ∈ R; and suppose N ∈ N, N 6= 0. Then there
exists m,n ∈ Z with 0 < n ≤ N such that

|nθ −m| < 1

N
.

Proof. If x ∈ R we write {x} for the fractional part of x, so that

x = [x] + {x}.

Consider then N + 1 fractional parts

0, {θ}, {2θ}, . . . {Nθ};

and consider the partition of [0, 1) into N equal parts;

[0, 1/N), [1/N, 2/N), . . . , [(N − 1)/N, 1).

By the pigeon-hole principal, two of the fractional parts must lie in the
same partition, say

{iθ}, {jθ} ∈ [t/N, (t+ 1)/N ],

where 0 ≤ i < j < N . Setting

[iθ] = r, [jθ] = s,
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we can write this as

iθ − r, jθ − s ∈ [t/N, (t+ 1)/N).

Hence

|(jθ − s)− (iθ − r)| < 1/N,

ie

|nθ −m| < 1/N,

where n = j − i, m = r − s with 0 < n ≤ N .

Corollary 14.1. If θ ∈ R is irrational then there are an infinity of rational
numbers m/n such that

|θ − m

n
| < 1

n2
.

Proof. By the Theorem,

|θ − m

n
| < 1

nN

≤ 1

n2
.

14.2 Pell’s Equation

We use Kronecker’s Theorem to solve a classic Diophantine equation.

Theorem 14.2. Suppose the number d ∈ N is not a perfect square. Then
the equation

x2 − dy2 = 1

has an infinity of solutions with x, y ∈ Z.

Remark: Before we prove the theorem, it may help to bring out the
connection with quadratic number fields.

Note first that although d may not be square-free, we can write

d = a2d′,
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where d′ is square-free (and d′ 6= 1). Pell’s equation can then be written

x2 − d′(ay)2 = 1,

which in turn gives
N (z) = 1,

where
z = x+ ay

√
d′.

Thus z is a unit in the quadratic number field Q(
√
d′.

Let us denote the group of units in this number field by U . Every unit
ε ∈ U is not necessarily of this form. Firstly the coefficient of

√
d′ must be

divisible by a; and secondly, if d′ ≡ 1 mod 4 then we are omitting the units
of the form (m+ n

√
d′)/2.

But it is not difficult to see that these units form a subgroup U ′ ⊂ U of
finite index in U . It follows that U ′ is infinite if and only if U is infinite.

However, we shall not pursue this line of enquiry, since it is just as easy
to work with these numbers in the form

z = x+ y
√
d.

In particular, if

z = m+ n
√
d, w = M +N

√
d

then
zw = (mM + dnN) + (mN + nM)

√
d;

and on taking norms (ie multiplying each side by its conjugate),

(m2 − dn2)(M2 − dN2) = (mM + dnN)2 − d(mN + nM)2

Similarly,

z

w
=

(m+ n
√
d)(M −N

√
d)

M2 − dN2

=
(mM + dnN)− (mN − nM)

√
d

M2 − dN2
.

On taking norms,
m2 − dn2

M2 − dN2
= u2 − dv2,

where

u =
mM + dnN

M2 − dN2
,
mN − nM
M2 − dN2

.

Now to the proof.
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Proof. By the Corollary to Kronecker’s Theorem there exist an infinity of
m,n ∈ Z such that

|
√
d− m

n
| < 1

n2
.

Since √
d+

m

n
= 2
√
d− (

√
d− m

n
)

it follows that
|
√
d+

m

n
| < 2

√
d+ 1.

Hence

|d− m2

n2
| = |
√
d− m

n
| · |
√
d+

m

n
|

<
2
√
d+ 1

n2
.

Thus
|m2 − dn2| < 2

√
d+ 1.

It follows that there must be an infinity of m,n satisfying

m2 − dn2 = t

for some integer t with |t| < 2
√
d+ 1.

Let (m,n), (M,N) be two such solutions (with (m,n) 6= ±(M,N).
Note that since

m2 − dn2 = t = M2 − dN2

we have
u2 − dv2 = 1.

Of course u, v will not in general be integers, so this does not solve the
problem. However, we shall see that by a suitable choice of m,n,M,N we
can ensure that u, v ∈ Z.

Let T = |t|; and consider (m,n) mod T = (m mod T, n mod T ). There
are just T 2 choices for the residues (m,n) mod T . Since there are an infin-
ity of solutions m,n there must be some residue pair (r, s) mod T with the
property that there are an infinity of solutions (m,n) with m ≡ r mod T, n ≡
s mod T .

Actually, all we need is two such solutions (m,n), (M,N), so that

m ≡M mod T, n ≡ N mod T.
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For then

mM − dnN ≡ m2 − dn2 = t mod T

≡ 0 mod T

(since t = ±T ); and similarly

mN − nM ≡ mn− nm mod T

≡ 0 mod T.

Thus
T | mM − dnN, mN − nM

and so
u, v ∈ Z.

14.3 Units II: Real quadratic fields

Theorem 14.3. Suppose d > 1 is square-free. Then there exists a unique
unit ε > 1 in Q(

√
d) such that the units in this field are

±εn

for n ∈ Z.

Proof. We know that the equation

x2 − dy2 = 1

has an infinity of solutions. In particular it has a solution (x, y) 6= (±1, 0).
Let

η = x+ y
√
d.

Then
N (η) = 1;

so η is a unit 6= ±1.
We may suppose that η > 1; for of the 4 units ±η,±η−1 just one appears

in each of the intervals (−∞,−1), (−1, 0), (0, 1), (1,∞).

Lemma 14.1. There are only a finite number of units in (1, C), for any
C > 1.
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Proof. Suppose

ε =
m+ n

√
d

2
∈ (1, C)

is a unit. Then

ε̄ =
m− n

√
d

2
= ±ε−1.

Thus

−1 ≤ m− n
√
d

2
≤ 1.

Hence
0 < m < C + 1.

Since
m2 − dn2 = ±4

it follows that
n2 < m2 + 4 < (C + 1)2 + 4.

We have seen that there is a unit η > 1. Since there are only a finite
number of units in (1, η] there is a least such unit ε.

Now suppose η > 1 is a unit. Since ε > 1,

εn →∞ as n→∞.

Hence we can find n ≥ 0 such that

εn ≤ η < εn+1.

Then
1 ≤ ε−nη < ε.

Since ε−nη is a unit, it follows from the minimality of ε that

ε−nη = 1,

ie

η = εn.
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