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Chapter 0

Prerequisites

0.1 The number sets
We follow the standard (or Bourbaki) notation for the number sets N,Z,Q,R,C.

Thus N is the set of natural numbers 0, 1, 2, . . . ; Z is the set of integers
0,±1,±2, . . . ; Q is the set of rational numbers n/d, where n, d ∈ Z with
d 6= 0; R is the set of real numbers, and C the set of complex numbers x+ iy,
where x, y ∈ R.

Note that Z is an integral domain, ie a commutative ring with 1 having
no zero divisors:

xy = 0 =⇒ x = 0 or y = 0.

Also Q,R and C are all fields, ie integral domains in which every non-zero
element has a multiplicative inverse.

All 5 sets are totally ordered, ie given 2 elements x, y of any of these sets
we have either x < y, x = y or x > y. Also the orderings are compatible (in
the obvious sense) with addition and multiplication, eg

x ≥ 0, y ≥ 0 =⇒ x+ y ≥ 0, xy ≥ 0.

0.2 The natural numbers
According to Kronecker, “God gave us the integers, the rest is Man’s”.
(“Gott hat die Zahlen gemacht, alles andere ist Menschenwerk.”)

We follow this philosophy in assuming the basic properties of N.
In particular, we assume that N is well-ordered, ie a decreasing sequence

of natural numbers
a0 ≥ a1 ≥ a2 . . .

is necessarily stationary: for some n,

an = an+1 = · · · .)

We also assume that we can “divide with remainder”; that is, given n, d ∈
N with d 6= 0 we can find q, r ∈ N such that

n = qd+ r,
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with remainder
0 ≤ r < d.

If we wanted to prove these results, we would have to start from an
axiomatic definition of N such as the Zermelo-Fraenkel, or ZF, axioms. But
we don’t want to get into that, and assume as ‘given’ the basic properties of
N.

0.3 Divisibility
If a, b ∈ Z, we say that a divides b, written a | b, or a is a factor of b, if

b = ac

for some c ∈ Z.
Thus every integer divides 0; but the only integer divisible by 0 is 0 itself.
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Chapter 1

The Fundamental Theorem of
Arithmetic

1.1 Primes
Definition 1.1. We say that p ∈ N is prime if it has just two factors in N,
1 and p itself.

Number theory might be described as the study of the sequence of primes

2, 3, 5, 7, 11, 13, . . . .

Definition 1.2. 1. We denote the nth prime by pn.

2. If x ∈ R then we denote the number of primes ≤ x by π(x).

Thus
p1 = 2, p2 = 3, p3 = 5, . . . ,

while
π(−2) = 0, π(2) = 1, π(π) = 2, . . . .

1.2 The fundamental theorem
Theorem 1.1. Every non-zero natural number n ∈ N can be expressed as a
product of primes

n = p1 · · · pr;
and this expression is unique up to order.

By convention, an empty sum has value 0 and an empty product has
value 1. Thus n = 1 is the product of 0 primes.

Another way of putting the theorem is that each non-zero n ∈ N is
uniquely expressible in the form

n = 2e23e35e5 · · ·

where each ep ∈ N with ep = 0 for all but a finite number of primes p.
The proof of the theorem, which we shall give later in this chapter, is

non-trivial. It is easy to lose sight of this, since the theorem is normally met
long before the concept of proof is encountered.
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1.3 Euclid’s Algorithm
Definition 1.3. Suppose m,n ∈ Z. We say that d ∈ N is the greatest
common divisor of m and n, and write

d = gcd(m,n),

if
d | m, d | n,

and if e ∈ N then
e | m, e | n =⇒ e | d.

The term highest common factor (or hcf), is often used in schools; but
we shall always refer to it as the gcd.

Note that at this point we do not know that gcd(m,n) exists. This follows
easily from the Fundamental Theorem; but we want to use it in proving the
theorem, so that is not relevant.

It is however clear that if gcd(m,n) exists then it is unique. For if d, d′ ∈ N
both satisfy the criteria then

d | d′, d′ | d =⇒ d = d′.

Theorem 1.2. Any two integers m,n have a greatest common divisor

d = gcd(m,n).

Moreover, we can find integers x, y such that

d = mx+ ny.

Proof. We may assume that m > 0; for if m = 0 then it is clear that

gcd(m,n) = |n|,

while if m < 0 then we can replace m by −m.
Now we follow the Euclidean Algorithm. Divide n by m:

n = q0m+ r0 (0 ≤ r0 < m).

If r0 6= 0, divide m by r0:

m = q1r0 + r1 (0 ≤ r1 < r0).

If r1 6= 0, divide r0 by r1:

r0 = q2r1 + r2 (0 ≤ r2 < r1).

Continue in this way.
Since the remainders are strictly decreasing:

r0 > r1 > r2 > · · · ,

the sequence must end with remainder 0, say

rs+1 = 0.

1–2



We assert that
d = gcd(m,n) = rs,

ie the gcd is the last non-zero remainder.
For

d =| rs−1 since rs−1 = qs+1rs.

Now

d | rs, rs−1 =⇒ d | rs−2 since rs−2 = rs − qsrs−1;
d | rs−1, rs−2 =⇒ d | rs−3 since rs−3 = rs−1 − qs−1rs−2;

. . . . . .

d | r2, r1 =⇒ d | m;

d | r1,m =⇒ d | n.

Thus
d | m,n.

Conversely, if e | m,n then

e | r0 since r0 = n− q0m;

e | r1 since r1 = m− q1r0;
. . . . . .

e | rs since rs = rs−1 − qsrs−1.

Thus
e | m,n =⇒ e | d.

We have proved therefore that gcd(m,n) exists and

gcd(m,n) = d = rs.

To prove the second part of the theorem, which states that d is a linear
combination of m and n (with integer coefficients), we note that if a, b are
linear combinations of m,n then a linear combination of a, b is also a linear
combination of m,n.

Now r1 is a linear combination ofm,n, from the first step in the algorithm;
r2 is a linear combination of m, r1, and so of m,n, from the second step; and
so on, until finally d = rs is a linear combination of m,n:

d = mx+ ny.

We say that m,n are coprime if

gcd(m,n) = 1.

Corollary 1.1. If m,n are coprime then there exist integers x, y such that

mx+ ny = 1.
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1.4 Speeding up the algorithm
Note that if we allow negative remainders then given m,n ∈ Z we can find
q, r ∈ Z such that

n = qm+ r,

where |r| ≤ |m|/2.
If we follow the Euclidean Algorithm allowing negative remainders then

the remainder is at least halved at each step. It follows that if

2r ≤ n < 2r+1

then the algorithm will complete in ≤ r steps.
Another way to put this is to say that if n is written to base 2 then it

contains at most r bits (each bit being 0 or 1).
When talking of the efficiency of algorithms we measure the input in

terms of the number of bits. In particular, we define the length `(n) to be
the number of bits in n. We say that an algorithm completes in polynomial
time, or that it is in class P , if the number of steps it takes to complete its
task is ≤ P (r), where P (x) is a polynomial and r is the number of bits in
the input.

Evidently the Euclidian algorithm (allowing negative remainders) is a
polynomial-time algorithm for computing gcd(m,n).

1.5 Example
Let us determine

gcd(1075, 2468).

The algorithm goes:

2468 = 2 · 1075 + 318,

1075 = 3 · 318 + 121,

318 = 3 · 121− 45,

121 = 3 · 45− 14,

45 = 3 · 14 + 3,

14 = 5 · 3− 1,

3 = 3 · 1.

Thus
gcd(1075, 2468) = 1;

the numbers are coprime.
To solve

1075x+ 2468y = 1,
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we start at the end:

1 = 5 · 3− 14

= 5(45− 3 · 14)− 14 = 5 · 45− 16 · 14

= 5 · 45− 16(3 · 45− 121) = 16 · 121− 43 · 45

= 16 · 121− 43(3 · 121− 318) = 43 · 318− 113 · 121

= 43 · 318− 113(1075− 3 · 318) = 382 · 318− 113 · 1075

= 382(2468− 2 · 1075)− 113 · 1075 = 382 · 2468− 877 · 1075.

Note that this solution is not unique; we could add any multiple 1075t to
x, and subtract 2468t from y, eg

1 = (382− 1075) · 2468 + (2468− 877) · 1075

= 1591 · 2468− 693 · 1075.

We shall return to this point later.

1.6 An alternative proof
There is an apparently simpler way of establishing the result.

Proof. We may suppose that x, y are not both 0, since in that case it is
evident that gcd(m,n) = 0.

Consider the set S of all numbers of the form

mx+ ny (x, y ∈ Z).

There are evidently numbers > 0 in this set. Let d be the smallest such
integer; say

d = ma+ nb.

We assert that
d = gcd(m,n).

For suppose d - m. Divide m by d:

m = qd+ r,

where 0 < r < d. Then

r = m− qd = m(1− qa)− nqd,

Thus r ∈ S, contradicting the minimality of d.
Hence d | m, and similarly d | n.
On the other hand

d′ | m,n =⇒ d′ | ma+ nb = d.

We conclude that
d = gcd(m,n).
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The trouble with this proof is that it gives no idea of how to determine
gcd(m,n). It appears to be non-constructive.

Actually, that is not technically correct. It is evident from the discussion
above that there is a solution to

mx+ ny = d

with
|x| ≤ |n|, |y| ≤ |m|.

So it would be theoretically possible to test all numbers (x, y) in this range,
and find which minimises mx+ ny.

However, if x, y are very large, say 100 digits, this is completely imprac-
tical.

1.7 Euclid’s Lemma
Proposition 1.1. Suppose p is prime; and suppose m,n ∈ Z. Then

p | mn =⇒ p | m or p | n.

Proof. Suppose
p - m.

Then p,m are coprime, and so there exist a, b ∈ Z such that

pa+mb = 1.

Multiplying by n,
pna+mnb = n.

Now
p | pna, p | mnb =⇒ p | n.

1.8 Proof of the Fundamental Theorem
Proof.

Lemma 1.1. n is a product of primes.

Proof. We argue by induction on n If n is composite, ie not prime, then

n = rs,

with
1 < r, s < n.

By our inductive hypothesis, r, s are products of primes. Hence so is
n.
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To complete the proof, we argue again by induction. Suppose

n = p1 · · · pr = q1 · · · qs

are two expressions for n as a product of primes.
Then

p1 | n =⇒ p1 | q1 · · · qs
=⇒ p1 | qj

for some j.
But since qj is prime this implies that

qj = p1.

Let us re-number the q’s so that qj becomes q1. Then we have

n/p1 = p2 · · · pr = q2 · · · qs.

Applying our inductive hypothesis we conclude that r = s, and the primes
p2, . . . , pr and q2, . . . , qs are the same up to order.

The result follows.

1.9 A postscript
Suppose gcd(m,n) = 1. Then we have seen that we can find integers x0, y0
such that

mx0 + ny0 = 1.

We can now give the general solution to this equation:

(x, y) = (x0 + tn, y0 − tm)

for t ∈ Z.
Certainly this is a solution. To see that it is the general solution note

that

mx+ ny = d =⇒ mx+ ny = mx0 + ny0

=⇒ m(x− x0) = n(y0 − y).

Now n has no factor in common with m, by hypothesis. Hence all its factors
divide x− x0, ie

n | x− x0 =⇒ x− x0 = tn

=⇒ x = x0 + tn

=⇒ y = y0 − tm.
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Exercise 1
In exercises 1–3 determine the gcd d of the given numbers m,n and find

integers x, y such that d = mx+my.
* 1. 23, 39

* 2. 87,−144

* 3. 2317, 2009.
** 4. Given integers m,n > 0 with gcd(m,n) = 1 show that all integers

N ≥ mn are expressible in the form

N = mx+ ny

with x, y ≥ 0.
** 5. Find the greatest integer n not expressible in the form

n = 17x+ 23y

with x, y ≥ 0.
*** 6. Which integers n are not expressible in the form

n = 17x− 23y

with x, y ≥ 0?
** 7. Define the gcd

d = gcd(n1, n2, . . . , nr)

of a finite set of integers n1, n2, . . . , nr ∈ Z; and show that there exist
integers x1, x2, . . . , xr ∈ Z such that

n1x1 + n2x2 + · · ·+ nrxr = d.

* 8. Find x, y, z ∈ Z such that

24x+ 30y + 45z = 1.

*** 9. How many ways are there of paying €10 in 1,2 and 5 cent pieces?
** 10. Show that if m,n > 0 then

gcd(m,n)× lcm(m,n) = mn.

*** 11. Show that if m,n > 0 then

gcd(m+ n,mn) = gcd(m,n).

** 12. Show that if n ≥ 9 and both n− 2 and n+ 2 are prime then 3 | n.
*** 13. Suppose

f(x) = a0 + a1x+ · · ·+ anx
n

where a0, a1, . . . , an ∈ Z. Show that f(n) cannot be a prime for all n
unless f(x) is constant.

*** 14. Find all integers m,n > 1 such that

mn = nm.
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*** 15. If pe ‖ n! show that

e = [n/p] + [n/p2] + [n/p3] + · · · .

[Note: if p is a prime we say that pe exactly divides N , and we write
p ‖ N if pe | N but pe+1 - N .]

*** 16. How many zeros does 1000! end with?
*** 17. Prove that n! divides the product of any n successive integers.
*** 18. If Fn is the nth Fibonacci number, show that

gcd(Fn, Fn+1) = 1

and
gcd(Fn, Fn+2) = 1.

[Note: F0 = 1, F1 = 2 and Fn+2 = Fn + Fn+1.]
** 19. Use the program /usr/games/primes on the mathematics computer

system to find the next 10 primes after 1 million. [You can find how
to use this program by giving the command man primes.]

** 20. Use the program /usr/games/factor on the mathematics computer
system to factorise 123456789. [You can find how to use this program
by giving the command man factor.]

** 21. Show that the product of two successive integers cannot be a perfect
square.

*** 22. Can the product of three successive integers be a perfect square?
***** 23. Show that there are an infinity of integers x, y, z > 1 such that

xxyy = zz.
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Chapter 2

Euclid’s Theorem

Theorem 2.1. There are an infinity of primes.

This is sometimes called Euclid’s Second Theorem, what we have called
Euclid’s Lemma being known as Euclid’s First Theorem.

Proof. Suppose to the contrary there are only a finite number of primes, say

p1, p2, . . . , pr.

Consider the number
N = p1p2 · · · pr + 1.

Then N is not divisible by pi for i = 1, . . . , r, since N has remainder 1
when divided by each of these primes.

Take any prime factor q of N . (We know from the Fundamental Theorem
that there is such a prime.)

Then q differs from all of the primes p1, . . . , pr, since it divides N .
Hence our assumption that the number of primes is finite is untenable.

2.1 Variants on Euclid’s proof
Proposition 2.1. There are an infinite number of primes of the form

p = 4n− 1.

Proof. Suppose there are only a finite number of such primes, say

p1, p2, . . . , pr.

Consider the number
N = 4p1p2 · · · pr − 1.

Since N is odd, it is a product of odd prime factors.
Any odd number is of the form 4n+ 1 or 4n− 1. If all the prime factors

of N were of the form 4n + 1 their product N would be of this form. Since
it is not, we conclude that N has a prime factor of the form 4n− 1.

This must differ from p1, . . . , pr, since none of these primes divides N .
Hence we have a further prime of the form 4n − 1, contradicting our

original assumption.

Rather suprisingly, perhaps, we cannot show in the same way that there
are an infinity of primes of the form 4n+ 1, although that is true.
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2.2 The zeta function
Having established that there are an infinity of primes, the question arises:
How are these primes distributed? Riemann’s zeta function is the major tool
in this study.

Definition 2.1. Riemann’s zeta function ζ(s) is defined by

ζ(s) = 1 +
1

2s
+

1

3s
+

1

4s
+ · · · ,

when this series converges.

Although Riemann’s name is given to this function, it was in fact in-
troduced by Euler. However, Euler only considered the function for real s.
Riemann’s contribution was to consider the function for complex s, in a revo-
lutionary paper “On the number of primes less than a given value”, published
in 1859, using the theory of complex functions laid down by Cauchy some 20
years before.

Note that the terms in the series can be defined, for real and complex s,
by

n−s = e−s lnn.

We see from this that

n−(x+iy)) = e−x lnn e−iy lnn,

and so

|n−s| = n−<(s),

since |eiθ| = 1 for all real θ.
A simple but useful tool allows us to determine when the series converges.

Lemma 2.1. If f(x) is a monotone function then∑
f(n) converges ⇐⇒

∫ ∞
f(x)dx converges.

The lower limits on each side so not matter; it is sufficient that f(x) is
defined for x ≥ X.

One might think it should be specified that f(x) is continuous. But
in fact any monotone function f(x) is necessarily Riemann integrable (and
so Lebesgue integrable). This follows from the fact that f(x) has only an
enumerable set of discontinuities, so the partitions in Riemann sums can be
chosen with end-points avoiding these points.

Proof. We may assume (replacing f(x) by −f(x) if necessary) that f(x) is
decreasing. We may also assume that f(x)→ 0 as x→∞; for we know that
f(x) tends to a limit ` (possibly −∞), and if ` 6= 0 then it is easy to see that
both sum and integral diverge.

If n ≤ x ≤ n+ 1 then

f(n) ≤ f(x) ≤ f(n+ 1).

Hence

f(n) ≤
∫ n+1

n

f(x)dx ≤ f(n+ 1).

Thus

f(m)+f(m+1)+· · ·+f(n−1) ≥
∫ n

m

f(x)dx ≥ f(m+1)+f(m+2)+· · ·+f(n),

from which the result follows.
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Proposition 2.2. The series for ζ(s) converges for <(s) > 1.

Proof. For real s > 1 this follows from the previous lemma, since∫
x−sdx = − 1

s− 1
x−(s−1).

And it follows from this that
∑
n−s is absolutely convergent if <(s) > 1,

since |n−s| = n−<(s).

2.3 Euler’s Product Formula
If a1, a2, . . . is an infinite sequence of real of complex numbers, we say that
the infinite product a1a2 · · · converges to ` 6= 0 if the partial products

An = a1a2 · · · an

converge to `. (If An → 0 then we say that the product diverges to 0.)
If the an are real and positive we can convert an infinite product to an

infinite series by taking logarithms:∏
an converges ⇐⇒

∑
ln an converges.

Because of this logarithmic connection we usually take the product in the
form

∏
(1 + an). This allows us to pass to complex an provided |(|an) < 1,

since in that case

ln(1 + an) = an −
1

2
a2n +

1

3
a3n −

1

4
a4n + · · · .

Lemma 2.2. Suppose
∑
a2n is absolutely convergent. Then∏

(1 + an) converges ⇐⇒
∑

an converges.

In particular the product is convergent if the series is absolutely convergent.

Proof. Since

|1
2
a2n −

1

3
a3n +

1

4
a4n − · · · |

≤ 1

2
|an|2 +

1

3
|an|3 +

1

4
|an|4 + · · ·

≤ 1

2

(
|an|2 + |an|3 + |an|4 + · · ·

)
=

1

2

|an|2

1− |an|2

≤ |an|2,

if |an| ≤ 1/2.
It follows that

| ln
N∏
M

(1 + an)−
N∑
M

an| ≤
N∑
M

|an|2

provided |an| ≤ 1/2 for n ∈ [M,N ], from which the result follows.

Theorem 2.2. For <(s) > 1,

ζ(s) =
∏
p

(
1− p−s

)−1
,

where the infinite product extends over all prime numbers p.
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Proof. The formula can be written

1 + 2−s + 3−s + 4−s + · · · =(
1 + 2−s + 2−2s + · · ·

) (
1 + 3−s + 3−2s + · · ·

) (
1 + 5−s + 5−2s + · · ·

)
· · · .

If n = 2e23e
3
5e5 · · · then

n−s = 2−e2s3−e
3s5−e5s · · · ;

and we see that n−s on the left is matched by 2−e2s from the first factor on
the right, 3−e3s from the second factor, and so on.

Theorem 2.3. The series ∑ 1

p

(where p runs over the primes) diverges.

Proof. Taking s = 1 in the above formula, the series∑ 1

n

diverges. So the product ∏(
1− 1

p

)−1
also diverges.

It follows that the inverse∏(
1− 1

p

)
= 0,

ie the partial product

Pn =
n∏
1

(
1− 1

p

)
→ 0

as n→∞.
We say that the infinite product ‘diverges to 0’.
Taking logarithms, it follows that∑

p

log

(
1− 1

p

)
= −∞.

Recall that

log(1− x) = −x+ x2/2− x3/3 + · · · .

If x is small, say |x| < 1/2, we can combine the second and later terms:

|x2/2− x3/3 + · · · | ≤ x2/2(1 + x+ x2 + · · · )

=
x2

2(1− x)

≤ x2.

Thus
1

p
= − log(1− 1

p
) + ap.

where
∑
ap converges, since

|ap| ≤
1

p2
,

and
∑

1/p2 converges with
∑

1/n2.
We conclude that

∑
1/p is the sum of a divergent series and a convergent

series, and therefore diverges.
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Note that ∑
p

1

pr

converges for r > 1, since ∑
n

1

nr

converges (by comparison with the integral
∫

1/xr).

2.4 Dirichlet’s Theorem
Theorem 2.4. There are an infinity of primes in any arithmetic sequence

a+ dn (n = 0, 1, 2, . . . )

with d > 0 and gcd(a, d) = 1.
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Exercise 2
In exercises 1–10 determine whether the given sum over N is convergent

or not:
* 1.

∑
n

1
n1/2

* 2.
∑

n
1

n3/2

** 3.
∑

n
1

n lnn

** 4.
∑

n
1

n ln2 n

** 5.
∑

n
lnn
n2

* 6.
∑

n
(−1)n
n

** 7.
∑

n
(−1)n
n1/2

** 8.
∑

n
cosn
n

*** 9.
∑

n
tann
n

** 10.
∑

n sinn

In exercises 11–13 determine whether the given sum over the primes
is convergent or not:

** 11.
∑

p
1

p ln p

*** 12.
∑

p
(−1)p
p

*** 13.
∑

p
(−1)p√

p

*** 14. Determine ζ(2).
**** 15. Determine ζ(4).
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Chapter 3

Fermat and Mersenne Primes

3.1 Fermat primes
Theorem 3.1. Suppose a, n > 1. If

an + 1

is prime then a is even and
n = 2e

for some e.

Proof. If a is odd then an + 1 is even; and since it is ≥ 5 it is composite.
Suppose n has an odd factor r, say

n = rs.

We have
xr + 1 = (x+ 1)(xr−1 − xr−2 + xr−3 − · · ·+ 1).

On substituting x = as,
as + 1 | an + 1,

and so an + 1 is composite.
Thus n has no odd factor, and so

a = 2e.

Definition 3.1. The number

F (n) = 22n + 1

is called a Fermat number; and if it is prime it is called a Fermat prime.

Thus

F (0) = 3, F (1) = 5, F (2) = 17, F (3) = 257, F (4) = 65537, F (5) = 4, 294, 967, 297, . . .

Fermat conjectured that the Fermat numbers are all prime. Sadly this
has proved untrue.

F (0) to F (4) are indeed prime, but F (5) is composite.
How do I know? There is a standard Unix program factor for factorizing

numbers. Here is what I get:

tim@walton:~> /usr/games/factor 65537
65537: 65537
tim@walton:~> /usr/games/factor 4294967297
4294967297: 641 6700417
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There is a sister program primes which will print all the primes in a given
range:

tim@walton:~> /usr/games/primes 1000 1020
1009
1013
1019

No further Fermat primes have been found, and a heuristic argumnent
suggests there probably are no more. (A heuristic argument is one that
suggests a result is true, but does not prove it.)

The probability that
F (n) = 22n

is prime is
1

ln(F (n)
≈ 1

2n ln 2
.

Thus the expected number of Fermat primes F (n with n ≥ 5 is

1

ln 2

∑
n≥5

1

2n
=

1

ln 2

1

16
≈

So one could wager that there are no more Fermat primes after F (4).

3.2 Mersenne primes
Theorem 3.2. Suppose a, n > 1. If

an − 1

is prime then a = 2 and n is prime.

Proof. We have

xn − 1 = (x− 1)(xn−1 + xn−2 + · · ·+ 1).

Thus
a− 1 | an − 1,

and so an − 1 is composite if a > 2.
Now suppose n is composite, say

n = rs,

with r, s > 1. We have

xr + 1 = (x+ 1)(xn−1 − xn−2 + xn−3 − · · ·+ 1).

Substituting x = as,
as − 1 | an − 1,

and so an − 1 is composite.
Hence n is prime.

Definition 3.2. For each prime p the number

M(p) = 2p − 1

is called a Mersenne number; and if it is prime it is called a Mersenne prime.

We have

M(2) = 3, M(3) = 8, M(5) = 31, M(7) = 63, M(11) = 2047, . . .

The following heuristic argument suggests that there are an infinity of
Mersenne primes.
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The probability that M(p) is prime is

1

ln(2p − 1)
≈ 1

p ln 2
.

Thus the expected number of Mersenne primes is

1

ln 2

∑ 1

p
,

where the sum runs over all primes.
But we have seen that ∑ 1

p

is divergent. So this suggests (strongly) that the number of Mersenne primes
is infinite.

We shall see later that there is a subtle test — the Lucas-Lehmer test —
for the primality of the Mersenne number M(p). This allows the primality
of very large Mersenne numbers to be tested on the computer much more
quickly than other numbers of the same size.

For this reason, the largest known prime is invariably a Mersenne prime;
and the search for the next Mersenne prime is a popular pastime.

The Great Internet Mersenne Prime Search, or GIMPS (http://www.
mersenne.org/), is a communal effort — which anyone can join — to find
the next Mersenne prime. The record to date, the 48th known Mersenne
prime, is

257,885,161 − 1.

This was discovered in 2013, and has over 17 million digits.
We hope to join the search, and possibly win a large prize!

3.3 Perfect numbers
Definition 3.3. We denote the sum of the divisors of n > 0 by σ(n)

Note that we include 1 and n in the factors of n. Thus

σ(1) = 1, σ(2) = 3, σ(3) = 4, σ(4) = 7, σ(5) = 6, σ(6) = 12, . . .

Definition 3.4. The integer n > 0 is said to be perfect if it is the sum of its
proper divisors, ie if

σ(n) = 2n.

Thus 6 is the first perfect number.

Theorem 3.3. If M(p) = 2p − 1 is a Mersenne prime then

n = 2p−1(2p − 1)

is perfect; and every even perfect number is of this form.

Proof. The number n above has factors

2r and 2rM(p)

for r = 0, 1, . . . , p− 1, with sum

σ(n) =
(
1 + 2 + 22 + · · ·+ 2p−1

)
(1 +M(p)) = (2p − 1)2p = 2n.

Lemma 3.1. The function σ(n) is multiplicative in the number-theoretic
sense, ie

gcd(m,n) = 1 =⇒ σ(mn) = σ(m)σ(n).

Proof. If gcd(m,n) = 1 then the factors of mn are the numbers rs, where
r is a factor of m, and s is a factor of n. The result follows at once from
this.
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Now suppose n is an even perfect number. Let

n = 2em,

where m is odd. Then

σ(n) = (2e+1 − 1)σ(m).

But σ(n) = 2n. Thus

2e+1m = (2e+1 − 1)σ(m).

It follows that
2e+1 − 1 | m,

say
m = (2e+1 − 1)q.

Then
σ(m) = 2e+1q = m+ q.

But m and q are both factors of m. It follows that they are the only
factors of m. Hence q = 1 and

m = 2e+1 − 1

is prime.

It is not known if there are any odd perfect numbers. If there are, then
the first one is > 101500.
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Exercise 3

3–5



Chapter 4

Modular arithmetic

4.1 The modular ring
Definition 4.1. Suppose n ∈ N and x, y ∈ Z. Then we say that x, y are
equivalent modulo n, and we write

x ≡ y mod n

if
n | x− y.

It is evident that equivalence modulo n is an equivalence relation, dividing
Z into equivalence or residue classes.

Definition 4.2. We denote the set of residue classes mod n by Z/(n).

Evidently there are just n classes modulo n if n ≥ 1;

#(Z/(n)) = n.

We denote the class containing a ∈ Z by ā, or just by a if this causes no
ambiguity.

Proposition 4.1. If
x ≡ x′, y ≡ y′

then
x+ y ≡ x′ + y′, xy ≡ x′y′.

Thus we can add and multiply the residue classes modd.

Corollary 4.1. If n > 0, Z/(n) is a finite commutative ring (with 1).

Example: Suppose n = 6. Then addition in Z/(6) is given by

+ 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 5 0 1 2 3 4

while multiplication is given by

× 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
4 0 4 2 0 4 2
5 0 5 4 3 2 1

.
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4.2 The prime fields
Theorem 4.1. The ring Z/(n) is a field if and only if n is prime.

Proof. Recall that an integral domain is a commutative ring A with 1 having
no zero divisors, ie

xy = 0 =⇒ x = 0 or y = 0.

In particular, a field is an integral domain in which every non-zero element
has a multiplicative inverse.

The result follows from the following two lemmas.

Lemma 4.1. Z/(n) is an integral domain if and only if n is prime.

Proof. Suppose n is not prime, say

n = rs,

where 1 < r, s < n. Then
r̄ s̄ = n̄ = 0.

So Z/(n) is not an integral domain.
Conversely, suppose n is prime; and suppose

r̄ s̄ = rs = 0.

Then
n | rs =⇒ n | r or n | s =⇒ r̄ = 0 or s̄ = 0.

Lemma 4.2. A finite integral domain A is a field.

Proof. Suppose a ∈ A, a 6= 0. Consider the map

x 7→ ax : A→ A.

This map is injective; for

ax = ay =⇒ a(x− y) = 0 =⇒ x− y = 0 =⇒ x = y.

But an injective map
f : X → X

from a finite set X to itself is necessarily surjective.
In particular there is an element x ∈ A such that

ax = 1,

ie a has an inverse. Thus A is a field.

4.3 The additive group
If we ‘forget’ multiplication in a ring A we obtain an additive group, which we
normally denote by the same symbol A. (In the language of category theory
we have a ‘forgetful functor’ from the category of rings to the category of
abelian groups.)

Proposition 4.2. The additive group Z/(n) is a cyclic group of order n.

This is obvious; the group is generated by the element 1 mod n.

Proposition 4.3. The element a mod n is a generator of Z/(n) if and only
if

gcd(a, n) = 1.
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Proof. Let
d = gcd(a, n).

If d > 1 then 1 is not a multiple of a mod n, since

1 ≡ ra mod n =⇒ 1 = ra+ sn =⇒ d | 1.

Conversely, if d = 1 then we can find r, s ∈ Z such that

ra+ sn = 1;

so
ra ≡ 1 mod n,

Thus 1 is a multiple of a mod n, and so therefore is every element of Z/(n).

Note that there is only one cyclic group of order n, up to isomorphism.
So any statement about the additive groups Z/(n) is a statement about finite
cyclic groups, and vice versa. In particular, the result above is equivalent to
the statement that if G is a cyclic group of order n generated by g then gr is
also a generator of G if and only if gcd(r, n) = 1.

Recall that a cyclic group G of order n has just one subgroup of each
order m | n allowed by Lagrange’s Theorem, and this subgroup is cyclic. In
the language of modular arithmetic this becomes:

Proposition 4.4. The additive group Z/(n) had just one subgroup of each
order m | n. If n = mr this is the subgroup

〈r〉 = {0, r, 2r, . . . , (m− 1)r}.

4.4 The multiplicative group
If A is a ring (with 1, but not necessarily commutative) then the invertible
elements form a group; for if a, b are invertible, say

ar = ra = 1, bs = sb = 1,

then
(ab)(rs) = (rs)(ab) = 1,

and so ab is invertible.
We denote this group by A×.

Proposition 4.5. The element a ∈ Z/(n) is invertible if and only if

gcd(a, n) = 1.

Proof. If a is invertible modn, say

ab ≡ 1 mod n,

then
ab = 1 + tn,

and it follows that
gcd(a, n) = 1.

Conversely, if this is so then

ax+ ny = 1,

and it follows that x is the inverse of a mod n.

We see that the invertible elements in Z/(n) are precisely those elements
that generate the additive group Z/(n).

Definition 4.3. We denote the group of invertible elements in Z/(n) by
(Z/n)×. We call this group the multiplicative group mod n.

Thus (Z/n)× consists of the residue classes mod n coprime to n, ie all of
whose elements are coprime to n.
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Definition 4.4. If n ∈ N, we denote by φ(n) the number of integers r such
that

0 ≤ r < n and gcd(r, n) = 1.

This function is called Euler’s totient function. As we shall see, it plays
a very important role in elementary number theory.

Example:

φ(0) = 0,

φ(1) = 1,

φ(2) = 1,

φ(3) = 2,

φ(4) = 2,

φ(5) = 4,

φ(6) = 2.

It is evident that if p is prime then

φ(p) = p− 1,

since every number in [0, p) except 0 is coprime to p.

Proposition 4.6. The order of the multiplicative group (Z/n)× is φ(n)

This follows from the fact that each class can be represented by a remain-
der r ∈ [0, n).

Example: Suppose n = 10. Then the multiplication table for the group
(Z/10)× is

1 3 7 9
1 1 3 7 9
3 3 9 1 7
7 7 1 9 3
9 9 7 3 1

.

We see that this is a cyclic group of order 4, generated by 3:

(Z/10)× = C4.

Suppose gcd(a, n) = 1. To find the inverse x of a mod n we have in effect
to solve the equation

ax+ ny = 1.

As we have seen, the standard way to solve this is to use the Euclidean
Algorithm, in effect to determine gcd(a, n).

Example: Let us determine the inverse of 17 mod 23. Applying the Eu-
clidean Algorithm,

23 = 17 + 6,

17 = 3 · 6− 1.

Thus

1 = 3 · 6− 17

= 3(23− 17)− 17

= 3 · 23− 4 · 17.

Hence
17−1 = −4 = 19 mod 23.

Note that having found the inverse of a we can easily solve the congruence

ax = b mod n

In effect
x = a−1b.

For example, the solution of

17x = 9 mod 23

is
x = 17−19 = −4 · 9 = −36 ≡ −13 ≡ 10 mod 23.
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4.5 Homomorphisms
Suppose m | n. Then each remainder mod n defines a remainder mod m.

For example, if m = 3, n = 6 then

0 mod 6 7→ 0 mod 3,

1 mod 6 7→ 1 mod 3,

2 mod 6 7→ 2 mod 3,

3 mod 6 7→ 0 mod 3,

4 mod 6 7→ 1 mod 3,

5 mod 6 7→ 2 mod 3.

Proposition 4.7. If m | n the map

r mod n 7→ r mod n

is a ring-homomorphism
Z/(n)→ Z/(m).

4.6 Finite fields
We have seen that Z/(p) is a field if p is prime.

Finite fields are important because linear algebra extends to vector spaces
over any field; and vector spaces over finite fields are central to coding theory
and cryptography, as well as other branches of pure mathematics.

Definition 4.5. The characteristic of a ring A is the least positive integer
n such that

n 1’s︷ ︸︸ ︷
1 + 1 + · · ·+ 1 = 0.

If there is no such n then A is said to be of characteristic 0.

Thus the characteristic of A, if finite, is the order of 1 in the additive
group A.

Evidently Z, Q, R, C are all of characteristic 0.

Proposition 4.8. The ring Z/(n) is of characteristic n.

Proposition 4.9. The characteristic of a finite field is a prime.

Proof. Let us write

n · 1 for
n 1’s︷ ︸︸ ︷

1 + 1 + · · ·+ 1 .

Suppose the order n is composite, say n = rs. By the distributive law,

n · 1 = (r · 1)(s · 1).

There are no divisors of zero in a field; hence

r · 1 = 0 of s · 1 = 0,

contradicting the minimality of n.

The proof shows in fact that the characteristic of any field is either a
prime or 0.

Proposition 4.10. Suppose F is a finite field of characteristic p. Then F
contains a subfield isomorphic to Z/(p).

Proof. Consider the additive subgroup generated by 1:

〈1〉 = {0, 1, 2 · 1, . . . , (p− 1) · 1}.

It is readily verified that this set is closed under addition and multiplication;
and the map

r mod p 7→ r · 1 : Z/(p)→ 〈1〉

is an isomorphism.
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This field is called the prime subfield of F .

Corollary 4.2. There is just one field containing p elements, up to isomor-
phism, namely Z/(p).

Theorem 4.2. A finite field F of characteristic p contains pn elements for
some n ≥ 1

Proof. We can consider F as a vector space over its prime subfield P . Suppose
this vector space is of dimension n. Let e1, . . . , en be a basis for the space.
Then each element of F is uniquely expressible in the form

a1e1 + · · ·+ anen,

where a1, . . . , an ∈ P . There are just p choices for each ai. Hence the total
number of choices, ie the number of elements in F , is pn.

Theorem 4.3. There is just one field F containing q = pn elements for each
n ≥ 1, up to isomorphism.

Thus there are fields containing 2,3,4 and 5 elements, but not field con-
taining 6 elements.

We are not going to prove this theorem until later.

Definition 4.6. We denote the field containing q = pn elements by Fq.

The finite fields are often called Galois fields, after Evariste Galois who
discovered them.
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Exercise 4
In Exercises 1–5 determine the additive order of the given element.

* 1. 3 mod 5

* 2. 3 mod 6

* 3. 2 mod 7

* 4. −13 mod 14

** 5. 100000 mod 123456

In Exercises 6–10 determine the multiplicative order of the given ele-
ment.

* 6. 3 mod 5

* 7. 7 mod 12

** 8. 2 mod 31

** 9. −2 mod 31

*** 10. 2 mod 35

In Exercises 11–15 determine the multiplicative inverse of the given
element.

* 11. 3 mod 5

* 12. 3 mod 13

* 13. 2 mod 111

** 14. 137 mod 253

In Exercises 16–20 determine the order of the given multiplicative
group, and list its elements.

* 15. (Z/2)×

* 16. (Z/6)×

* 17. (Z/8)×

* 18. (Z/12)×

* 19. (Z/15)×

* 20. Determine φ(45)

* 21. Determine φ(3n)

* 22. Determine all positive integers n with φ(n) = n− 1.
** 23. Determine all positive integers n with φ(n) = n− 2.
** 24. What is the smallest value of φ(n)/n?

** 25. Show that there is a field containing 4 elements.
** 26. Show that there is no field containing 6 elements.
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Chapter 5

The Chinese Remainder Theorem

5.1 Coprime moduli
Theorem 5.1. Suppose m,n ∈ N, and

gcd(m,n) = 1.

Given any remainders r mod m and s mod n we can find N such that

N ≡ r mod m and N ≡ s mod n.

Moreover, this solution is unique mod mn.

Proof. We use the pigeon-hole principle. Consider the mn numbers

0 ≤ N < mn.

For each N consider the remainders

r = N mod m, s = N mod n,

where r, s are chosen so that

0 ≤ r < m, 0 ≤ s < n.

We claim that these pairs r, s are different for different N ∈ [0,mn). For
suppose N < N ′ have the same remainders, ie

N ′ ≡ N mod m and N ′ ≡ N mod n.

Then
m | N ′ −N and n | N ′ −N.

Since gcd(m,n) = 1, it follows that

mn | N ′ −N.

But that is impossible, since

0 < N ′ −N < mn.

Example: Let us find N such that

N ≡ 3 mod 13, N ≡ 7 mod 23.

One way to find N is to find a, b such that

a ≡ 1 mod m, a ≡ 0 mod n,

b ≡ 0 mod m, b ≡ 1 mod n.

For then we can take
N = 3a+ 7b.

Note that
a = 1 + sm = tn.
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We are back to the Euclidean Algorithm for gcd(m,n):

23 = 2 · 13− 3,

13 = 4 · 3 + 1,

giving

1 = 13− 4 · 3
= 13− 4(2 · 13− 23)

= 4 · 23− 7 · 13.

Thus we can take

a = 4 · 23 = 92, b = −7 · 13 = −91.

giving
N = 3 · 92− 7 · 91 = 276− 637 = −361.

Of course we can add a multiple of mn to N; so we could take

N = 13 · 23− 361 = 299− 361 = −62,

if we want the smallest solution (by absolute value); or

N = 299− 62 = 237,

for the smallest positive solution.

5.2 The modular ring
We can express the Chinese Remainder Theorem in more abstract language.

Theorem 5.2. If gcd(m,n) = 1 then the ring Z/(mn) is isomorphic to the
product of the rings Z/(m) and Z/(n):

Z/(mn) = Z/(m)× Z/(n).

Proof. We have seen that the maps

N 7→ N mod m and N 7→ N mod n

define ring-homomorphisms

Z/(mn)→ Z/(m) and Z/(mn)→ Z/(n).

These combine to give a ring-homomorphism

Z/(mn)→ Z/(m)× Z/(n),

under which
r mod mn 7→ (r mod m, r mod n).

But we have seen that this map is bijective; hence it is a ring-isomorphism.

5.3 The totient function
Proposition 5.1. Suppose gcd(m,n) = 1. Then

gcd(N,mn) = gcd(N,m) · gcd(N, n).

Proof. Let
d = gcd(N,mn).

Suppose
pe ‖ d.

Then
pe ‖ m or pe ‖ n.

Thus the prime-power divisors of d are divided between m and n
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Corollary 5.1. If gcd(m,n) = 1 and N ∈ Z then

gcd(N,mn) = 1 ⇐⇒ gcd(N,m) = 1 and gcd(N, n) = 1.

From this we derive

Theorem 5.3. Euler’s totient function is multiplicative, ie

gcd(m,n) = 1 =⇒ φ(mn) = φ(m)φ(n).

This gives a simple way of computing φ(n).

Proposition 5.2. If
n =

∏
1≤i er

peii ,

where the primes p1, . . . , pr are different and each ei/ge1. Then

φ(n) =
∏

pei−1i (pi − 1).

Proof. Since φ(n) is multiplicative,

φ(n) =
∏
i

φ(peii ).

The result now follows from

Lemma 5.1. φ(pe) = pe−1(p− 1).

Proof. The numbers r ∈ [0, pe) is not coprime to pr if and only if it is divisible
by p, ie

r ∈ {0, p, 2p, . . . , pe − p}.

There are
[pe/p] = pe−1

such numbers. Hence

φ(pe) = pe − pe−1 = pe−1(p− 1).

Example: Suppose n = 1000.

φ(1000) = φ(2353)

= φ(23)φ(53)

= 22(2− 1) 52(5− 1)

= 4 · 1 · 25 · 4
= 400;

there are just 400 numbers coprime to 1000 between 0 and 1000.

5.4 The multiplicative group
Theorem 5.4. If gcd(m,n) = 1 then

(Z/mn)× = (Z/m)× × (Z/n)×.

Proof. We have seen that the map

r mod mn 7→ (r mod m, r mod n) : Z/(mn)→ Z/(m)× Z/(n)

maps r coprime to mn to pairs (r, s) coprime to m,n respectively. Thus the
subset (Z/mn)× maps to the product of the subsets (Z/m)× and (Z/n)×,
from which the result follows.

In effect, this is an algebraic expression of the fact that the totient function
is multiplicative.
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5.5 Multiple moduli
The Chinese Remainder Theorem extends to more than two moduli.

Proposition 5.3. Suppose n1, n2, . . . , nr are pairwise coprime, ie

i 6= j =⇒ gcd(ni, nj) = 1;

and suppose we are given remainders a1, a2, . . . , ar moduli n1, n2, . . . , nr, re-
spectively. Then there exists a unique N mod n1n2 · · ·nr such that

N ≡ a1 mod n1, N ≡ a2 mod n2, . . . , N ≡ ar mod nr.

Proof. This follows from the same pigeon-hole argument that we used to
establish the Chinese Remainder Theorem.

Or we can prove it by induction on r; for since

gcd(n1n2 · · ·ni, ni+1) = 1,

we can add one modulus at a time,
Thus if we have found Ni such that

Ni ≡ a1 mod n1, Ni ≡ a2 mod n2, . . . , Ni ≡ ai mod ni

then by the Chinese Remainder Theorem we can find Ni+1 such that

Ni+1 ≡ Ni mod n1n2 · · ·ni and Ni+1 ≡ ai+1 mod ni+1

and so

Ni+1 ≡ a1 mod n1, Ni+1 ≡ a2 mod n2, . . . , Ni+1 ≡ ai+1 mod ni+1,

establishing the induction.

Example: Suppose we want to solve the simultaneous congruences

n ≡ 4 mod 5, n ≡ 2 mod 7, n ≡ 1 mod 8.

There are two slightly different approaches to the task.
Firstly, we can start by solving the first 2 congruences. As is easily seen,

the solution is
n ≡ 9 mod 35.

The problem is reduced to two simultaneous congruences:

n ≡ 9 mod 35, n ≡ 1 mod 8,

which we can solve with the help of the Euclidean Algorithm, as before.
Alternatively, we can find solutions of the three sets of simultaneous con-

gruences

n1 ≡ 1 mod 5, n1 ≡ 0 mod 7, n1 ≡ 0 mod 8,

n2 ≡ 0 mod 5, n2 ≡ 1 mod 7, n2 ≡ 0 mod 8,

n3 ≡ 0 mod 5, n3 ≡ 0 mod 7, n3 ≡ 1 mod 8,

ie

n1 ≡ 1 mod 5, n1 ≡ 0 mod 56,

n2 ≡ 1 mod 7, n2 ≡ 0 mod 40,

n3 ≡ 1 mod 8, n3 ≡ 0 mod 35,

which we can solve by our previous method. The required solution is then

n = 4n1 + 2n2 + n3,

where the coefficients 4,2,1 are the required residues.
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5.6 Multiplicative functions
We have seen that φ(n) is multiplicative. There are several other multiplica-
tive functions that play an important role in number theory, for example:

1. The number d(n) of divisors of n, eg

d(2) = 1, d(12) = 3, d(32) = 5.

2. The sum σ(n) of the divisors of n, eg

σ(2) = 3, σ(12) = 28, σ(32) = 63.

3. The Möbius function

µ(n) =

{
(−1)e if n is square-free and has e prime factors,
0 if n has a square factor n = p2m.

4. The function (−1)n.

5. The function

θ(n) =


1 if n ≡ 1 mod 4,

−1 if n ≡ 3 mod 4,

0 if n is even.

5.7 Perfect numbers
Definition 5.1. We say that n ∈ N is perfect if it is the sum of all its
divisors, except for n itself.

In other words,
n is perfect ⇐⇒ σ(n) = 2n.

Theorem 5.5. If M(p) = 2p − 1 is prime then

n = 2p−1M(p)

is perfect. Moreover, every even perfect number is of this form

Remark: Euclid showed that every number of this form is perfect; Euler
showed that every even perfect number is of this form.

Proof. Note that
σ(n) = n+ 1 ⇐⇒ n is prime.

For if n = ab (where a, b > 1) then σ(n) ≥ n+ 1 + a.
Also

σ(2e) = 1 + 2 + 22 + · · ·+ 2e = 2e+1 − 1.

Thus if n = 2p−1M(p), where P = M(p) is prime, then (since 2e and
M(p) are coprime)

σ(n) = σ(2p−1)σ(M(p)

= (2p − 1)(M(p) + 1)

= (2p − 1)(2p)

= 2n.

Conversely, suppose n is an even perfect number. Let n = 2em, where m
is odd. Then

σ(n) = σ(2e)σ(m) = 2n,

ie

(2e+1 − 1)σ(m) = 2e+1m.

Thus 2e+1 − 1 | m, say
m = (2e+1 − 1)x.

5–5



Then
σ(m) = 2e+1x = m+ x.

But x is a factor of m. So if x is not 1 or m then

σ(m) ≥ m+ x+ 1.

Hence x = 1 or m If x = m then 2e+1 − 1 = 1 =⇒ e = 0, which is not
possible since n is even.

It follows that x = 1, so that

m = 2e+1 − 1 = M(e+ 1).

Also
σ(m) = m+ 1.

Thus m = M(e+ 1) is prime (and therefore e+ 1 = p is prime), and

n = 2p−1M(p),

as stated.

But what if n is odd? It is not known if there are any odd perfect numbers.
This is one of the great unsolved problems of mathematics.
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Exercise 5
In Exercises 1–16 determine all solutions of the given congruence.

* 1. 3x ≡ 1 mod 23

* 2. 7x ≡ 1 mod 47

** 3. 5x ≡ 2 mod 210

** 4. 6x ≡ 7 mod 25

** 5. 8x ≡ 5 mod 31

** 6. 8x ≡ 12 mod 32

** 7. 12x ≡ 6 mod 21

** 8. 2x ≡ 2 mod 16

** 9. 20x ≡ 8 mod 24

*** 10. 7x ≡ −3 mod 2009

** 11. x2 ≡ 1 mod 12

** 12. x2 ≡ −1 mod 15

** 13. x2 + x+ 1 ≡ 0 mod 3

** 14. x2 − 2x+ 3 ≡ 0 mod 5

** 15. x2 − 2 ≡ 0 mod 7

*** 16. x4 + 2x2 + x− 2 ≡ 0 mod 7

* 17. What is the order of 10 in the additive group Z/(24)?
** 18. Determine the orders of the elements 7, 11, 21 in the multiplicative

group (Z/36)×.
** 19. What is the order of the group (Z/36)×?
*** 20. Is the group (Z/36)× cyclic?
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*** 21. Is Christmas equally likely to take place on any day of the week?
**** 22. Given integers x1, x2, . . . , x11, show that there exists a finite sequence

a1, ..., a11 of numbers from {−1, 0, 1} such that the sum

a1x1 + ...+ a11x11

is divisible by 2009.
*** 23. Construct the field containing 4 elements.
**** 24. Show that there is no field containing 6 elements.
*** 25. Determine the orders of all the elements in F×11?
** 26. What is the order of the multiplicative group F×q ?
*** 27. How many elements are there of order 4 in F×17?
*** 28. Prove that there is a multiple of 2009 which ends with the digits

000001.

5–8



Chapter 6

Polynomial Rings

6.1 Polynomials
A polynomial of degree n over a ring A is an expression of the form

f(x) = anx
n + an−1x

n−1 + · · ·+ a0,

where ai ∈ A and an 6= 0.
(It is better not to think of f(x) as a function, since a non-zero polynomial

may take the value 0 for all x ∈ A, particularly if A is finite.)
We know how to add and multiply polynomials, so the polynomials over

A form a ring.

Definition 6.1. We denote the ring of polynomials over the ring A by A[x].

In practice we will be concerned almost entirely with polynomials over a
field k. We will assume in the rest of the chapter that k denotes a field.

In this case we do not really distinguish between f(x) and cf(x), where
c 6= 0. To this end we often restrict the discussion to monic polynomials, ie
polynomials with leading coefficient 1:

f(x) = xn + a1x
n−1 + · · ·+ an.

6.2 Long division
Proposition 6.1. Suppose k is a field, and suppose f(x), g(x) ∈ k[x], with
g(x) 6= 0. Then there exist unique polynomials q(x), r(x) ∈ k[x] with deg(r(x)) <
deg(g(x)) such that

f(x) = q(x)g(x) + r(x).

Proof. We begin by listing some obvious properties of the degree of a poly-
nomial over a field:

Lemma 6.1. 1. deg(f + g) ≤ max(deg(f), deg(g));

2. deg(fg) = deg(f) deg(g).

The existence of q(x) and r(x) follows easily enough by induction on
deg(f(x)). To see that the result is unique, suppose

f(x) = q1(x)g(x) + r1(x) = q2(x)g(x) + r2(x)

Then
g(x)(q1(x)− q2(x)) = r2(x)− r1(x).

The term on the left has degree ≥ deg(g(x)), while that on the right has
degree < deg(g(x)).

6.3 Irreducibility
Definition 6.2. The polynomial p(x) ∈ k[x] is said to be irreducible if it
cannot be factorised into polynomials of lower degree:

p(x) = g(x)h(x) =⇒ g(x) of h(x) is constant.

In particular, any linear polynomial (ie of degree 1) is irreducible.
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6.4 The Euclidean Algorithm for polynomials
Proposition 6.2. Any two polynomials f(x), g(x) ∈ k[x] have a gcd d(x),
ie

d(x) | f(x), g(x);

and
e(x) | f(x), g(x) =⇒ e(x) | d(x).

Furthermore, there exist polynomials u(x), v(x) such that

d(x) = u(x)f(x) + v(x)g(x).

Proof. The Euclidean Algorithm extends almost unchanged; the only differ-
ence is that deg(r(x)) takes the place of |r|.

Thus first we divide f(x) by g(x):

f(x) = q0(x)g(x) + r0(x),

where deg(r0(x)) < deg(g(x)).
If r0(x) = 0 we are done; otherwise we divide g(x) by r0(x):

g(x)(x) = q1(x)r0(x) + r1(x),

where deg(r1(x)) < deg(r0(x)).
Since the polynomials are reducing in degree, we must reach 0 after at

most deg(g(x)) steps. It follows, by exactly the same argument we used with
the Euclidean Algorithm in Z, that the last non-zero remainder rs(x) is the
required gcd:

gcd(f(x), g(x)) = rs(x).

The last part of the Proposition, the fact that d(x) is a linear combination
(with polynomial coefficients) of f(x) and g(x), follows exactly as before.

6.5 Unique factorisation
Theorem 6.1. A monic polynomial f(x) ∈ k[x] can be expressed as a product
of irreducible monic polynomials, and the expression is unique up to order.

Proof. If f(x) is not itself irreducible then f(x) = g(x)h(x), where g(x), h(x)
are of lower degree. The result follows by induction on deg(f(x)).

To prove uniqueness we establish the polynomial version of Euclid’s Lemma;

Lemma 6.2. If p(x) is irreducible then

p(x) | f(x) g(x) =⇒ p(x) | f(x) or p(x) | g(x).

Proof. As with the classic Euclidean Algorithm, suppose p(x) - f(x). Then

gcd(p(x), f(x)) = 1.

Hence there exist u(x), v(x) such that

u(x)p(x) + v(x)f(x) = 1.

Multiplying by g(x),

u(x)p(x)g(x) + v(x)f(x)g(x) = g(x).

Now p(x) divides both terms on the left. Hence p(x) | g(x), as required.

To prove uniqueness, we argue by induction on deg(f(x)). Suppose

f(x) = p1(x) · · · pr(x) = q1(x) · · · qs(x).

Then p1(x) | qj(x), and so p1(x) = qj(x), for some j; and the result follows
on applying the inductive hypothesis to

f(x)/p1(x) = p2(x) · · · pr(x) = q1(x) · · · qr−1(x)qr+1(x) · · · qs(x).
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6.6 Quotient fields
We have seen that if p is a prime number then Z/(p) is a field. The analogous
result holds for irreducible polynomials.

Theorem 6.2. Suppose p(x) ∈ k[x] is irreducible. Then the quotient-ring
k[x]/(p(x)) is a field.

Proof. Suppose f(x) is coprime to p(x), ie represents a non-zero element of
k[x] mod p(x). Then we can find polynomials u(x), v(x) such that

f(x)u(x) + p(x)v(x) = 1,

But then
f(x)u(x) ≡ 1 mod p(x),

ie fx) has the inverse u(x) modulo p(x).

This is particularly striking if k is a prime field Fp.

Corollary 6.1. Suppose f(x) ∈ Fp[x] is an irreducible polynomial of degree
n. Then K = Fp[x]/(f(x)) is a finite field with pn elements.

Proof. This follows from the fact that the residues modulo f(x) are repre-
sented by the pn polynomials

a0 + a1x+ · · ·+ an−1x
n−1 (0 ≤ a0, a1, . . . , an−1 < p).

Example: Let us look at the first irreducible polynomials in F2[x].
Every linear polynomial x − c in k[x] is irreducible, by definition. Thus

there are two irreducible polynomials of degree 1 in F2[x]: x and x+ 1.
If one of the four polynomials of degree 2 is not irreducible then it must

be one of the 3 products of x and x+ 1,

x2, x(x+ 1) = x2 + x, (x+ 1)2 = x2 + 1.

This leave one irredicible polynomial of degree 2: x2 + x+ 1.
Turning to the eight polynomials of degree 3, there are four linear prod-

ucts:

x3, x2(x+ 1) = x3 + x, x(x+ 1)2 = x3 + x, (x+ 1)3 = x3 + x2 + x+ 1.

There are two other ‘composite’ polynomials:

x(x2 + x+ 1) = x3 + x2 + x+ 1, (x+ 1)(x2 + x+ 1) = x3 + 1.

We are left with two irreducibles:

x3 + x2 + 1, x3 + x+ 1.

Each polynomial of degree d in F2[x] can be represented by d digits. Thus
the irreducible polynomials listed above can be written:

10, 11, 111, 1101, 1011, . . . .

These compare with the familar prime numbers, in binary form:

10, 11, 101, 111, 1001, . . . .

The field F2[x]/(x2 + x + 1) has 4 elements, represented by the residues
0, 1, x, x + 1. The addition and multiplication tables for this field of order 4
are

+ 0 1 x x+ 1
0 0 1 x x+ 1
1 1 0 x+ 1 x
x x x+ 1 0 1

x+ 1 x+ 1 x 1 0

× 0 1 x x+ 1
0 0 0 0 0
1 0 1 x x+ 1
x 0 x x+ 1 1

x+ 1 0 x+ 1 1 x

In the same way, the two irreducible polynomials of degree 3 define fields
of order 8. However, we shall see later that there is just one field of each
prime power pn, up to isomorphism. It follows that the two fields of order 8
must be two models of the same field.
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6.7 Gauss’ Lemma
Factorisation of polynomials over the rationals plays an important role in
elementary number theory. The following result simplifies the issue.

Proposition 6.3. Suppose f(x) ∈ Z[x]. Then f(x) factorises in Q[x] if and
only if it factorises in Z[x].

Proof.

Lemma 6.3. Each polynomial f(x) ∈ Q[x] can be expressed in the form

f(x) = qF (x)

where q ∈ Q, F (x) ∈ Z[x] and the coefficients of F(x) are coprime; moreover,
this expression is unique up to ±.

Proof. It is evident that f(x) can be brought to this form, by multiplying
by the lcm of the coefficients and then taking out the gcd of the resulting
integer coefficients.

If there were two such expressions, then multiplying across we would have

n1F1(x) = n2F2(x).

The gcd of the coefficients on the left is |n1|, while the gcd of those on the
right is |n2|. Thus n1 = ±n2, and the result follows.

Lemma 6.4. Suppose
u(x) = v(x)w(x),

where u(x), v(x), w(x) ∈ Z[x]. If the coefficients of v(x) are coprime, and
those of w(x) are also coprime, then the same is true of u(x).

Proof. Suppose to the contrary that the prime p divides all the coefficients
of f(x). Let

v(x) = brx
r + · · ·+ b0, w(x) = csx

s + · · ·+ c0, u(x) = ar+sx
r+s + · · ·+ a0.

By hypothesis, p does not divide all the bi, or all the cj. Suppose

p | br, br−1, . . . , bi+1 but p - bi,

and similarly
p | cs, cs−1, . . . , cj+1 but p - cj,

Then

p - ai+j = bi+jc0 + bi+j−1c1 + · · ·+ bicj + bi−1cj+1 + · · ·+ b0ci+j,

for p divides every term in the sum except bicj, which it does not divide since

p | bicj =⇒ p | bi or p | cj.

So p does not divide all the coefficients of u(x), contrary to hypothesis.

Writing f(x), g(x), h(x) in the form of the first Lemma,

q1F (x) = (q2G(x))(q3H(x)),

where the coefficients of each of F (x), G(x), H(x) are coprime integers. Thus

F (x) = (q2q3/q1)G(x)H(x).

Since the coefficients of both F (x) and G(x)H(x) are coprime, by the second
Lemma they are equal up to sign, and the result follows.

6.8 Euclidean domains, PIDs and UFDs
Definition 6.3. An integral domain A is said to be a euclidean domain if
there exists a function N : A → N such that N(a) = 0 ⇐⇒ a = 0, and
given a, b ∈ A with b 6= 0 there exists q, r ∈ A with

a = bq + r

with N(r) < N(b).

Definition 6.4. An element e of a ring A is said to be a unit if ef = 1 for
some element f ∈ A.

Proposition 6.4. The units in a ring A form a multiplicative group A×.
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Examples: Z× = {±1}.
If k is a field then k× = k \ {0}.

Definition 6.5. An ideal in an integral domain A is a non-empty subset
I ⊂ A with the properties

1. a, b ∈ I =⇒ a+ b ∈ I,

2. a ∈ A, b ∈ I =⇒ ab ∈ I,
Example: The whole ring A is an ideal in A, and so is the set {0}.
If a ∈ A then (a) = {ax : x ∈ A} is an ideal. An ideal of this form is said

to be principal.
If a, b ∈ A then

b | a ⇐⇒ (a) ⊂ (b).

Also
(a) = (b) ⇐⇒ b = eb,

where e is a unit.

Definition 6.6. An integral domain A is said to be a principal ideal domain
(PID) if every ideal I ⊂ A is principal: I = (a) for some a ∈ A.
Proposition 6.5. A euclidean domain is a principal ideal domain.

Proof. Suppose I is an ideal in the euclidean domain A. If I 6= (0) let d ∈ I
be a non-zero element with minimal N(d). Suppose a ∈ I. Then d | a, for
else

a = qd+ r,

with N(r) < N(d); and then r ∈ I contradicts the definition of d.

Definition 6.7. An element p in an integral domain A is said to be primitive
if p | ab =⇒ p | a or p | b.
Proposition 6.6. A primitive element p cannot be factored; if p = ab then
either a or b

Proof. Since p | p = ab, p | a or p | b. Suppose p | a, say a = pc. Then
p = pcb =⇒ bc = 1, so that b is a unit.

Definition 6.8. A unique factorisation domain (UFD) is an integral domain
A with the property that every non-zero element a ∈ A is expressible in the
form

a = ep1p2 . . . pr,

where e is a unit and p1, p2, . . . , pr are primitive elements.

We allow a = e with r = 0. Also, we note that we can omit e if r ≥ 1
since ep is primitive if p is primitive.

Theorem 6.3. A principal ideal domain is a unique factorisation domain:

PID =⇒ UFD.

Proof. Suppose A is a PID; and suppose a ∈ A, a 6= 0. We may assume that
a is not a unit, since the result holds trivially (with no primitive elements)
in that case.

We must show that a cannot be factorised into an arbitrarily large number
of non-units. Suppose that is false.

Then in particular x = y0z0, where y0, z0 are non-units. One of y0, z0,
say y0, can be factorised into an arbitrarily large number of non-units. In
particular y0 = y1z1, where y1, z1 are non-units. One of y1, z1, say y1, can
be factorised into an arbitrarily large number of non-units. In particular
y1 = y2z2, where y2, z2 are non-units.

Continuing in this way, we obtain an infinite sequence

y1, y2, y3, . . . ,

such that yi+1 | yi for all i. Thus

(y1) ⊂ (y2) ⊂ (y3) ⊂ · · ·

Let
I = (y1) ∪ (y2) ∪ (y3) ∪ · · · .

It is readily verified that I is an ideal. Since A is a PID, it follows that
I = (d) for some d ∈ A. Thus d ∈ (yn) for some n. But yn+1 ∈ (d). It follows
that yn | yn+1. Since yn+1 | yn, it follows that yn = yn+1e with e a unit. But
then yn+1e = yn+1zn+1 =⇒ zn+1 = e, contrary to hypothesis.

Let
x = ep1 · · · pr

be an expression for x with the maximal number r of primitive elements.
Then pi cannot be factored, or we would get an expression for x with r + 1
primitive elements; so p1, . . . , pr are primitive elements.
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Exercise 6

** 1. Determine the irreducible polynomials of degrees 1,2 and 3 over F2.
*** 2. Determine the irreducible polynomials of degree 4 over F2.
*** 3. How many irreducible polynomials are there of degree 5 over F2?
** 4. Determine the irreducible polynomials of degree 2 over F3.
*** 5. Determine the irreducible polynomials of degree 3 over F3.
*** 6. How many irreducible polynomials are there of degree 4 over F3?
** 7. Determine the irreducible polynomials of degree 2 over F5.
** 8. Determine the irreducible polynomials of degree 2 over F7.
** 9. Show that an irreducible polynomial over R is of degree 1 or 2.
** 10. Determine the irreducible polynomials over C.

In exercises 11–20 determine if the given polynomial is irreducible over
Q.

** 11. x2 + x+ 1

** 12. x3 + 2x+ 1

*** 13. x4 + 1

*** 14. x4 + 2

*** 15. x4 + 4

*** 16. x4 + 4x3 + 1

** 17. Determine the irreducible polynomials of degree 2 over F7.
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Chapter 7

Finite fields

7.1 The order of a finite field
Definition 7.1. The characterisitic of a ring A is the additive order of 1, ie
the smallest integer n > 1 such that

n · 1 = 1 + 1 + · · ·+ 1︸ ︷︷ ︸
n terms

= 0,

if there is such an integer, or ∞ if there is not.

Examples: Z,Q,R,C all have infinite characteristic.
Fp = Z/(p) has characteristic p.

Proposition 7.1. The characteristic of an integral domain A is either a
prime p, or else ∞.

In particular, a finite field has prime characteristic.

Proof. Suppose A has characteristic n = ab where a, b > 1. By the distribu-
tive law,

1 + · · ·+ 1︸ ︷︷ ︸
n terms

= (1 + · · ·+ 1︸ ︷︷ ︸
a terms

)(1 + · · ·+ 1︸ ︷︷ ︸
b terms

).

Hence
1 + · · ·+ 1︸ ︷︷ ︸

a terms

= 0 or 1 + · · ·+ 1︸ ︷︷ ︸
b terms

= 0,

contrary to the minimal property of the characteristic.

Proposition 7.2. Suppose the finite field F has characteristic p. Then F
contains pn elements, for some n.

Proof. The elements {0, 1, 2, . . . , p − 1} form a subfield of F isomorphic to
Fp. We can consider F as a vector space over this subfield. Let e1, e2, . . . , en
be a basis for this vector space. Then the elements of F are

x1e1 + x2e2 + · · ·+ xnen (0 ≤ x1, x2, . . . , xn < p).

Thus the order of F is pn.

7.2 On cyclic groups
Let us recall some results from elementary group theory.

Proposition 7.3. The element gi in the cyclic group Cn has order n/ gcd(n, i).

Proof. This follows from

(gi)e = 1 ⇐⇒ n | ie ⇐⇒ n

gcd(n, i)
| e.

Corollary 7.1. Cn contains φ(n) generators, namely the elements gi with
0 ≤ i < n for which gcd(n, i) = 1.

Proposition 7.4. The cyclic group Cn = 〈g〉 has just one subgroup of each
order d | n, namely the cyclic subgroup Cd = 〈gn/d〉.

Proof. Suppose gi ∈ H, where H ⊂ Cn is a subgroup of order d, Then

(gi)d = gid = 1 =⇒ n | id =⇒ n/d | i =⇒ gi ∈ Cn.

Thus H ⊂ Cn =⇒ H = Cn, since the two subgroups have the same
order.

7–1



7.3 Möbius inversion
This is a technique which has many applications in number theory and combi-
natorics. Recall that the Möbius function µ(n) is defined for positive integers
n by

µ(n) =

{
0 if n has a square factor
(−1)r if n is square-free and has r prime factors

Thus

µ(1) = 1, µ(2) = −1, µ(3) = −1, µ(4) = 0, µ(5) = −1,

µ(6) = 1, µ(7) = −1, µ(8) = 0, µ(9) = 0, µ(10) = 1.

Theorem 7.1. Given an arithmetic function f(n), suppose

g(n) =
∑
d|n

f(n).

Then
f(n) =

∑
d|n

µ(n/d)g(n).

Proof. Given arithmetic functions u(n), v(n) let us defined the arithmetic
function u ◦ v by

(u ◦ v)(n) =
∑
d|n

u(d)v(n/d) =
∑
n=xy

u(x)v(y).

(Compare the convolution operation in analysis.) This operation is commu-
tative and associative, ie v ◦ u = u ◦ v and (u ◦ v) ◦ w = u ◦ (v ◦ w). (The
latter follows from

((u ◦ v) ◦ w)(n) =
∑
n=xyz

u(x)v(y)w(z).)

Lemma 7.1. We have

∑
d|n

µ(d) =

{
1 if n = 1

0 otherwise.

Proof. Suppose n = pe11 · · · penn . Then it is clear that only the factors of
p1 · · · pr will contribute to the sum, so we may assume that n = p1 · · · pr.

But in this case the terms in the sum correspond to the terms in the
expansion of

(1− 1)(1− 1) · · · (1− 1)︸ ︷︷ ︸
r products

giving 0 unless r = 0, ie n = 1.

Let us define δ(n), ε(n) by

δ(n) =

{
1 if n = 1

0 otherwise,

ε(n) = 1 for all n

It is easy to see that
δ ◦ f = f

for all arithmetic functions f . Also the lemma above can be written as

µ ◦ ε = δ,

while the result we are trying to prove is

g = ε ◦ f =⇒ f = µ ◦ g.

This follows since

µ ◦ g = µ ◦ (ε ◦ f) = (µ ◦ ε) ◦ f = δ ◦ f = f.
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7.4 Primitive roots
Theorem 7.2. The multiplicative group F× = F \ {0} of a finite field F is
cyclic.

Proof. If F has order pb then F× has order pn− 1. It follows (by Lagrange’s
Theorem) that all the elements of F× satisfy

xp
n−1 = 1,

ie

U(x) = xp
n−1 − 1 = 0.

Since this polynomial has degree pn−1, and we have pn−1 roots, it factorizes
completely into linear terms:

U(x) =
∏
a∈F×

(x− a).

Now suppose d | pn − 1. Since

f(x) = xd − 1 | U(x)

it follows that xd − 1 factorizes completely into linear terms, say

f(x) =
∏

0≤i<d

(x− ai).

Lemma 7.2. Suppose there are σ(d) elements of order d in F×. Then∑
e|d

σ(e) = d.

Proof. Any element of order e | d must satisfy the equation f(x) = 0; and
conversely any root of the equation must be of order e | d. The result follows
on adding the elements of each order.

Lemma 7.3. We have ∑
e|d

φ(e) = d.

Proof. Since the function φ(d) is multiplicative, so (it is easy to see) is∑
e|d φ(d). Hence it is only necessary to prove the result for d = pn, ie

to show that
φ(pd) + φ(pd−1) + · · ·+ φ(1) = pd,

which follows at once from the fact that φ(pn) = pn − pn−1.

From the two Lemmas, on applying Möbius inversion,

σ(d) =
∑
e|d

e = φ(d).

In particular,
σ(pn − 1) = φ(pn − 1) ≥ 1,

from which the theorem follows, since any element of this order will generate
F×.

Remarks:

1. It is not necessary to invoke Möbius inversion to deduce from the two
Lemmas that σ(d) = φ(d), since it follows by simple induction that if
the result holds for e < d then it holds for d.

2. For a slight variant on this proof, suppose a ∈ F× has order d. Then a
satisfies the equation f(x) = xd−1 = 0, as do the d elements ai(0 ≤ i <
d). Moreover any element of order d satisfies this equation. It follows
that the elements of order d are all in the cyclic subgroup Cd = 〈a〉.
But we know from elementary group theory that there are just φ(d)
elements of order d in Cd, namely the elements ai with gcd(i, n) = 1.

It follows that the number σ(d) of elements of order d in F× is either
φ(d) or 0. But since

∑
d|pn−1 φ(d) = pn − 1, all the pn − 1 elements of

F× can only be accounted for if σ(d) = φ(d) for all d | pn − 1.

Definition 7.2. A generator of (Z/p)× is called a primitive root mod p.
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Example: Take p = 7. Then

23 ≡ 1 mod 7;

so 2 has order 3 mod 7, and is not a primitive root.
However,

32 ≡ 2 mod 7, 33 ≡ 6 ≡ −1 mod 7.

Since the order of an element divides the order of the group, which is 6 in
this case, it follows that 3 has order 6 mod 7, and so is a primitive root.

If g generates the cyclic group G then so does g−1. Hence

3−1 ≡ 5 mod 7

is also a primitive root mod 7.

Proposition 7.5. There are φ(p − 1) primitive roots mod p. If π is one
primitive root then the others are πi where 0 ≤ i < p−1 and gcd(p−1, i) = 1.

This follows from Proposition 7.3 above.
Examples: Suppose p = 11. Then (Z/11)× has order 10, so its elements

have orders 1,2,5 or 10. Now

25 = 32 ≡ −1 mod 11.

So 2 must be a primitive root mod 11.
There are

φ(10) = 4

primitive roots mod 11, namely

2, 23, 27, 29 mod 11,

ie

2, 8, 7, 6.

Suppose p = 23. Then (Z/23)× has order 22, so its elements have orders
1,2,11 or 28.

Note that since a22 = 1 for all a ∈ (Z/29)×, it follows that a11 = ±1.
Working always modulo 23,

25 = 32 ≡ 9 =⇒ 210 ≡ 81 ≡ 12 =⇒ 211 ≡ 24 ≡ 1.

So 2 has order 11. Also

32 ≡ 25 =⇒ 310 ≡ 225 ≡ 23 =⇒ 311 ≡ 3 · 8 ≡ 1.

So 3 also has order 11. But

52 ≡ 2 =⇒ 510 ≡ 25 ≡ 9 =⇒ 511 ≡ 45 ≡ −1.

Since 52 ≡ 2 =⇒ 54 ≡ 22 = 4, we conclude that 5 is a primitive root modulo
23.

7.5 Uniqueness
Theorem 7.3. Two fields F, F ′ of the same order pn are necessarily isomor-
phic.

Proof. If a ∈ F× then apn−1 = 1, ie a is a root of the polynomial

U(x) = xp
n−1 − 1.

Hence
U(x) =

∏
a∈F×

(x− a),

since the number pn − 1 of elements is equal to the degree of U(x).
Now suppose U(x) factorises over Fp into irreducible polynomials

U(x) = f1(x) · · · fr(x).

We know that F× is cyclic. Let π be a generator, so that

F = {0, 1, π, π2, . . . , πp
n−2}.

Then π is a factor of U(x), and so of one of its irreducible factors, say f1(x).
It follows that if f(x) ∈ Fp[x] then

f(π) = 0 ⇐⇒ f1(x) | f(x).
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For otherwise we could find u(x), v(x) such that

f(x)u(x) + f1(x)v(x) = 1;

and this would give a contradiction on setting x = π.
Now pass to F ′, where U(x) will factor in the same way. Let π′ be a root

of f1(x) in F ′. Then we claim that the map Θ : F → F ′ given by

πr 7→ π′r (0 ≤ r < pn − 1)

(together with 0 7→ 0) is a homomorphism.
It is easy to see that Θ(xy) = Θ(x)Θ(y). It remains to show that Θ(x+

y) = Θ(x) + Θ(y). Suppose x = πa, y = πb, x+ y = πc. Then π satisfies the
equation

f(x) = xa + xb − xx.

It follows that
f1(x) | f(x).

On passing to F ′,
f(π′) = 0 =⇒ π′a + π′b = π′c,

as required.
Finally, a homomorphism Θ : F → F ′ from one field to another is neces-

sarily injective. For if x 6= 0 then x has an inverse y, and then

Θ(x) = 0 =⇒ Θ(1) = Θ(xy) = Θ(x)Θ(y) = 0,

contrary to fact that Θ(1) = 1. (We are using the fact that Θ is a homo-
morphism of additive groups, so that ker Θ = 0 implies that Θ is injective.)
Since F and F ′ contain the same number of elements, we conclude that Θ is
bijective, and so an isomorphims.

7.6 Existence
Theorem 7.4. There exists a field F of every prime power pn.

Proof. We know that if f(x) ∈ Fp[x] is of degree d, then Fp[x]/(f(x)) is a
field of order pn. Thus the result will follow if we can show that there exist
irreducible polynomials f(x) ∈ Fp[x] of all degrees n ≥ 1.

There are pn monic polynomials of degree n in Fp[x]. Let us associate
to each such polynomial the term xn. Then all these terms add up to the
generating function ∑

n∈N

pnxn =
1

1− px
.

Now consider the factorisation of each polynomial

f(x) = f1(x)e1 · · · fr(x)er

into irreducible polynomials. If the degree of fi(x) is di this product corre-
sponds to the power

xd1e1+···+drer .

Putting all these terms together, we obtain a product formula analagous to
Euler’s formula. Suppose there are σ(n) irreducible polynomials of degree n.
Let d(f) denote the degree of the polynomial f(x). Then

1

1− px
=

∏
irreducible f(x)

(
1 + xd(f) + x2d(f) + · · ·

)
=

∏
irreducible f(x)

1

1− xd(f)

=
∏
d∈N

(1− dn)−σ(d).

As we have seen, we can pass from infinite products to infinite series by
taking logarithms. When dealing with infinite products of functions it is
usually easier to use logarithmic differentiation:

f(x) = u1(x) · · ·ur(x) =⇒ f ′(x)

f(x)
=
u′1(x)

u1(x)
+ · · ·+ u′r(x)

ur(x)
.

Extending this to infinite products, and applying it to the product formula
above,

p

1− px
=
∑
d∈N

dσ(d)xd−1

1− xd
=
∑
d∈N

∑
t≥1

xtd−1
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(This is justified by the fact that terms on the right after the nth only involve
powers greater than xn.)

Comparing the terms in xn−1 on each side,

pn =
∑
d|n

dσ(d).

Applying Möbius inversion,

nσ(n) =
∑
d|n

µ(n/d)pd.

The leading term pn (arising when d = 1) will dominate the remaining
terms. For these will consist of terms ±pe for various different e < n. Thus
their absolute sum is

≤
∑
e≤n−1

pe

=
pn − 1

p− 1

< pn.

It follows that σ(n) > 0. ie there exists at least one irreducible polynomial
of degree n.

Corollary 7.2. The number of irreducible polynomials of degree n over Fp
is

1

n

∑
d|n

µ(n/d)pd.

Examples: The number of polynomials of degree 3 over F2 is

1

3

(
µ(1)23 + µ(3)2

)
=

23 − 2

3
= 2,

namely the polynmials x3 + x2 + 1, x3 + x+ 1.
The number of polynomials of degree 4 over F2 is

1

4

(
µ(1)24 + µ(3)22 + µ(1)2

)
=

24 − 22

4
= 3.

(Recall that µ(4) = 0, since 4 has a square factor.)
The number of polynomials of degree 10 over F2 is

1

10

(
210 − 25 − 22 + 2

)
=

990

10
= 99

The number of polynomials of degree 4 over F3 is

1

4

(
34 − 32

)
=

72

8
= 9.
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Exercise 7

** 1. Determine the irreducible polynomials of degrees 1,2 and 3 over F2.
*** 2. Determine the irreducible polynomials of degree 4 over F2.
*** 3. How many irreducible polynomials are there of degree 5 over F2?
** 4. Determine the irreducible polynomials of degree 2 over F3.
*** 5. Determine the irreducible polynomials of degree 3 over F3.
*** 6. How many irreducible polynomials are there of degree 4 over F3?
** 7. Determine the irreducible polynomials of degree 2 over F5.
** 8. Determine the irreducible polynomials of degree 2 over F7.
** 9. Show that an irreducible polynomial over R is of degree 1 or 2.
** 10. Determine the irreducible polynomials over C.

In exercises 11–20 determine if the given polynomial is irreducible over
Q.

** 11. x2 + x+ 1

** 12. x3 + 2x+ 1

*** 13. x4 + 1

*** 14. x4 + 2

*** 15. x4 + 4

*** 16. x4 + 4x3 + 1

** 17. Determine the irreducible polynomials of degree 2 over F7.
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Chapter 8

Fermat’s Little Theorem

8.1 Lagrange’s Theorem
Let us recall (without proof) this basic result of group theory: If G is a finite
group of order n then

gn = 1

for all g ∈ G.
If G is commutative (as all the groups we consider will be) there is a

simple way of proving this: Let

G = {g1, . . . , gn}.

Then
{gg1, gg2, . . . , ggn}

are the same elements, in a different order (unless g = 1). Multiplying these
elements together:

(gg1)(gg2) · · · (ggn) = g1g2 · · · gn,

ie

gn(g1g2 · · · gn) = (g1g2 · · · gn).

Multiplying by (g1g2 · · · gn)−1,

gn = 1.

8.2 Euler’s Theorem
Theorem 8.1 (Euler’s Theorem). For all x coprime to n,

xφ(n) ≡ 1 mod n.

Proof. The group (Z/n)× has order φ(n). The result follows on applying
Lagrange’s Theorem.

8.3 Fermat’s Little Theorem
As a particular case of Euler’s Theorem, since φ(p) = p− 1 if p is prime, we
have

Theorem 8.2 (Fermat’s Little Theorem). If p is prime then

xp−1 ≡ 1 mod p

for all x coprime to p.

The title ‘Fermat’s Little Theorem’ is sometimes given to the following
variant.

Corollary 8.1. If p is prime then

xp ≡ x mod p

for all x.

Proof. If p - x the result follows on multiplying the congruence in the Theo-
rem by x. If p | x then trivially xp ≡ 0 ≡ x mod p.
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8.4 Carmichael numbers
Fermat’s Little Theorem suggests a simple test for the primality of n: Is
xn ≡ x mod n for all x?

This is sometimes known as Fermat’s Primality Test.
Example: Take n = 6, for example. The congruence obviously holds for

x = 0, 1. But for x = 2,
26 = 64 ≡ 4 mod 6,

so the test fails, and we have proved that 6 is not prime.
Unfortunately, it turns out that some composite numbers can satisfy Fer-

mat’s test for all x.

Definition 8.1. We say that n ∈ N is a Carmichael number if n is composite
but

xn ≡ x mod n for all x.

Example: The smallest Carmichael number is

561 = 3 · 11 · 17.

To see that 561 is a Carmichael number, note that 3− 1 = 2, 11− 1 = 10
and 17− 1 = 16 all divide 561− 1 = 560.

Suppose first that x is coprime to 561. By Fermat’s Little Theorem,

x2 ≡ 1 mod 3 =⇒ x560 ≡ 1 mod 3

Similarly,

x10 ≡ 1 mod 11 =⇒ x560 ≡ 1 mod 11,

x16 ≡ 1 mod 17 =⇒ x560 ≡ 1 mod 17.

Putting these together, we deduce that

x560 ≡ 1 mod 3 · 11 · 17 = 561 =⇒ x561 ≡ x mod 561.

But what if x is not coprime to 561, say 17 | x but 3, 11 - x? Then
x = 17y, where gcd(y, 33) = 1.

The congruence is trivially satisfied mod 17:

(17y)561 ≡ 17y mod 17.

So we only have to show that

(17y)561 ≡ 17y mod 33,

Now φ(33) = 2 · 10 = 20. Since 17 and y are coprime to 33, it follows by
Euler’s Theorem that

1720 ≡ 1 mod 33 and y20 ≡ 1 mod 33.

Hence

(17y)20 ≡ 1 mod 33 =⇒ (17y)560 ≡ 1 mod 33

=⇒ (17y)561 ≡ 17y mod 33.

The other cases where x is divisible by one or more of 3, 11, 17 can be
dealt with similarly.

We shall prove the following result later. The argument is similar to that
above, but requires one more ingredient, which we shall meet in the next
Chapter.

Proposition 8.1. The number n is a Carmichael number if and only if it is
square-free, and

n = p1p2 · · · pr
where r ≥ 2 and

pi − 1 | n− 1

for i = 1, 2, . . . , r.

There are in fact an infinity of Carmichael numbers — this was only
proved about 20 years ago — although they are sparsely distributed. (There
are about N1/3 Carmichael numbers ≤ N .)

Note that if a number fails Fermat’s test then it is certainly composite.
The converse is not true, as we have seen; a number may pass the test but
not be prime.

However, Fermat’s test does provide a reasonable probabilistic algorithm,
for determining “beyond reasonable doubt” if a large number n is prime:
Choose a random number x1 ∈ [2, n− 1], and see if

xn1 ≡ x1 mod n.

If this holds, then the chances of n being prime are certainly much better
than they were before. Far fewer than 1/2 of composite numbers satisfy this
congruence. So one could say that the odds of the number being prime are
at least doubled.

Now repeat the test with a second random number x2 ∈ [2, n − 1] and
repeat the test. There is no reason to suppose that there is any statistical
relation between the two tests; so if the test is passed again, the chances of
the number being prime are at least 4 times as great.

If we repeat the test 20 times, say, and n passes each time, we may say
that the number is “virtually certain” to be prime.

Having said all that, Fermat’s test is never used in practice, because there
is a simple variant which avoids the Carmichael number problem, and has
other advantages as well.

8–2



8.5 The Miller-Rabin test
Suppose p is an odd prime. Let

p− 1 = 2em,

where m is odd.
Suppose p - x. Then we know that

xp−1 = x2
em ≡ 1 mod p.

But this may be written(
x2

e−1m
)2
≡ 1 mod p.

It follows that
x2

e−1m ≡ ±1 mod p;

for Z/(p) is a field; so if x ∈ Z/(p) then

x2 = 1 =⇒ (x− 1)(x+ 1) = 1 =⇒ x = ±1

Now suppose
x2

e−1m ≡ 1 mod p.

Then we can repeat the argument, if e > 1, to see that

x2
e−2m ≡ ±1 mod p.

Continuing in this way, we see that either

x2
im ≡ −1 mod p

for some i ∈ [0, e− 1]. or else

xm ≡ 1 mod p.

That is the Miller-Rabin test. It turns out that if a number n passes the
test for all x coprime to n then it must be prime; there is no analogue of
Carmichael numbers.

But we shall need the results of the next chapter to establish this . . . .

8.6 The AKS algorithm
The Miller-Rabin test (like the Fermat test) is probabilistic. It will only
determine up to a given probability if a number is prime. Just over 10 years
ago, three Indian mathematicians — Agrawal, Kayal and Saxena — found a
deterministic polynomial-time primality algorithm.

This algorithm is based on a simple extension of Fermat’s Little Theorem
to polynomias.

Theorem 8.3. The integer n ≥ 2 is prime if and only if

(x+ a)n ≡ xn + a mod n

for all a.

Remark: Suppose f(x) =
∑
aix

i, g(x) =
∑
bix

i ∈ Z[x]. We say that
f(x) ≡ g(x) mod n if ai ≡ bi mod n for all i.

Proof.

Lemma 8.1. If p is prime then

p |
(
i

p

)
for i 6= 0, p.

Proof. We have (
i

p

)
=
p(p− 1) · · · (p− i+ 1)

i(i− 1) · · · 1
.

The only term divisible by p is the first term in the numerator.

It follows from this lemma that the relation in the theorem holds if n is
prime.

Suppose n is not prime, say pi ‖ n where p is prime. Then

pi−1 ‖
(
n

p

)
.

For (
n

p

)
=

(
n

n− p

)
=
n(n− 1) · · · (n− p+ 1)

p(p− 1) · · · 1
.

The first term in the numerator is divisible by pi, and the first term in the
numerator is divisible by p. The result follows, since no other terms are
divisible by p.

It is not clear at this point that this result improves on the Miller-Rabin
test, since it is not feasible to test the relation for all a ∈ (0, n). However,
the AKS trio showed that it is only necessary to test

0 < a ≤
√
φ(r) log2 n,

where r is the smallest positive integer such that the order of r mod n is
> (log2 n)2. The trio showed that r < (log2 n)5, thus establishing that the
algorithm can be completed in polynomial time; that is, in ≤ P (log2 n) steps,
where P (x) is a polynomial.
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Exercise 8
In exercises 1-5, find a primitive roots modulo the given prime.

** 1. 5
** 2. 17
** 3. 23
** 4. 31
*** 5. 257

In exercises 6-10, find all the primitive roots modulo the given prime.
** 6. 7
** 7. 11
** 8. 13
** 9. 19
** 10. 29
*** 11. Show that if p is a prime then there are φ(d) elements of order d in

the group (Z/p)×.
*** 12. Show that the group (Z/n)× is cyclic if and only if n = pe or 2pe,

where p is prime.
*** 13. How many elements of each order are there in (Z/32)×?
**** 14. What is the order of 7 mod 2e for each e?
** 15.
** 16.
** 17.
** 18.
*** 19. Show that if p and q are primes and q | (ap− 1) then either q | (a− 1)

or p | (q − 1).
** 20.
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Chapter 9

Quadratic Residues

9.1 Introduction
Definition 9.1. We say that a ∈ Z is a quadratic residue mod n if there
exists b ∈ Z such that

a ≡ b2 mod n.

If there is no such b we say that a is a quadratic non-residue mod n.

Example: Suppose n = 10.
We can determine the quadratic residues mod n by computing b2 mod n

for 0 ≤ b < n. In fact, since

(−b)2 ≡ b2 mod n,

we need only consider 0 ≤ b ≤ [n/2].
Thus the quadratic residues mod 10 are 0, 1, 4, 9, 6, 5; while 3, 7, 8 are

quadratic non-residues mod 10.

Proposition 9.1. If a, b are quadratic residues mod n then so is ab.

Proof. Suppose
a ≡ r2, b ≡ s2 mod p.

Then
ab ≡ (rs)2 mod p.

9.2 Prime moduli
Proposition 9.2. Suppose p is an odd prime. Then the quadratic residues
coprime to p form a subgroup of (Z/p)× of index 2.

Proof. Let Q denote the set of quadratic residues in (Z/p)×. If θ : (Z/p)× →
(Z/p)× denotes the homomorphism under which

r 7→ r2 mod p

then
ker θ = {±1}, im θ = Q.

By the first isomorphism theorem of group theory,

|kerθ| · | im θ| = |(Z/p)×|.

Thus Q is a subgroup of index 2:

|Q| = p− 1

2
.

Corollary 9.1. Suppose p is an odd prime; and suppose a, b are coprime to
p. Then

1. 1/a is a quadratic residue if and only if a is a quadratic residue.

2. If both of a, b, or neither, are quadratic residues, then ab is a quadratic
residue;

3. If one of a, b is a quadratic residue and the other is a quadratic non-
residue then ab is a quadratic non-residue.

9.3 The Legendre symbol
Definition 9.2. Suppose p is a prime; and suppose a ∈ Z. We set

(
a

p

)
=


0 if p | a
1 if p - a and a is a quadratic residue mod p

−1 if if a is a quadratic non-residue mod p.

Example:
(

2

3

)
= −1,

(
1

4

)
= 1,

(
−1

4

)
= −1,

(
3

5

)
= −1.

Proposition 9.3. 1.
(

0

p

)
= 0,

(
1

p

)
= 1;
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2. a ≡ b mod p =⇒
(
a

p

)
=

(
b

p

)
;

3.
(
ab

p

)
=

(
a

p

) (
b

p

)
.

Proof. (1) and (2) follow from the definition, while (3) follows from the Corol-
lary above.

9.4 Euler’s criterion
Proposition 9.4. Suppose p is an odd prime. Then(

a

p

)
≡ a(p−1)/2 mod p.

Proof. The result is obvious if p | a.
Suppose p - a. Then(

a(p−1)/2
)2

= ap−1 ≡ 1 mod p,

by Fermat’s Little Theorem. It follows that(
a

p

)
≡ ±1 mod p.

Suppose a is a quadratic residue, say a ≡ r2 mod p. Then

a(p−1)/2 ≡ bp−1 ≡ 1 mod p

by Fermat’s Little Theorem.
These provide all the roots of the polynomial

f(x) = x(p−1)/2 − 1.

Hence
a(p−1)/2 ≡ −1 mod p

if a is a quadratic non-residue.

9.5 Gauss’s Lemma
Suppose p is an odd prime. We usually take r ∈ [0, p− 1] as representatives
of the residue-classes mod p But it is sometimes more convenient to take
r ∈ [−(p− 1)/2, (p− 1)/2], ie {−p/2 < r < p/2}/

Let P denote the strictly positive residues in this set, and N the strictly
negative residues:

P = {1, 2, . . . , (p− 1)/2}, N = −P = {−1,−2, . . . ,−(p− 1)/2}.

Thus the full set of representatives is N ∪ {0} ∪ P .
Now suppose a ∈ (Z/p)×. Consider the residues

aP = {a, 2a, . . . , p− 1

2
a}.

Each of these can be written as ±s for some s ∈ P , say

ar = ε(r)π(r),

where ε(r) = ±1. It is easy to see that the map

π : P → P

is injective; for

π(r) = π(r′) =⇒ ar ≡ ±ar′ mod p

=⇒ r ≡ ±r′ mod p

=⇒ r ≡ r′ mod p,

since s and s′ are both positive.
Thus π is a permutation of P (by the pigeon-hole principle, if you like).

It follows that as r runs over the elements of P so does π(r).
Thus if we multiply together the congruences

ar ≡ ε(r)π(r) mod p

we get
a(p−1)/21 · 2 · · · (p− 1)/2

on the left, and

ε(1)ε(2) · · · ε((p− 1)/2)1 · 2 · · · (p− 1)/2

on the right. Hence

a(p−1)/2 ≡ ε(1)ε(2) · · · ε((p− 1)/2) mod p.

But
a(p−1)/2 ≡

(
a

p

)
mod p,

by Euler’s criterion. Thus we have established

9–2



Theorem 9.1. Suppose p is an odd prime; and suppose a ∈ Z. Consider the
residues

a, 2a, . . . , a(p− 1)/2 mod p,

choosing residues in [−(p − 1)/2, (p − 1)/2]. If t of these residues are < 0
then (

a

p

)
= (−1)t.

Remarks:

1. Note that we could equally well choose the residues in [1, p − 1], and
define t to be the number of times the residue appears in the second
half (p+ 1)/2, (p− 1).

2. The map a 7→ (−1)t is an example of the transfer homomorphism in
group theory. Suppose H is an abelian subgroup of finite index r in
the group G. We know that G is partitioned into H-cosets:

G = g1H ∪ · · · ∪ grH.

If now g ∈ G then
ggi = gjhi

for i ∈ [1, r]. Now it is easy to see — the argument is similar to the
one we gave above — that the product h = h1 · · ·hr is independent of
the choice of coset representatives g1, . . . , gr, and the map

τ : G→ S

is a homomorphism, known as the transfer homomorphism from G to
S.

If G is abelian — which it is in all the cases we are interested in — we
can simply multiply together all the equations ggi = gjhi, to get

τ(g) = gr.

9.6 Computation of
(
−1

p

)
Proposition 9.5. If p is an odd prime then(

−1

p

)
=

{
1 if p ≡ 1 mod 4,

−1 if p ≡ −1 mod 4.

Proof. The result follows at once from Euler’s Criterion(
a

p

)
≡ a(p−1)/2 mod p.

But it is instructive to deduce it by Gauss’s Lemma.
We have to consider the residues

−1,−2, . . . ,−(p− 1)/2 mod p.

All these are in the range N = [−(p − 1)/2, (p − 1)/2]. It follows that
t = (p− 1)/2; all the remainders are negative.

Hence (
−1

p

)
= (−1)(p−1)/2

=

{
1 if p ≡ 1 mod 4,

−1 if p ≡ −1 mod 4.

Example: According to this,(
2

3

)
=

(
−1

3

)
= −1

(since 3 ≡ −1 mod 4), ie 2 is a quadratic non-residue mod 3.
Again (

12

13

)
=

(
−1

13

)
= 1,

since 13 ≡ 1 mod 4. Thus 12 is a quadratic residue mod13. In fact it is easy
to see that

12 ≡ 25 = 52 mod 13.
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9.7 Computation of
(

2

p

)
Proposition 9.6. If p is an odd prime then(

2

p

)
=

{
1 if p ≡ ±1 mod 8,

−1 if p ≡ ±3 mod 8.

Proof. We have to consider the residues

2, 4, 6, . . . , (p− 1) mod p.

We have to determine the number t of these residues in the first half of
[1, p − 1], and the number in the second. We can describe these two ranges
as {0 < r < p/2} and {p/2 < r < p}. Since

p/2 < 2x < p ⇐⇒ p/4 < x < p/2

it follows that
t = bp/2c − bp/4c.

Suppose
p = 8n+ r,

where r = 1, 3, 5, 7. Then

bp/2c = 4n+ br/2c, bp/4c = 2n+ br/4c.

Thus
t ≡ br/2c+ br/4c mod 2.

The result follows easily from the fact that

br/2c =


0 for r = 1

1 for r = 3

2 for r = 5

3 for r = 7,

while

br/4c =

{
0 for r = 1, 3

1 for r = 5, 7
.

Example: Since 71 ≡ −1 mod 8,(
2

71

)
= 1,

Can you find the solutions of

x2 ≡ 2 mod 71?

Again Since 19 ≡ 3 mod 8, (
2

19

)
= −1.

So by Euler’s criterion,
29 ≡ −1 mod 19.

Checking,
24 ≡ 3 =⇒ 28 ≡ 9 =⇒ 29 ≡ 18 mod 19.

9.8 Composite moduli
Proposition 9.7. Suppose m,n are coprime; and suppose a is coprime to
m and n. Then a is a quadratic residue modulo mn if and only if it is a
quadratic residue modulo m and modulo n

Proof. This follows at once from the Chinese Remainder Theorem. For

a ≡ r2 mod mn =⇒ a ≡ r2 mod m and a ≡ r2 mod n.

Conversely, suppose

a ≡ r2 mod m and a ≡ s2 mod n.

By the Chinese Remainder Theorem, we can find t such that t ≡ r mod m
and t ≡ s mod n; and then

t2 ≡ r2 ≡ a mod m and t2 ≡ s2 ≡ b mod n.
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9.9 Prime power moduli
Proposition 9.8. Suppose p is an odd prime; and suppose a ∈ Z is coprime
to p. Then a is a quadratic residue modpe (where e ≥ 1) if and only if it is
quadratic residue modp.

Proof. The argument we gave above for quadratic residues modulo p still
applies here.

Lemma 9.1. If θ : (Z/pe)× → (Z/pe)times is the homomorphism under
which

t 7→ t2 mod pe

then
ker θ = {±}.

Proof. Suppose
a2 − 1 = (a− 1)(a+ 1) ≡ 0 mod pe.

Then
p | a− 1 and p | a+ 1 =⇒ p | 2a =⇒ p | a,

which we have excluded. If p | a + 1 then pe | a − 1; and if p | a − 1 then
pe | a+ 1. Thus

a ≡ ±1 mod pe.

It follows that the quadratic residues modulo pe coprime to p form a
subgroup of index 2 in (Z/pe)×, ie just half the elements of (Z/pe)× are
quadratic residues modulo pe. Since just half are also quadratic residues
modulo p, the result follows.

Remark: For an alternative proof, we can argue by induction of e. Sup-
pose a is a quadratic residue modpe, say

a ≡ r2 mod pe,

ie

a = r2 + tpe.

Set
s = r + xpe.

Then

s2 = r2 + 2xpe + x2p2e

≡ r2 + 2xpe mod pe+1

≡ a+ (t+ 2x)pe mod pe+1

≡ ape mod pe+1

if

t+ 2x ≡ 0 mod p,

ie

x = −t/2 mod p,

using the fact that 2 is invertible modulo an odd prime p.

Corollary 9.2. The number of quadratic residues in (Z/pe)× is

φ(pe)

2
=

(p− 1)pe−1

2
.

The argument above extends to moduli 2e with a slight modification.

Proposition 9.9. Suppose p is an odd prime; and suppose a ∈ Z is coprime
to p. Then a is a quadratic residue modulo pe (where e ≥ 1) if and only if it
is quadratic residue modulo p.

Proof. The argument we gave above for quadratic residues modulo p still
applies here.

Lemma 9.2. If θ : (Z/pe)× → (Z/pe)times is the homomorphism under
which

t 7→ t2 mod pe

then
ker θ = {±}.

Proof. Suppose
a2 − 1 = (a− 1)(a+ 1) ≡ 0 mod pe.

Then
p | a− 1 and p | a+ 1 =⇒ p | 2a =⇒ p | a,

which we have excluded. If p | a + 1 then pe | a − 1; and if p | a − 1 then
pe | a+ 1. Thus

a ≡ ±1 mod pe.
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It follows that the quadratic residues modulo pe coprime to p form a
subgroup of index 2 in (Z/pe)×, ie just half the elements of (Z/pe)× are
quadratic residues modulo pe. Since just half are also quadratic residues
modulo p, the result follows.

Remark: For an alternative proof, we can argue by induction of e. Sup-
pose a is a quadratic residue modpe, say

a ≡ r2 mod pe,

ie

a = r2 + tpe.

Set
s = r + xpe.

Then

s2 = r2 + 2xpe + x2p2e

≡ r2 + 2xpe mod pe+1

≡ a+ (t+ 2x)pe mod pe+1

≡ a mod pe+1

if

t+ 2x ≡ 0 mod p,

ie

x = −t/2 mod p,

using the fact that 2 is invertible modulo an odd prime p.

Corollary 9.3. The number of quadratic residues in (Z/pe)× is

φ(pe)

2
=

(p− 1)pe−1

2
.

The argument above extends to moduli 2e with a slight modification.

Proposition 9.10. Suppose a is an odd integer. Then a is a quadratic
residue modulo 2e (where e ≥ 3) if and only if a ≡ 1 mod 8

Proof. It is readily verified that 1 is the only odd quadratic residue modulo
8; 3,5 and 7 are quadratic non-residues.

We show by induction on e that if a is an odd quadratic residue modulo
2e then it is a quadratic residue modulo 2e+1. For suppose

a ≡ r2 mod 2e,

say

a = r2 + t2e.

Let
s = r + t2e−1.

Then

s2 ≡ r2 + t2e mod 2e+1

= a.

Corollary 9.4. The number of quadratic residues in (Z/2e)× (where e ≥ 3)
is

φ(2e)

4
= 2e−3.

Remarks:

1. It is easy to see that pf (where f < e) is a quadratic residue modulo pe
if and only if f is even. This allows us to determine whether residues
that are not coprime to the modulus are quadratic residues or not.

Thus the quadratic residues modulo 24 are 0, 1, 4, 7, 17, 23, while the
quadratic residues modulo 36 are 0, 1, 4, 9, 17, 31 (noting that the quadratic
residue modulo 4 are 0, 1).

2. The inductive argument above is an example of Hensel’s Lemma. In
the simplest case this says that if f(x) ∈ Z[x] then any solution of
f(a) ≡ 0 mod p such that f ′(a) is coprime to p can be extended (in a
unique way) to a solution of f(a) ≡ 0 mod pe for all e ≥ 1.
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Exercise 9
In exercises 1-5, find the value of the given Legendre symbol

** 1.
(

3

5

)
** 2.

(
5

3

)
** 3.

(
−1

5

)
** 4.

(
5

5

)
** 5.

(
5

7

)
In exercises 6-15, determine if the given congruence has a solution,
and if it does find the smallest solution x ≥ 0.

** 6. x2 ≡ 5 mod 10

** 7. x2 ≡ 5 mod 11

** 8. x2 ≡ 5 mod 12

** 9. x2 ≡ 4 mod 15

** 10. x2 ≡ −1 mod 105

** 11. x2 + 3x+ 1 ≡ 0 mod 13

*** 12. x2 + 3x+ 1 ≡ 0 mod 13

*** 13. x2 ≡ 2 mod 27

*** 14. x2 + 2 ≡ 0 mod 81

*** 15. x2 ≡ 4 mod 25

*** 16. Show that if p is a prime satisfying p ≡ 1 mod 4 then x = ((p− 1)/2)!
satisfies

x2 + 1 ≡ 0 mod p.
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Chapter 10

Quadratic Reciprocity

10.1 Gauss’ Law of Quadratic Reciprocity
This has been described as ‘the most beautiful result in Number Theory’.

Theorem 10.1. Suppose p, q are distinct odd primes. Then(
p

q

) (
q

p

)
= (−1)

p−1
2

q−1
2 =

{
−1 if p ≡ q ≡ 3 mod 4

1 otherwise.

More than 200 proofs of this have been given. Gauss himself gave 11.
We give a short proof of the Theorem below. It is due to Rousseau, and

is fairly recent (1989), although it is said to be based on Gauss’ 5th proof.
It is subtle, but requires nothing we have not met.

10.2 Wilson’s Theorem
We start with a preliminary result which is not really necessary, but which
simplifies the formulae in the proof.

Proposition 10.1. If p is an odd prime then

(p− 1)! ≡ −1 mod p.

Proof. Consider the numbers 1, 2, . . . , p− 1. Each number x has a reciprocal
x−1 mod p in this set. The number x is equal to its reciprocal if and only if

x2 ≡ 1 =⇒ x ≡ ±1 mod p.

It follows that the remaining p − 3 numbers divide into pairs, each with
product 1 mod p. Hence the product of all p− 1 numbers is

1 · −1 = −1 mod p.

We shall find our formulae are simplified if we set

P = (p− 1)/2, Q = (q − 1)/2.

Corollary 10.1. (P !)2 ≡ (−1)P+1 mod p.

Proof. This follows from Wilson’s Theorem on replacing the numbers {P +
1, . . . , p− 1} by {−1,−2, ....,−P mod p}.

Recall the definition of the quotient-group G/H, where H is a normal
subgroup of G. (We will only be interested in abelian groups, in which case
every subgroup is normal.) The elements of G/H are the cosets of H in G.
If we write x′ ∼ x to mean that x′, x are in the same H-coset, ie x′ = xh for
some h ∈ H, then the basic step in defining the product operation on G/H
is to show that

x′ ∼ x, y′ ∼ y =⇒ x′y′ ∼ xy.

It follows from this that if we take representatives x1, . . . , xr of all the
cosets of H then the coset containing the product x1 · · ·xr is independent of
the choice of representatives:

x′i ∼ xi for 1 ≤ i ≤ r =⇒ x′i · · ·x′r ∼ x1 · · ·xr,

ie

x′i · · ·x′r = (x1 · · ·xr)h,

for some h ∈ H.
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10.3 Rousseau’s proof
Proof. Recall that the Chinese Remainder Theorem establishes a group-
isomorphism

(Z/pq)× = (Z/p)× × (Z/q)×,
under which

n mod pq 7→ (n mod p, n mod q)

for n coprime to pq. We can identify the product-group on the right with
the pairs

{(x, y) : x ∈ {1, . . . , p− 1}, y ∈ {1, . . . , q − 1}}.
We are going to consider the quotient of this group by the subgroup

{±1} = C2.

In other words, we are going to divide the group into pairings {(x, y), (−x,−y)}.
The group has order (p− 1)(q − 1) = 4PQ, so there are 2PQ pairings.

We are going to choose one representative from each pairing, in two dif-
ferent ways. In each case we will form the product of these representatives.
by the argument above, the two products will differ by a factor ±1.

For our first division, let us take the first half of (Z/p)×, and the whole
of (Z/q)×. In other words, we take the representatives

{(x, y) : 1 ≤ x ≤ P, 1 ≤ y ≤ q − 1}.

We want to compute the product of these elements.
The x-components are 1, 2, . . . , P , repeated q− 1 times. Their product is

(P !)q−1 = ((P !)2)Q ≡ (−1)(P+1)Q mod p,

by the Corollary to Wilson’s Theorem.
The y-components are 1, 2, . . . , q − 1, repeated P times. By Wilson’s

Theorem, their product is
(−1)P mod q.

Thus the product of the representatives is

((−1)(P+1)Q mod p, (−1)P mod q).

We could equally well choose representatives by taking the whole of
(Z/p)× and the first half of (Z/q)×. The product of these representatives
would be

((−1)Q mod p, (−1)P (Q+1) mod q).

However, what we need is a third way of choosing representatives, by
choosing the first half of (Z/pq)×. By this we mean the pairs (n mod
p, n mod q), where n runs through the numbers 1, . . . , (pq− 1)/2 not divis-
ible by p or q, ie the set of numbers A \B, where

A = {1, 2, . . . , p− 1, p+ 1, p2, . . . , 2p− 1, . . . , Qp+ 1, . . . , Qp+ P},

while B denotes the numbers in this set divisible by q, ie

B = {q, 2q, . . . , P q}.

Again, we compute the product (X mod p, Y mod q) of these represen-
tatives. The first component X mod p is

((p− 1)!)Q · P !/qP · P ! = ((p− 1)!)Q/qP ≡ (−1)Q/qP mod p.

But by Eisenstein’s criterion,

qP =

(
q

p

)
mod p.

Thus
X = (−1)Q

(
q

p

)
mod p.

Similarly, the second component Y mod q is

Y = (−1)P
(
p

q

)
mod q.

Comparing the products of the two choices of representatives,

((−1)(P+1)Q mod p, (−1)P mod q) = ±((−1)Q
(
q

p

)
mod p, (−1)P

(
p

q

)
mod q).

From the second components, the factor ±1 is actually
(
p

q

)
. Hence from

the first components,

(−1)(P+1)Q = (−1)Q
(
q

p

)(
p

q

)
,

ie (
q

p

)(
q

p

)
= (−1)PQ,

which is the Reciprocity Theorem.
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Exercise 10
In exercises 1-5, find the value of the given Legendre symbol

** 1.
(

13

23

)
** 2.

(
23

13

)
** 3.

(
40

53

)
** 4.

(
36

61

)
** 5.

(
2009

2011

)
In exercises 6-15, determine if the given congruence has a solution,
and if it does find the smallest solution x ≥ 0.

** 6. x2 ≡ 10 mod 36

** 7. x2 + 12 ≡ 0 mod 75

*** 8. x2 ≡ 8 mod 2009

*** 9. x2 ≡ 56 mod 2317

*** 10. x2 + 2x+ 17 ≡ 0 mod 35

*** 11. x2 + 3x+ 1 ≡ 0 mod 13

** 12. x3 ≡ −1 mod 105

*** 13. x7 ≡ 3 mod 17

*** 14. x3 + 2 ≡ 0 mod 27

*** 15. x5 + 3x+ 1 ≡ 0 mod 25

**** 16. If n > 0 is an odd number, and n = p1 . . . pr, we define the Jacobi

symbol
(
a

n

)
by (

a

n

)
=

(
a

p1

)
. . .

(
a

pr

)
.

Show that if m,n > 0 are both odd then(
m

n

)(
n

m

)
=

{
−1 if m ≡ n ≡ −1 mod 4,

1 otherwise .



In exercises 21-25, find the value of the given Jacobi symbol

** 17.
(

9

15

)
** 18.

(
15

9

)
** 19.

(
40

49

)
** 20.

(
2317

2009

)
** 21.

(
2009

2317

)
**** 22. Is there a power 7n which ends with the digits 000011? If so, what is

the smallest such n?
**** 23. Is there a power of 2009 which ends with the digits 2317?
**** 24. Is there a power of 2319 which ends with the digits 2009?

*** 25. Determine
(

3

p

)
for an odd prime p without using Quadratic Reci-

procity.



Chapter 11

Gaussian Integers

11.1 Gaussian Numbers
Definition 11.1. A gaussian number is a number of the form

z = x+ iy (x, y ∈ Q).

If x, y ∈ Z we say that z is a gaussian integer.

Proposition 11.1. The gaussian numbers form a field.
The gaussian integers form a commutative ring.

Proof. The only part that is not, perhaps, obvious is that the inverse of a
gaussian number z = x+ iy is a gaussian number. In fact

1

z
=

1

x+ iy

=
x− iy

(x+ iy)(x− iy)

=
x

x2 + y2
− i y

x2 + y2
.

We denote the gaussian numbers by Q(i), and the gaussian integers by
Z[i] or Γ. (We will be mainly interested in this ring.)

11.2 Conjugates and norms
Definition 11.2. The conjugate of the gaussian number

z = x+ iy ∈ Q(i)

is
z̄ = x− iy.

Proposition 11.2. The map

z 7→ z̄ : Q(i)→ Q(i)

is an automorphism of Q(i). In fact it is the only automorphism apart from
the trivial map z 7→ z.

Proof. It is evident that z 7→ z̄ preserves addition. To see that it preserves
multiplication, note that

(x+ iy)(u+ iv) = (xu− yv) + i(xv + yu) 7→ (xu− yv)− i(xv + yu),

while

(x− iy)(u− iv) = (xu− yv)− i(xv + yu).

Suppose θ is an automorphism of Q(i). By definition,

θ(0) = 0, θ(1) = 1.

Hence
θ(n) = 1 + · · ·+ 1 = n

for n ∈ N. It follows easily that θ(n) = n for n ∈ Z, and that if q = n/d ∈ Q
then

θ(q) = θ(n)/θ(d) = n/d.

Also
θ(i)2 = θ(i2) = θ(−1) = −1 =⇒ θ(i) = ±i.

Evidently
θ(i) = i =⇒ θ(z) = z

for all z ∈ Q(i), while

θ(i) = −i =⇒ θ(z) = z̄.

Definition 11.3. The norm of z = x+ iy ∈ Q(i) is

N (z) = zz̄ = x2 + y2.
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Proposition 11.3. 1. N (z) ∈ Q;

2. N (z) ≥ 0 and N (z) = 0 ⇐⇒ z = 0;

3. If z ∈ Γ then N (z) ∈ N.

4. N (zw) = N (z)N (w);

5. If a ∈ Q then N (a) = a2;

Proof. All is clear except perhaps the fourth part, where

N (zw) = (zw)(zw)

= zwz̄w̄

= (zz̄)(ww̄)

= N (z)N (w).

11.3 Units
Recall that an element ε of a ring A is said to be a unit if it is invertible, ie
if there exists an element η ∈ A such that

εη = 1 = ηε.

The units in A form a group A×.
Evidently Z× = {±1}.

Proposition 11.4. The units in Γ are: ±1,±i
Proof. Evidently ±1,±i are units.

Lemma 11.1. If ε ∈ Γ then

ε is a unit ⇐⇒ N (ε) = 1.

Proof. Suppose ε is a unit, say

εη = 1.

Then

εη = 1 =⇒ N (ε)N (η) = N(1) = 1

=⇒ N (ε) = N (η) = 1.

Suppose ε = m+ in ∈ Γ is a unit. Then

N (ε) = m2 + n2 = 1.

Evidently the only solutions to this are

(m,n) = (±1, 0) or (0,±1),

giving ±1,±i.

11.4 Division in Γ

Proposition 11.5. Suppose z, w ∈ Γ, with w 6= 0. Then we can find q, r ∈ Γ
such that

z = qw + r,

with
N (r) < N (w).

Proof. Suppose
z

w
= x+ iy,

where x, y ∈ Q.
Let m,n ∈ Z be the nearest integers to x, y, respectively. Then

|x−m| ≤ 1

2
, |y − n| ≤ 1

2
.

Set
q = m+ in.

Then
z

w
− q = (x−m) + i(y − n).

Thus
N (

z

w
− 1) = (x−m)2 + (y − n)2 ≤ 1

4
+

1

4
=

1

2
< 1.

But

N (
z

w
− 1) = N (

z − qw
w

)

=
N (z − qw)

N (w)
.

Hence
N (z − qw) < N (w),

from which the result follows on setting

r = z − qw.



11.5 The Euclidean Algorithm in Γ

Proposition 11.6. Any two numbers z, w ∈ Γ have a greatest common
divisor δ such that

δ | z, w
and

δ′ | z, w =⇒ δ′ | δ.
Also, δ is uniquely defined up to multiplication by a unit.

Moreover, there exists u, v ∈ Γ such that

uz + vw = δ.

Proof. We follow the Euclidean Algorithm as in Z, except that we use N (z)
in place of |n|.

We start by dividing z by w:

z = q0w + r0, N (r0) < N (w).

If r0 = 0, we are done. Otherwise we divide w by r0:

w = q1r0 + r1, N (r1) < N (r0).

If r1 = 0, we are done. Otherwise we continue in this way. Since

N (w) > N (r0) > N (r1) > · · · ,

and the norms are all positive integers, the algorithm must end, say

ri = qiri−1, ri+1 = 0.

Setting
δ = ri,

we see successively that

δ | ri−1, ri−2, . . . , r0, w, z.

Conversely, if δ′ | z, w then

δ′ | z, w, r0, r1, . . . , ri = δ.

The last part of the Proposition follows as in the classic Euclidean Algo-
rithm; we see successively that r1, r2, . . . , ri = δ are each expressible as linear
combinations of z, w with coefficients in Γ.

11.6 Unique factorisation
If A is an integral domain, we say that a ∈ A is a prime element if

a = bc =⇒ b is a unit, or c is a unit.

(We often just say “a is prime” if that cannot cause confusion.) We say that
two prime elementsπ, π′ are equivalent, and we write π ∼ π′, if

π′ = επ

for some unit ε.

Definition 11.4. We say that an integral domain A is a Unique Factori-
sation Domain (UFD) if each non-zero element a ∈ A is expressible in the
form

a = εp1 · · · pr,
where ε is a unit, and p1, . . . , pr are prime elements, and if moreover this
expression is unique up to order and multiplication by units, ie if

a = ε′p′1 . . . p
′
s

then r = s, and after re-ordering if necessary,

p′i ∼ pi.

If r ≥ 1 we could of course combine ε with one of the prime elements,
and write

a = p1 · · · pr,

Theorem 11.1. Γ is a Unique Factorisation Domain.

Proof. First we show that any z ∈ Γ is a product of irreducibles, by induction
on N (z).

If z is a unit or irreducible, we are done. If not, suppose

z = wt,

where neither w nor t is a unit. Then

N (z) = N (w)N (t) =⇒ N (w),N (t) < N (z).

Hence w, t are products of prime elements, and the result follows.
To see that the expression is unique, we must establish the analogue of

Euclid’s Lemma. The proof is identical to the classic case.



Lemma 11.2. If π ∈ Γ is prime element and z, w ∈ Γ then

π | zw =⇒ π | z or π | w.

Proof. If π - z then
gcd(π, z) = 1.

Hence there exist u, v such that

uπ + vz = 1.

Multiplying by w,
uπw + vzw = w.

Since π divides both terms on the left,

π | w.

Now the proof is as before. Again, we argue by induction on N (z).
Suppose

z = εp1 · · · pr = ε′p′1 . . . p
′
s.

Then
π1 | π′i

for some i. Hence
π′i ∼ π.

Now we can divide both sides by π1 and apply the inductive hypothesis.

Definition 11.5. If A is a unique factorisation domain we use the term
prime for a prime element, with the understanding that equivalent prime
elements define the same prime.

More precisely perhaps, a prime is a set {επ : ε ∈ A×} of equivalent prime
elements.

11.7 Gaussian primes
Having established unique factorisation in Γ, we must identify the primes.

Proposition 11.7. Each prime π in Γ divides just one rational prime p.

Proof. Let us factorise N (π) in N:

N (π) = ππ̄ = p1 . . . pr.

On factorising both sides in Γ, it follows that

π | pi

for some i.
Now suppose π divides two primes p, q. Since p, q are coprime, we can

find u, v ∈ Z such that
up+ vq = 1.

But now
π | p, q =⇒ π | 1,

which is absurd.

Proposition 11.8. Each rational prime p splits into at most 2 primes in Γ.

Proof. Suppose
p = π1 · · · πr.

Then
N (p) = p2 = N (π1) · · · N (πr).

Since N (πi) > 1, it follows that

r ≤ 2.

Proposition 11.9. If the rational prime p splits in Γ, say

p = π1π2,

then
N (π1) = N (π2) = p.

Proof. This follows at once from the fact that

N (p) = p2 = N (π1)N (π2).

We must determine which rational primes do split in Γ.

Proposition 11.10. If p ≡ 3 mod 4 (where p is a rational prime) then p
does not split in Γ.



Proof. Suppose p does split, and

π = m+ in

is a prime factor. Then

N (π) = p = m2 + n2.

Thus
m2 + n2 ≡ 3 mod 4.

But this is impossible, since

a2 ≡ 0 or 1 mod 4.

Proposition 11.11. If p ≡ 1 mod 4 (where p is a rational prime) then p
splits in Γ into two distinct but conjugate primes:

p = ππ̄.

Proof. This is more subtle. We know that(
−1

p

)
= 1.

Thus there exists an r such that

r2 ≡ −1 mod p,

where we may suppose that 0 < r < p. Then

r2 + 1 ≡ 0 mod p

ie

p | r2 + 1 = (r + i)(r − i).

If p does not split in Γ then

p | r + i or p | r − i.

But either implies that
p | 1,

which is absurd.
Thus

p = πσ,

where π, σ are primes. But then

N (π) = ππ̄ = p,

ie p is the product of two conjugate primes in Γ.
Finally,

π 6∼ π̄.

For
π̄ = επ =⇒ p = N (π) = ππ̄ = επ2.

But if π = m+ in this implies that

m2 + n2 = ε(m2 − n2 + 2imn).

The coefficient of i on the right must vanish. If ε = ±1 this gives mn = 0,
which is absurd. If ε = ±i it gives

m2 − n2 = 0 =⇒ m = ±n =⇒ p = 2m2 =⇒ p = 2.

The rational prime 2 has a special property in Γ.

Proposition 11.12. The rational prime 2 ramifies in Γ, ie it splits into 2
equal (or equivalent) primes.

Proof. Since
1 + i = i(1− i),

1− i ∼ 1 + i; and

2 = (1 + i)(1− i) = (−i)(1 + i)2.



11.8 Sums of squares
Proposition 11.13. The number n ∈ N is expressible as a sum of two
squares if and only if each rational prime p ≡ 3 mod 4 occurs to an even
power in n.

Proof. Suppose first n is the sum of two squares. We show by induction on
n that it must have the stated form.

Suppose
n = x2 + y2 = (x+ iy)(x− iy);

and suppose p | n, where p ≡ 3 mod 4. Then

p | x+ iy or p | x− iy.

In either case
p | x and p | y.

But p2 | n and we can divide the equation by p2:

n/p2 = (x/p)2 + (y/p)2.

But now the result for n follows from that for n/p2.
Now suppose that n has this form, say

n = 2epe11 · · · perr q
2f1
1 . . . q2fss ,

where p1, . . . , pr are primes ≡ 1 mod 4 and q1, . . . , qs are primes ≡ 3 mod 4.
Each rational prime pi splits into conjugate primes, say

p = πiπ̄i.

Let
θ = m+ in = (1 + i)eπe11 · · · πerr q

f1
1 · · · qfss .

Then

N (θ) = m2 + n2

= N (1 + i)eN (1 + i)eN (π1)
e1 · · · N (πr)

erN (q1)
f1 · · · N (qs)

fs

= 2epe11 · · · perr q
2f1
1 . . . q2fss

= n.

Example: Since
2317 = 7 · 331,

7 occurs just once in 2317. So 2317 is not the sum of two squares.
But

2009 = 7 · 7 · 41.

Here 7 occurs twice, while 41 ≡ 1 mod 4. Hence 2009 is the sum of two
squares.

Our argument shows that if

2009 = m2 + n2

then
7 | m,n.

If we set
m = 7a, n = 7b,

then
41 = a2 + b2.

Now it is easy to see that a, b = 5, 7 (if we restrict to positive solutions), ie

2009 = 352 + 402.

The argument also gives the number of ways of expressing a number as
the sum of two squares.

Proposition 11.14. Suppose

n = 2epe11 · · · perr q
2f1
1 . . . q2fss ,

where p1, . . . , pr are primes ≡ 1 mod 4 and q1, . . . , qs are primes ≡ 3 mod 4.
Then n can be expressed as

n = m2 + n2 (m,n ≥ 0)

in
(e1 + 1)(e2 + 1) · · · (er + 1)

different ways. (Note that we count m2+n2 and n2+m2 as different solutions
if m 6= n.)

Proof. For each rational prime p ≡ 1 mod 4, suppose

p = ππ̄.

We can factor pe in e+ 1 ways

πe1, π
e−1
1 π̄, . . . , π̄e.



Exercise 11
In exercises 1-5, determine the gcd of the given gaussian integers

** 1. gcd(3 + 2i, 2 + 3i)

** 2. gcd(12, 9− 3i)

** 3. gcd(5− 5i, 3 + i)

** 4. gcd(99, 17)

** 5. gcd(13 + 2i, 7− 11i)
In exercises 6-10, factorise the given gaussian integer into (gaussian)
primes.

** 6. 3 + 5i

** 7. 5 + 3i

*** 8. 23 + 17i

** 9. 11 + 2i

** 10. 29− i
In exercises 11-15, either express the given number as a sum of two
squares, or else show that this is not possibles.

** 11. 233
** 12. 317
** 13. 613
** 14. 1009
** 15. 2010
*** 16. Find a formula expressing

(x2 + y2 + z2 + t2)(X2 + Y 2 + Z2 + T 2)

as a sum of 4 squares.
*** 17. Show that every prime p can be expressed as a sum of 4 squares.
** 18. Deduce from the last 2 exercises that every n ∈ N can be expressed

as a sum of 4 squares.
** 19. Show that if n ≡ 7 mod 8 then n cannot be expressed as a sum of 3

squares.
*** 20. Show that if n = 4e(8m+ 7) then n cannot be expressed as a sum of

3 squares.



*** 21. Suppose p ≡ 1 mod 4 is prime. If p = m2 +n2, find u, v ∈ N such that

2p = u2 + v2,

and show that this representation of 2p as a sum of 2 squares is unique.
**** 22. Show that if p is a prime such that

2p = n2 + 1

then p is the sum of the squares of two consecutive integers.
*** 23. Show that if the prime p = m2 + n2 and p ≡ ±1 mod 10 then

5 | xy.

*** 24. Find the smallest n ∈ N such that n, n+ 1, n+ 2 are each a sum of 2
squares, but none is a perfect square.

**** 25. Show that there are arbitrarily long gaps between successive integers
expressible as a sum of 2 squares.



Chapter 12

Algebraic numbers and algebraic
integers

12.1 Algebraic numbers
Definition 12.1. A number α ∈ C is said to be algebraic if it satisfies a
polynomial equation

f(x) = xn + a1x
n−1 + · · ·+ an = 0

with rational coefficients ai ∈ Q.

For example,
√

2 and i/2 are algebraic.
A complex number is said to be transcendental if it is not algebraic. Both

e and π are transcendental. It is in general extremely difficult to prove a
number transcendental, and there are many open problems in this area, eg
it is not known if πe is transcendental.

Theorem 12.1. The algebraic numbers form a field Q̄ ⊂ C.

Proof. If α satisfies the equation f(x) = 0 then −α satisfies f(−x) = 0, while
1/α satisfies xnf(1/x) = 0 (where n is the degree of f(x)). It follows that
−α and 1/α are both algebraic. Thus it is sufficient to show that if α, β are
algebraic then so are α + β, αβ.

Lemma 12.1. Suppose V ⊂ C is a finite-dimensional vector space over Q,
with V 6= 0; and suppose x ∈ C. If

xV ⊂ V

then x ∈ Q̄.

Proof. Let e1, . . . , en be a basis for V . Suppose

xe1 = a11e1 + · · · a1nen
xe2 = a21e1 + · · · a2nen
· · ·

xen = an1e1 + · · · annen.

Then
det(xI − A) = 0,

where

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

an1 an2 · · · ann

 .

This is a polynomial equation with coefficients in Q. Hence x ∈ Q̄.

Consider the vector space

V = 〈αiβj : 0 ≤ i < m, 0 ≤ j < n〉

over Q spanned by the mn elements αiβj. Evidently

αV ⊂ V, βV ⊂ V.

Thus
(α + β)V ⊂ V, (αβ)V ⊂ V.

Hence α + β and αβ are algebraic.

12.2 Algebraic integers
Definition 12.2. A number α ∈ C is said to be an algebraic integer if it
satisfies a monic polynomial equation

f(x) = xn + a1x
n−1 + · · ·+ an = 0

with integral coefficients ai ∈ Z. We denote the set of algebraic integers by
Z̄.

Theorem 12.2. The algebraic integers form a ring Z̄ with

Z ⊂ Z̄ ⊂ Q̄.
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Proof. Evidently
Z ⊂ Z̄,

since n ∈ Z satisfies the equation

x− n = 0.

We have to show that

α, β ∈ Z̄ =⇒ α + β, αβ ∈ Z̄.

Lemma 12.2. Suppose S ⊂ C is a finitely-generated abelian group, with
S 6= 0; and suppose x ∈ C. If

xS ⊂ S

then x ∈ Z̄.

Proof. Let s1, . . . , sn generate S. Suppose

xs1 = a11s1 + · · · a1nsn
xs2 = a21s1 + · · · a2nsn
· · ·

xsn = an1s1 + · · · annsn.

Then
det(xI − A) = 0.

This is a monic equation with coefficients in Z. Hence x ∈ Z̄.

Consider the abelian group

S = 〈αiβj : 0 ≤ i < m, 0 ≤ j < n〉

generated by the mn elements αiβj. Evidently

αS ⊂ S, βS ⊂ S.

Thus
(α + β)S ⊂ S, (αβ)S ⊂ S.

Hence α + β and αβ are algebraic integers.

Proposition 12.1. A rational number c ∈ Q is an algebraic integer if and
only if it is a rational integer:

Z̄ ∩Q = Z.

Proof. Suppose c = m/n, where gcd(m,n) = 1; and suppose c satisfies the
equation

xd + a1x
d−1 + · · ·+ ad = 0 (ai ∈ Z).

Then
md + a1m

d−1n+ · · ·+ adn
d = 0.

Since n divides every term after the first, it follows that n | md. But that is
incompatible with gcd(m,n) = 1, unless n = 1, ie c ∈ Z.

12.3 Number fields and number rings
Suppose F ⊂ C is a field. Then 1 ∈ F , by definition, and so

Q ⊂ F ⊂ C.

We can consider F as a vector space over Q.

Definition 12.3. An algebraic number field (or simply number field is a
subfield F ⊂ C which is a finite-dimensional vector space over Q. The degree
of F is the dimension of this vector space:

degF = dimQ F.

Proposition 12.2. The elements of a number field F are algebraic numbers:

Q ⊂ F ⊂ Q̄.

Proof. Suppose degF = d; and suppose α ∈ F . Then the d+ 1 numbers

1, α, α2, . . . , αd

are linearly dependent over Q, say

a0 + a1α + a2α
2 + · · ·+ adα

d = 0.

Thus
f(α) = 0,

where f(x) is the polynomial

f(x) = a0 + a1x+ a2x
2 + · · ·+ adx

d ∈ Q[x].



Definition 12.4. The algebraic integers in a number field F are said to form
an algebraic number ring (or simply number ring).

Thus the number ring associated to the number field F is

F ∩ Z̄.

Proposition 12.3. The number ring associated to the field of gaussian num-
bers is the ring Γ of gaussian integers.

Proof. Suppose
z = x+ iy (x, y ∈ Q)

is a gaussian number. We have to show that z is an algebraic integer if and
only if x, y ∈ Z.

If m,n ∈ Z then m+ in ∈ Z̄, since m,n, i ∈ Z̄ and Z̄ is a ring.
Conversely, suppose

z = x+ iy ∈ Z̄.
Then

z̄ = x− iy ∈ Z̄
since z and z̄ satisfy the same polynomials over Q. Hence

z + z̄ = 2x ∈ Z̄ ∩Q = Z.

Similarly
−iz = y − ix ∈ Z̄ =⇒ 2y ∈ Z.

Thus
z =

m+ in

2
,

with m,n ∈ Z.
But now

N (z) = zz̄ ∈ Z̄ ∩Q = Z,

ie

x2 + y2 =
m2 + n2

4
∈ Z,

ie

m2 + n2 ≡ 0 mod 4.

But m2, n2 ≡ 0 or 1 mod 4. So

m2 + n2 ≡ 0 mod 4 =⇒ 2 | m,n
=⇒ z ∈ Γ.

Example:
√

2 is an algebraic integer, since it satisfies the equation

x2 − 2 = 0.

But
√

2/2 is not an algebraic integer. For if it were,

(
√

2/2)2 = 1/2

would be an algbraic integer (since Z̄ is a ring), which we have just seen is
not so.

Algebraic number theory is the study of number rings. The first question
one might ask is whether a given number ring is a Unique Factorisation
Domain.

We have seen that the number rings Z and Γ are. But in general number
rings are not UFDs.

The foundation of algebraic number theory was Dedekind’s amazing dis-
covery that unique factorisation could be recovered if one added what Dedekind
called ‘ideal numbers’, and what are today called ‘ideals’.

However, we are not going into that theory. We shall only be looking at
a small number of quadratic number rings which are UFDs.

12.4 Integral closure
Recall that any integral domain A can be extended to its field of fractions,
which we shall denote by Q(A), since we follows exactly the same process as
in creating the field of rational numbers Q from the ring of integers Z. We
define Q(A) to be the quotient set X/E, where X is the set of pairs (n, d),
with n, d ∈ A and d 6= 0, and E is the equivalence relation

(n, d) ∼ (n′, d′) ⇐⇒ nd′ = n′d.

We write n/d for the the element of Q(A) represented by the the pair (n, d).
We define addition, multiplication and inversion in Q(A) in the obvious

way, and it is a trivial matter to verify that these satisfy the axioms for a
field. Identifying a ∈ A with a/1 ∈ Q(A) allows us to identify A with a
subset of Q(A), so we can regard Q(A) as an extension of A.

As an example of the construction we have k[x] → k(x), where k(x) is
the field of rational functions f(x)/g(x), with f(x), g(x) ∈ k[x].

If A is already a subring of a field F then we can identify Q(A) with the
subfield of F formed by the elements a/d with a, d ∈ A. So for example
the field of algebraic numbers is the quotient-field of the ring of algebraic
integers: Q̄ = Q(Z̄).



Chapter 13

Quadratic fields and quadratic
number rings

12.1 Quadratic number fields
Definition 12.1. A quadratic number field is a number field of degree 2.

The integer d ∈ Z is said to be square-free if it has no square factor, ie

a2 | d =⇒ a = ±1.

Thus the square-free integers are

±1,±2,±3,±5, . . . .

Proposition 12.1. Suppose d 6= 1 is square-free. Then the numbers

x+ y
√
d (x, y ∈ Q)

form a quadratic number field Q(
√
d.

Moreover, every quadratic number field is of this form; and different
square-free integers d, d′ 6= 1 give rise to different quadratic number fields.

Proof. Recall the classic proof that
√
d is irrational;

√
d =

m

n
=⇒ n2d = m2,

and if any prime factor p | d divides the left hand side to an odd power, and
the right to an even power.

It is trivial to see that the numbers x + y
√
d form a commutative ring,

while

1

x+ y
√
d

=
x− y

√
d

(x− y
√
d)(x+ y

√
d)

=
x− y

√
d

x2 − dy2
,

where x2 − dy2 6= 0 since
√
d /∈ Q.

It follows that these numbers form a field; and the degree of the field is 2
since 1,

√
d form a basis for the vector space.

Conversely, suppose F is a quadratic number field. Let 1, θ be a basis
for the vector space. Then 1, θ, θ2 are linearly independent, ie θ satisfies a
quadratic equation

aθ2 + bθ + c = 0 (a, b, c ∈ Q).

Since F is of degree 2, a 6= 0, and we can take a = 1. Thus

θ =
−b±

√
D

2
,

with D = b2 − 4c.
Now

D = a2d,

where d is a square-free integer (with a ∈ Q). It follows easily that

F = Q(
√
d).

Finally if d 6= d′ then Q(
√
d) 6= Q(

√
d′). For otherwise

√
d′ = x+ y

√
d

for some x, y ∈ Q; and so, on squaring,

d′2 = x2 + dy2 + 2xy
√
d.

But this implies that
√
d ∈ Q if xy 6= 0; while y = 0 =⇒

√
d = x ∈ Q, and

x = 0 =⇒ d′ = dy2,

which is easily seen to be incompatible with d, d′ being square-free.
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12.2 Conjugacy
We suppose in the rest of the Chapter that we are working in a specific
quadratic number field Q(

√
d).

Definition 12.2. We define the conjugate of

z = x+ y
√
d

to be
z̄ = x− y

√
d

If d < 0 then this coincides with the complex conjugate; but if d > 0 then
both z and z̄ are real; and

z = z̄ ⇐⇒ z ∈ Q.

Proposition 12.2. The map

z 7→ z̄ : Q(
√
d)→ Q(

√
d)

is an automorphism of Q(
√
d). In fact it is the only such automorphism apart

from the trivial map z 7→ z.

The proof is identical to that we gave for gaussian numbers.

Definition 12.3. The norm of z = x+ y
√
d ∈ Q(

√
d) is

N (z) = zz̄ = x2 − dy2.

Proposition 12.3. 1. N (z) ∈ Q;

2. N (z) = 0 ⇐⇒ z = 0;

3. N (zw) = N (z)N (w);

4. If a ∈ Q then N (a) = a2;

Again, the proof is identical to that we gave for the corresponding result
for gaussian numbers.

12.3 Quadratic number rings
We want to determine the number ring

A = Q(
√
d) ∩ Z̄

associated to the number field Q(
√
d), ie we want to find which numbers

x+ y
√
d are algebraic integers.

Theorem 12.1. Suppose

z = x+ y
√
d ∈ Q(

√
d).

Then

1. If d 6≡ 1 mod 4
z ∈ Z̄ ⇐⇒ z = m+ n

√
d,

where m,n ∈ Z.

2. If d ≡ 1 mod 4 then

z ∈ Z̄ ⇐⇒ z =
m+ n

√
d

2
,

where m,n ∈ Z and m ≡ n mod 2.

Proof. If
z = x+ y

√
d ∈ Z̄

then
z̄ = x ∈ y

√
d ∈ Z̄

since z and z̄ satisfy the same polynomials over Q. Hence

z + z̄ = 2x ∈ Z̄ ∩Q = Z.

Also
N (z) = zz̄ = x2 − dy2 ∈ Z.

It follows that
4dy2 = d(2y)2 ∈ Z =⇒ 2y ∈ Z

since d is square-free. (For suppose 2y = m/n, where gcd(m,n) = 1. Then
dm2/n2 ∈ Z. If the prime p | n then

p2 | dm2 =⇒ p2 | d,

which is impossible since d is square-free.)
Thus

z =
m+ n

√
d

2
,



where m,n ∈ Z. Now

N (z) =
m2 − dn2

4
∈ Z,

ie

m2 ≡ dn2 mod 4.

If n is even then so is m; and if m is even then so is n, since 4 - d. On
the other hand if m,n are both odd then

m2 ≡ n2 ≡ 1 mod 4.

It follows that
d ≡ 1 mod 4.

In other words, if d 6≡ 1 mod 4 then m,n are even, and so

z = a+ b
√
d,

with a, b ∈ Z.
On the other hand, if d ≡ 1 mod 4 then m,n are both even or both odd.
It only remains to show that if d ≡ 1 mod 4 and m,n are both odd then

z =
m+ n

√
d

2
∈ Z̄,

It is sufficient to show that

θ =
1 +
√
d

2
∈ Z̄,

since
z = (a+ b

√
d) + θ,

where
a = (m− 1)/2, b = (n− 1)/2 ∈ Z.

But

(θ − 1/2)2 = d/4,

ie

θ2 − θ + (1− d)/4.

But (1− d)/4 ∈ Z if d ≡ 1 mod 4. Hence

θ ∈ Z̄.

12.4 Units I: Imaginary quadratic fields
Suppose F is a number field, with associated number ring A (the algebraic
integers in F ). By ‘abuse of language’, as the French say, we shall speak of
the units of F when we are really referring to the units in A.

Proposition 12.4. Suppose z ∈ Q(
√
d) is an algebraic integer. Then

z is a unit ⇐⇒ N (z) = ±1.

Proof. Suppose z is a unit, say

zw = 1,

where w is also an integer. Then

N (zw) = N (z)N (w) = N (1) = 12 = 1.

Since N (z),N (w) ∈ Z it follows that

N (z) = N (w) = ±1.

On the other hand, if
N (z) = zz̄ = ±1

then
z−1 = ±z̄ ∈ Z̄.

Theorem 12.2. Suppose d is square-free and d < 0. Then the group of units
is finite. More precisely,

1. If d = −1 there are 4 units: ±1,±i;

2. if d = −3 there are 6 units: ±1,±ω,±ω2, where ω = (1 +
√
−3)/2;

3. in all other cases, there are just 2 units: ±1.



Proof. Suppose ε is a unit.
If d 6≡ 1 mod 4 then

ε = m+ n
√
d (m,n ∈ Z).

Thus
N (ε) = m2 + dn2 = 1,

If d < −1 then it follows that m = ±1, n = 0. If d = −1 then there are the
additional solutions m = 0, n = ±1, as we know.

If d ≡ 1 mod 4 then

ε =
m+ n

√
d

2
,

where m,n ∈ Z with m ≡ n mod 2. In this case,

N (ε) =
m2 − dn2

4
= 1,

ie

m2 − dn2 = 4.

If d ≤ −7 then this implies that m = ±1, n = 0. This only leaves the case
d = −3, where

m2 + 3n2 = 4.

This has 6 solutions: m = ±2, n = 0, giving ε = ±1; and m = ±1, n = ±1,
giving ε = ±ω,±ω2.

Units in real quadratic fields (where d > 0) have a very different character,
requiring a completely new idea from the theory of diophantine approxima-
tion; we leave this to another Chapter.



Exercise 16

*** 1. Determine which rational primes p split in the real number ring Z[
√

3].

In exercises 2-5, determine the prime factorisation of the given number
in the ring Z[

√
3].

*** 2. −2

** 3. 3

*** 4. 7

*** 5. 1 +
√

3

*** 6. Show that the real number ring Z[
√

2] is a Unique Factorisation Do-
main, and determine the primes in this ring.

In exercises 7-10, determine the prime factorisation of the given num-
ber in the ring Z[

√
2].

*** 7. 2

*** 8. 7

*** 9. 2 +
√

2

*** 10. 3 +
√

3

*** 11. Show that the ring Z[
√

5] is not a Unique Factorisation Domain.
[Note: this is not the number ring associated to the field Q(

√
5).]

*** 12. Show that the imaginary number ring Z[ω] (where ω3 = 1, ω 6= 1)
is a Unique Factorisation Domain, and determine the primes in this
ring.

In exercises 13-15, determine the prime factorisation of the given num-
ber in the ring Z[ω].

*** 13. 1− ω
*** 14. 2 + ω

*** 15. 2− ω
*** 16. Show that the imaginary number ring Z[

√
−5] is not a Unique Fac-

torisation Domain, by considering the factorisations of the number 6
in this ring, or in any other way.

**** 17. Determine if the imaginary number ring Z[
√
−6] is a Unique Factori-

sation Domain.
**** 18. Determine if the imaginary number ring Z[

√
−7] is a Unique Factori-

sation Domain.
**** 19. Show that the real number ring Z[

√
6] is a Unique Factorisation Do-

main.
**** 20. Show that the real number ring Z[

√
7] is a Unique Factorisation Do-

main.



Chapter 14

Pell’s Equation

14.1 Kronecker’s Theorem
Diophantine approximation concerns the approximation of real numbers by
rationals. Kronecker’s Theorem is a major result in this subject, and a very
nice application of the Pigeon Hole Principle.

Theorem 14.1. Suppose θ ∈ R; and suppose N ∈ N, N 6= 0. Then there
exists m,n ∈ Z with 0 < n ≤ N such that

|nθ −m| < 1

N
.

Proof. If x ∈ R we write {x} for the fractional part of x, so that

x = [x] + {x}.

Consider then N + 1 fractional parts

0, {θ}, {2θ}, . . . {Nθ};

and consider the partition of [0, 1) into N equal parts;

[0, 1/N), [1/N, 2/N), . . . , [(N − 1)/N, 1).

By the pigeon-hole principal, two of the fractional parts must lie in the
same partition, say

{iθ}, {jθ} ∈ [t/N, (t+ 1)/N ],

where 0 ≤ i < j < N . Setting

[iθ] = r, [jθ] = s,

we can write this as

iθ − r, jθ − s ∈ [t/N, (t+ 1)/N).

Hence

|(jθ − s)− (iθ − r)| < 1/N,

ie

|nθ −m| < 1/N,

where n = j − i, m = r − s with 0 < n ≤ N .

Corollary 14.1. If θ ∈ R is irrational then there are an infinity of rational
numbers m/n such that

|θ − m

n
| < 1

n2
.

Proof. By the Theorem,

|θ − m

n
| < 1

nN

≤ 1

n2
.

14.2 Pell’s Equation
We use Kronecker’s Theorem to solve a classic Diophantine equation.

Theorem 14.2. Suppose the number d ∈ N is not a perfect square. Then
the equation

x2 − dy2 = 1

has an infinity of solutions with x, y ∈ Z.
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Remark: Before we prove the theorem, it may help to bring out the
connection with quadratic number fields.

Note first that although d may not be square-free, we can write

d = a2d′,

where d′ is square-free (and d′ 6= 1). Pell’s equation can then be written

x2 − d′(ay)2 = 1,

which in turn gives
N (z) = 1,

where
z = x+ ay

√
d′.

Thus z is a unit in the quadratic number field Q(
√
d′.

Let us denote the group of units in this number field by U . Every unit
ε ∈ U is not necessarily of this form. Firstly the coefficient of

√
d′ must be

divisible by a; and secondly, if d′ ≡ 1 mod 4 then we are omitting the units
of the form (m+ n

√
d′)/2.

But it is not difficult to see that these units form a subgroup U ′ ⊂ U of
finite index in U . It follows that U ′ is infinite if and only if U is infinite.

However, we shall not pursue this line of enquiry, since it is just as easy
to work with these numbers in the form

z = x+ y
√
d.

In particular, if

z = m+ n
√
d, w = M +N

√
d

then
zw = (mM + dnN) + (mN + nM)

√
d;

and on taking norms (ie multiplying each side by its conjugate),

(m2 − dn2)(M2 − dN2) = (mM + dnN)2 − d(mN + nM)2

Similarly,

z

w
=

(m+ n
√
d)(M −N

√
d)

M2 − dN2

=
(mM + dnN)− (mN − nM)

√
d

M2 − dN2
.

On taking norms,
m2 − dn2

M2 − dN2
= u2 − dv2,

where
u =

mM + dnN

M2 − dN2
,
mN − nM
M2 − dN2

.

Now to the proof.

Proof. By the Corollary to Kronecker’s Theorem there exist an infinity of
m,n ∈ Z such that

|
√
d− m

n
| < 1

n2
.

Since √
d+

m

n
= 2
√
d− (

√
d− m

n
)

it follows that
|
√
d+

m

n
| < 2

√
d+ 1.

Hence

|d− m2

n2
| = |
√
d− m

n
| · |
√
d+

m

n
|

<
2
√
d+ 1

n2
.

Thus
|m2 − dn2| < 2

√
d+ 1.

It follows that there must be an infinity of m,n satisfying

m2 − dn2 = t

for some integer t with |t| < 2
√
d+ 1.

Let (m,n), (M,N) be two such solutions (with (m,n) 6= ±(M,N).
Note that since

m2 − dn2 = t = M2 − dN2

we have
u2 − dv2 = 1.

Of course u, v will not in general be integers, so this does not solve the
problem. However, we shall see that by a suitable choice of m,n,M,N we
can ensure that u, v ∈ Z.



Let T = |t|; and consider (m,n) mod T = (m mod T, n mod T ). There
are just T 2 choices for the residues (m,n) mod T . Since there are an infin-
ity of solutions m,n there must be some residue pair (r, s) mod T with the
property that there are an infinity of solutions (m,n) withm ≡ r mod T, n ≡
s mod T .

Actually, all we need is two such solutions (m,n), (M,N), so that

m ≡M mod T, n ≡ N mod T.

For then

mM − dnN ≡ m2 − dn2 = t mod T

≡ 0 mod T

(since t = ±T ); and similarly

mN − nM ≡ mn− nm mod T

≡ 0 mod T.

Thus
T | mM − dnN, mN − nM

and so
u, v ∈ Z.

14.3 Units II: Real quadratic fields
Theorem 14.3. Suppose d > 1 is square-free. Then there exists a unique
unit ε > 1 in Q(

√
d) such that the units in this field are

±εn

for n ∈ Z.

Proof. We know that the equation

x2 − dy2 = 1

has an infinity of solutions. In particular it has a solution (x, y) 6= (±1, 0).
Let

η = x+ y
√
d.

Then
N (η) = 1;

so η is a unit 6= ±1.
We may suppose that η > 1; for of the 4 units ±η,±η−1 just one appears

in each of the intervals (−∞,−1), (−1, 0), (0, 1), (1,∞).

Lemma 14.1. There are only a finite number of units in (1, C), for any
C > 1.

Proof. Suppose

ε =
m+ n

√
d

2
∈ (1, C)

is a unit. Then

ε̄ =
m− n

√
d

2
= ±ε−1.

Thus

−1 ≤ m− n
√
d

2
≤ 1.

Hence
0 < m < C + 1.

Since
m2 − dn2 = ±4

it follows that
n2 < m2 + 4 < (C + 1)2 + 4.

We have seen that there is a unit η > 1. Since there are only a finite
number of units in (1, η] there is a least such unit ε.

Now suppose η > 1 is a unit. Since ε > 1,

εn →∞ as n→∞.

Hence we can find n ≥ 0 such that

εn ≤ η < εn+1.

Then
1 ≤ ε−nη < ε.

Since ε−nη is a unit, it follows from the minimality of ε that

ε−nη = 1,

ie

η = εn.



Chapter 15

Q(
√

5) and the golden ratio

15.1 The field Q(
√

5)
Recall that the quadratic field

Q(
√

5) = {x+ y
√

5 : x, y ∈ Q}.

Recall too that the conjugate and norm of

z = x+ y
√

5

are
z̄ = x− y

√
5, N (z) = zz̄ = x2 − 5y2.

We will be particularly interested in one element of this field.

Definition 15.1. The golden ratio is the number

φ =
1 +
√

5

2
.

The Greek letter φ (phi) is used for this number after the ancient Greek
sculptor Phidias, who is said to have used the ratio in his work.

Leonardo da Vinci explicitly used φ in analysing the human figure.
Evidently

Q(
√

5) = Q(φ),

ie each element of the field can be written

z = x+ yφ (x, y ∈ Q).

The following results are immediate:

Proposition 15.1. 1. φ̄ = 1−
√
5

2
;

2. φ+ φ̄ = 1, φφ̄ = −1;

3. N (x+ yφ) = x2 + xy − y2;

4. φ, φ̄ are the roots of the equation

x2 − x− 1 = 0.

15.2 The number ring Z[φ]

As we saw in the last Chapter, since 5 ≡ 1 mod 4 the associated number ring

Z(Q(
√

5)) = Q(
√

5) ∩ Z̄

consists of the numbers
m+ n

√
5

2
,

where m ≡ n mod 2, ie m,n are both even or both odd. And we saw that
this is equivalent to

Proposition 15.2. The number ring associated to the quadratic field Q(
√

5)
is

Z[φ] = {m+ nφ : m,n ∈ Z}.

15.3 Unique Factorisation
Theorem 15.1. The ring Z[φ] is a Unique Factorisation Domain.

Proof. We prove this in exactly the same way that we proved the correspond-
ing result for the gaussian integers Γ.

The only slight difference is that the norm can now be negative, so we
must work with |N (z)|.

Lemma 15.1. Given z, w ∈ Z[φ] with w 6= 0 we can find q, r ∈ Z[φ] such
that

z = qw + r,

with
|N (r)| < |N (w)|.
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Proof. Let
z

w
= x+ yφ,

where x, y ∈ Q. Let m,n be the nearest integers to x, y, so that

|x−m| ≤ 1

2
, |y − n| ≤ 1

2
.

Set
q = m+ nφ.

Then
z

w
− q = (x−m) + (y − n)φ.

Hence
N (

z

w
− q) = (x−m)2 + (x−m)(y − n)− (y − n)2.

It follows that
−1

2
< N (

z

w
− q) < 1

2
,

and so

|N (
z

w
− q)| ≤ 1

2
< 1,

ie

|N (z − qw)| < |N (w)|.

This allows us to apply the euclidean algorithm in Z[φ], and establish

Lemma 15.2. Any two numbers z, w ∈ Z[φ] have a greatest common divisor
δ such that

δ | z, w

and
δ′ | z, w =⇒ δ′ | δ.

Also, δ is uniquely defined up to multiplication by a unit.
Moreover, there exists u, v ∈ Z[φ] such that

uz + vw = δ.

From this we deduce that irreducibles in Z[φ] are primes.

Lemma 15.3. If π ∈ Z[φ] is irreducible and z, w ∈ Z[phi] then

π | zw =⇒ π | z or π | w.

Now Euclid’s Lemma , and Unique Prime Factorisation, follow in the
familiar way.

15.4 The units in Z[φ]

Theorem 15.2. The units in Z[φ] are the numbers

±φn (n ∈ Z).

Proof. We saw in the last Chapter that any real quadratic field contains units
6= ±1, and that the units form the group

{±εn : n ∈ Z},

where ε is the smallest unit > 1.
Thus the theorem will follow if we establish that φ is the smallest unit

> 1 in Z[φ].
Suppose η ∈ Z[φ] is a unit with

1 < η = m+ nφ ≤ φ.

Then

N (η) = ηη̄ = ±1,

and so

η̄ = ±η−1.

Hence
−φ−1 ≤ η̄ = m+ nφ̄ ≤ φ−1.

Subtracting,

1− φ−1 < η − η̄ = n(φ− φ̄) ≤ φ+ φ−1,

ie

1−
√

5− 1

2
<
√

5n <
1 +
√

5

2
+

√
5− 1

2



ie

3−
√

5

2
<
√

5n ≤
√

5.

So the only possibility is
n = 1.

Thus
η = m+ φ.

But
−1 + φ < 1.

Hence

m ≥ 0,

and so

η ≥ ε.

15.5 The primes in Z[φ]

Theorem 15.3. Suppose p ∈ N is a rational prime.

1. If p ≡ ±1 mod 5 then p splits into conjugate primes in Z[φ]:

p = ±ππ̄.

2. If p ≡ ±2 mod 5 then p remains prime in Z[φ].

Proof. Suppose p splits, say
p = ππ′.

Then
N (p) = p2 = N (π)N (π′).

Hence
N (π) = N (π′) = ±p.

Suppose
π = m+ nφ.

Then
N (π) = m2 −mn− n2 = ±p,

and in either case
m2 −mn− n2 ≡ 0 mod p.

If p = 2 then m and n must both be even. (For if one or both of m,n are
odd then so is m2 −mn− n2.) Thus

2 | π,

which is impossible.
Now suppose p is odd, Multiplying by 4,

(2m− n)2 − 5n2 ≡ 0 mod p.

But
n ≡ 0 mod p =⇒ m ≡ 0 mod p =⇒ p | π,

which is impossible. Hence n 6≡ 0 mod p, and so

r2 ≡ 5 mod p,

where
r ≡ (2m− n)/n mod p.

Thus (
5

p

)
= 1.

It follows by Gauss’ Reciprocity Law, since 5 ≡ 1 mod 4, that(
p

5

)
= 1,

ie

p ≡ ±1 mod 5.

So if p ≡ ±2 mod 5 then p remains prime in Z[φ].
Now suppose p ≡ ±1 mod 5. Then(

5

p

)
= 1,



and so we can find n such that

n2 ≡ 5 mod p,

ie

p | n2 − 5 = (n−
√

5)(n+
√

5).

If p remains prime in Z[φ] then

p | n−
√

5 or p | n+
√

5,

both of which imply that p | 1, which is absurd.
We conclude that

p ≡ ±1 mod 5 =⇒ p splits in Z[φ].

Finally we have seen in this case that if π | p then

N (π) = ±p =⇒ p = ±ππ̄.

15.6 Fibonacci numbers
Recall that the Fibonacci sequence consists of the numbers

0, 1, 1, 2, 3, 5, 8, 13, . . .

defined by the linear recurrence relation

Fn+1 = Fn + Fn−1,

with initial values
F0 = 0, F1 = 1.

There is a standard way of solving a general linear recurrence relation

xn = a1xn−1 + a2xn−2 + · · ·+ adxn−d.

Let the roots of the associated polynomial

p(t) = td − c1td−1 − c2td−2 + · · ·+ cd.

be λ1, . . . , λd.
If these roots are distinct then the general solution of the recurrence

relation is
xn = C1λ

n
1 + C2λ

n
2 + · · ·+ Cdλ

n
d .

The coefficients C1, . . . , Cd are determined by d ‘initial conditions’, eg by
specifying x0, . . . , xd−1.

If there are multiple roots, eg if λ occurs e times then the term Cλn must
be replaced by λnp(λ), where p is a polynomial of degree e.

But these details need not concern us, since we are only interested in the
Fibonacci sequence, with associated polynomial

t2 − t− 1.

This has roots φ, φ̄. Accordingly,

Fn = Aφn +Bφ̄n.

Substituting for F0 = 0, F1 = 1, we get

A+B = 0, Aφ+Bφ̄ = 1.

Thus
B = −A, A(φ− φ̄) = 1.

Since

φ− φ̄ =
1 +
√

5

2
− 1−

√
5

2
=
√

5,

this gives
A = 1/

√
5, B = −1

√
5.

Our conclusion is summarised in

Proposition 15.3. The Fibonacci numbers are given by

Fn =
(1 +

√
5)n − (1−

√
5)

2n
√

5
.



15.7 The weak Lucas-Lehmer test for Mersenne
primality

Recall that the Mersenne number

Mp = 2p − 1,

where p is a prime.
We give a version of the Lucas-Lehmer test for primality which only works

when p ≡ 3 mod 4. In the next Chapter we shall give a stronger version which
works for all primes.

Proposition 15.4. Suppose the prime p ≡ 3 mod 4. Then

P = 2p − 1

is prime if and only if
φ2p ≡ −1 mod P.

Proof. Suppose first that P is a prime.
Since p ≡ 3 mod 4 and 24 ≡ 1 mod 5,

2p ≡ 23 mod 5

≡ 3 mod 5.

Hence
P = 2p − 1 ≡ 2 mod 5.

Now

φP =

(
1 +
√

5

2

)P

≡ 1P + (
√

5)P

2P
mod P,

since P divides all the binomial coefficients except the first and last. Thus

φP ≡ 1 + 5(P−1)/2
√

5

2
mod P,

since 2P ≡ 2 mod P by Fermat’s Little Theorem.
But

5(P−1)/2 ≡
(

5

P

)
,

by Euler’s criterion. Hence by Gauss’ Quadratic Reciprocity Law,(
5

P

)
=

(
P

5

)
= −1,

since P ≡ 2 mod 5. Thus

5(P−1)/2 ≡ −1 mod P,

and so

φP ≡ 1−
√

5

2
mod P.

But

1−
√

5

2
= φ̄

= −φ−1.

It follows that

φP+1 ≡ −1 mod P,

ie

φ2p ≡ −1 mod P.

Conversely, suppose
φ2p ≡ −1 mod P.

We must show that P is prime.
The order of φ is exactly 2p+1. For

φ2p+1

=
(
φ2p
)2 ≡ 1 mod P,

so the order divides 2p+1. On the other hand,

φ2p 6≡ 1 mod P,

so the order does not divide 2p.
Suppose now P is not prime. Since

P ≡ 2 mod 5,



it must have a prime factor

Q ≡ ±2 mod 5.

(If all the prime factors of P were ≡ ±1 mod 5 then so would their product
be.) Hence Q does not split in Z[φ].

Since Q | P , it follows that

φ2p 6≡ 1 mod Q;

and so, by the argument above, the order of φ mod Q is 2p+1.
We want to apply Fermat’s Little Theorem, but we need to be careful

since we are working in Z[φ] rather than Z.

Lemma 15.4 (Fermat’s Little Theorem, extended). If the rational prime Q
does not split in Z[φ] then

zQ
2−1 ≡ 1 mod Q

for all z ∈ Z[φ] with z 6≡ 0 mod Q.

Proof. The quotient-ring A = Z[φ] mod Q is a field, by exactly the same
argument that Z mod p is a field if p is a prime. For if z ∈ A, z 6= 0 then
the map

w 7→ zw : A→ A

is injective, and so surjective (since A is finite). Hence there is an element z′
such that zz′ = 1, ie z is invertible in A.

Also, A contains just Q2 elements, represented by

m+ n
√

5 (0 ≤ m,n < Q).

Thus the group
A× = A \ 0

has order Q2 − 1, and the result follows from Lagrange’s Theorem.

In particular, it follows from this Lemma that

φQ
2−1 ≡ 1 mod Q,

ie the order of φ mod Q divides Q2 − 1. But we know that the order of
φ mod Q is 2p+1. Hence

2p+1 | Q2 − 1 = (Q− 1)(Q+ 1).

But
gcd(Q− 1, Q+ 1) = 2.

It follows that either

2 ‖ Q− 1, 2p | Q+ 1 or 2 ‖ Q+ 1, 2p | Q− 1.

Since Q ≤ P = 2p − 1, the only possibility is

2p | Q+ 1,

ie Q = P , and so P is prime.

This result can be expressed in a different form, more suitable for com-
putation.

Note that
φ2p ≡ −1 mod P

can be re-written as

φ2p−1

+ φ2−(p−1) ≡ 0 mod P.

Let
ti = φ2i + φ2−i

Then

t2i = φ2i+1

+ 2 + φ2−(i+1)

= ti+1 + 2,

ie
ti+1 = t2i − 2.

Since
t0 = 2

it follows that ti ∈ N for all i.
Now we can re-state our result.

Corollary 15.1. Let the integer sequence ti be defined recursively by

ti+1 = t2i − 2, t0 = 2.

Then
P = 2p − 1 is prime ⇐⇒ P | tp−1.



Chapter 16

Z[
√

3] and the Lucas-Lehmer test

16.1 The field Q(
√

3)

We have
Q(
√

3) = {x+ y
√

3 : x, y ∈ Q}.

The conjugate and norm of

z = x+ y
√

3

are
z̄ = x− y

√
3, N (z) = zz̄ = x2 − 3y2.

16.2 The ring Z[
√

3]

Since 3 6≡ 1 mod 4,

Z(Q(
√

3)) = Q(
√

3) ∩ Z̄ = {m+ n
√

3 : m,n ∈ Z} = Z[
√

3].

16.3 The units in Z[
√

3]

Evidently
ε = 2 +

√
3

is a unit, since
N (ε) = 22 − 3 · 12 = 1,

Theorem 16.1. The units in Z[φ] are the numbers

±εn (n ∈ Z),

where
ε = 2 +

√
3.

Proof. We have to show that ε is the smallest unit > 1.
Suppose η = m+ n

√
3 is a unit satisfying

1 < η ≤ ε.

Since N (η) = ηη̄ = ±1,

η̄ = m− n
√

3 = ±η−1 ∈ (−1, 1).

Hence

η − η̄ = 2n
√

3 ∈ (0, 1 + ε),

ie

0 < n < (3 +
√

3)/2
√

3 < 2.

Thus

n = 1.

But now

N (η) = ±1 =⇒ m2 − 3 = ±1

=⇒ m = ±2.

Since −2 +
√

3 < 0, we conclude that m = 2, n = 1, ie

η = ε.
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16.4 Unique Factorisation
Theorem 16.2. Z[

√
3] is a Unique Factorisation Domain.

Proof. We hurry through the argument, which we have already given 3 times,
for Z,Γ and Z[φ].

Given z, w ∈ Z[
√

3] we write

z

w
= x+ y

√
3 (x, y ∈ Q),

and choose the nearest integers m,n to x, y, so that

|x−m|, |y −m| ≤ 1

2
.

Then we set
q = m+ n

√
3,

so that
z

w
− q = (x−m) + (y − n)

√
3,

and
N (

z − qw
w

) = (x−m)2 − 3(y − n)2.

Now
−3

4
≤ N (

z − qw
w

) ≤ 1

4
.

In particular,

|N (
z − qw
w

)| < 1,

ie

|N (z − qw)| < |N (w)|.

This allows the Euclidean Algorithm to be used in Z[
√

3], and as a con-
sequence Eulid’s Lemma holds, and unique factorisation follows.

16.5 The primes in Z[
√

3]

Theorem 16.3. Suppose p ∈ N is a rational prime. Then

1. If p = 2 or 3 then p ramifies in Z[
√

3];

2. If p ≡ ±1 mod 12 then p splits into conjugate primes in Z[
√

3],

p = ±ππ̄;

3. If p ≡ ±5 mod 12 then p remains prime in Z[
√

3].

Proof. To see that 2 ramifies, note that

(1 +
√

3)2 = 2ε,

where epsilon = 2 +
√

3 is a unit. It is evident that 3 =
√

3
2
ramifies.

Suppose p 6= 2, 3.
If p splits, say

p = ππ′,

then
N (p) = p2 = N (π)N (π′).

Hence
N (π) = N (π′) = ±p.

Thus if π = m+ n
√

3 then

m2 − 3n2 = ±p.

In particular,
m2 − 3n2 ≡ 0 mod p.

Now
n ≡ 0 mod p =⇒ m ≡ 0 mod p =⇒ p | π,

which is impossible, Hence

a ≡ mn−1 mod p

satisfies
a2 ≡ 3 mod p.

It follows that (
3

p

)
= 1.

Now suppose p ≡ 5 mod 12, ie p ≡ 1 mod 4, p ≡ 2 mod 3. By Gauss’
Quadratic Reciprocity Law,(

3

p

)
=

(
p

3

)
=

(
2

3

)
= −1.



Similarly, if p ≡ −5 mod 12, ie p ≡ 3 mod 4, p ≡ 1 mod 3, then by Gauss’
Quadratic Reciprocity Law,(

3

p

)
= −

(
p

3

)
= −

(
1

3

)
= −1.

So we see that p does not split in Z[
√

3] if p ≡ ±5 mod 12.
On the other hand, it follows in the same way that

p ≡ ±1 mod 12 =⇒
(

3

p

)
= 1,

in which case we can find a such that

a2 ≡ 3 mod p,

ie

p | (a2 − 3) = (a−
√

3)(a+
√

3).

If now p does not split then this implies that

p | a−
√

3 or p | a+
√

3.

But both these imply that p | 1, which is absurd.

16.6 The Lucas-Lehmer test for Mersenne pri-
mality

Theorem 16.4. If p is prime then

P = 2p − 1

is prime if and only if
ε2

p−1 ≡ −1 mod P,

where
ε = 2 +

√
3.

Proof. Suppose P is prime. Then

εP ≡ 2P + (
√

3)P mod P,

since
P |

(
r

P

)
for r 6= 0, P .

But
2P ≡ 2 mod P

by Fermat’s Little Theorem, while

(
√

3)P−1 = 3
P−1
2 ≡

(
3

P

)
mod P

by Euler’s criterion. Thus

εP ≡ 2 +

(
3

P

)√
3.

Now
2p ≡ (−1)p ≡ −1 mod 3 =⇒ P ≡ 1 mod 3,

while
4 | 2p =⇒ P ≡ −1 mod 4.

So by Gauss’ Reciprocity, (
3

P

)
= −

(
P

3

)
= −

(
1

3

)
= −1.

Thus
εP ≡ 2−

√
3 = ε̄ = ε−1.

Hence

εP+1 ≡ 1 mod P,

ie

ε2
p ≡ 1 mod P.

Consequently,
ε2

p−1 ≡ ±1 mod P.



We need a little trick to determine which of these holds; it is based on
the observation that

(1 +
√

3)2 = 4 + 2
√

3 = 2ε.

As before,

(1 +
√

3)P ≡ 1 + 3(P−1)/2
√

3 mod P

≡ 1−
√

3 mod P.

But now

(1−
√

3)(1 +
√

3) = −2,

and so

1−
√

3 = −2(1 +
√

3)−1.

Thus

(1 +
√

3)P+1 ≡ −2 mod P,

ie

(1 +
√

3)2
p ≡ −2 mod P,

ie

(2ε)2
p−1 ≡ −2 mod P.

To deal with the powers of 2, note that by Euler’s criterion

2(P−1)/2 ≡
(

2

P

)
mod P.

Recall that (
2

P

)
=

{
1 if P ≡ ±1 mod 8,

−1 if P ≡ ±1 mod 8.

In this case,
P = 2p − 1 ≡ −1 mod 8.

Thus

2(P−1)/2 ≡ 1 mod P,

and so

2(P+1)/2 ≡ 2 mod P,

ie

22p−1 ≡ 2 mod P.

So our previous result simplifies to

ε2
p−1 ≡ −1 mod P.

This was on the assumption that P is prime. Suppose now that P is not
prime, but that the above result holds.

Then P has a prime factor Q ≤
√
P . Also

ε2
p−1 ≡ −1 mod Q.

It follows that the order of ε mod Q is 2p.
But consider the quotient-ring

A = Z[
√

3]/(Q).

This ring contains just Q2 elements, represented by

m+ n
√

5 (0 ≤ m,n < Q).

It follows that the group A× of invertible elements contains < Q2 ele-
ments. Hence any invertible element of A has order < Q2, by Lagrange’s
Theorem. In particular the order or ε mod P is < Q2. Accordingly

2p < Q2,

which is impossible, since

Q2 ≤ P = 2p − 1.

We conclude that P is prime.



As with the weaker result in the last Chapter, there is a more computer-
friendly version of the Theorem, using the fact that

ε2
p−1 ≡ −1 mod P

can be re-written as
ε2

p−2

+ ε−2
p−2 ≡ 0 mod P.

Let
si = ε2

i

+ ε−2
i

Then

s2i = ε2
i+1

+ 2 + ε2
−(i+1)

= si+1 + 2,

ie
si+1 = s2i − 2.

Since
s0 = ε+ ε−1 = 4

it follows that si ∈ N for all i, with the sequence starting 4, 14, 194, . . . .
Now we can re-state our result.

Corollary 16.1. Let the integer sequence si be defined recursively by

si+1 = s2i − 2, s0 = 4.

Then
P = 2p − 1 is prime ⇐⇒ P | sp−2.



Chapter 17

Continued fractions

17.1 Finite continued fractions
Definition 17.1. A finite continued fraction is an expression of the form

a0 +
1

a1 +
1

a2 +
1

· · ·+
1

an

,

where ai ∈ Z with a1, . . . , an ≥ 1. We denote this fraction by

[a0, a1, . . . , an].

Example: The continued fraction

[2, 1, 3, 2] = 2 +
1

1 +
1

3 +
1

2

represents the rational number

2 +
1

1 +
2

7

= 2 +
7

9

=
25

9
.

Conversely, suppose we start with a rational number, say

57

33
.

To convert this to a continued fraction:

57

33
= 1 +

14

33
.

Now invert the remainder:

33

14
= 2 +

5

14
.

Again:

14

5
= 2 +

4

5
,

and again:

5

4
= 1 +

1

4
,

and finally:

4

1
= 4.

Thus
57

33
= [1, 2, 2, 1, 4].

Note that the numbers 1, 2, 2, 1, 4 in the continued fraction are precisely
the quotients that would arise if we used the Euclidean Algorithm to compute
gcd(57, 33).

We can consider continued fractions — particularly when we come to in-
finite continued fractions — as a generalisation or extension of the Euclidean
Algorithm.

17–1



17.2 The p’s and q’s
We can consider

[a0, a1, a2, . . . , an]

as a function of the variables a0, a1, . . . , an. Evidently

[a0, a1, a2, . . . , an] =
P

Q
,

where P,Q are polynomials in a0, a1, . . . , an with integer coefficients. This
does not define P,Q precisely; but we shall give a precise recursive definition
below, using induction on the length n of the continued fraction.

We start with the continued fraction

[a0] = a0 =
a0
1
,

setting
p = a0, q = 1,

Now suppose that we have defined p, q for continued fractions of length
< n; and suppose that under this definition

α1 = [a1, a2, . . . , an] =
p′

q′
.

Then

α = a0 +
1

α1

= a0 +
q′

p′

=
a0p
′ + q′

p′
.

So we set
p = a0p

′ + q′, q = p′

as the definition of p, q for a continued fraction of length n. We set this out
formally in

Definition 17.2. The ‘canonical representation’ of a continued fraction

[a0, a1, a2, . . . , an] =
p

q

is defined by induction on n, setting

p = a0p
′ + q′, q = p′,

where
[a1, a2, . . . , an] =

p′

q′

is the canonical representation for a continued fraction of length n− 1. The
induction is started by setting

[a0] =
a0
1
.

Henceforth if we write

[a0, a1, a2, . . . , an] =
p

q
,

then p, q will refer to the canonical representation defined above.

17.3 Successive approximants
Definition 17.3. If

α = [a0, a1, . . . , an]

then we call
[a0, a1, . . . , ai] =

pi
qi

the ith convergent or approximant to α (for 0 ≤ i ≤ n).

Example: Continuing the previous example, the successive approximants
to

57

33
= [1, 2, 2, 1, 4]

are

p0
q0

= [1] =
1

1
,

p1
q1

= [1, 2] = 1 +
1

2
=

3

2
,

p2
q2

= [1, 2, 2] = [1, 5/2] = 1 +
2

5
=

5

7
,

p3
q3

= [1, 2, 2, 1] = [1, 2, 3] = [1, 7/3] = 1 +
3

7
=

10

7
,

p4
q4

= [1, 2, 2, 1, 4] = [1, 2, 2, 5/4] = [1, 2, 14/5] = [1, 33/14] =
57

33
.

Note that while we normally assume that the entries an in continued
fractions are integers (with an ≥ 1 for n ≥ 1), it makes sense to use fractional



(or even variable) entries, using our recursive formulae for pn, qn as functions
of a0, a1. . . . . Usually this will only involve the last entry, where

[a0, . . . , an−1, an, x] = [a0, . . . , an−1, an + 1/x].

Note too that
p0
q0
<
p2
q2
<
p4
q4
<
p3
q3
<
p1
q1

;

first we get the even convergents, increasing, and then the odd convergents,
in reverse order, with the actual number sandwiched in between.

As we shall see, this is the general situation; moreover, the successive
convergents are very good approximants to the given number.

Theorem 17.1. If
α = [a0, a1, . . . , an]

then

pi = aipi−1 + pi−2,

qi = aiqi−1 + qi−2,

for i = 2, 3, . . . , n.

Proof. We argue by induction on n.
The result follows by induction for i 6= n, since the convergents involved

are — or can be regarded as — convergents to

[a0, a1, . . . , an−1],

covered by our inductive hypothesis.
It remains to prove the result for i = n. In this case, by the inductive

definition of p, q,

pn = a0p
′
n−1 + q′n−1,

pn−1 = a0p
′
n−2 + q′n−2,

pn−2 = a0p
′
n−3 + q′n−3.

But now by our inductive hypothesis,

p′n−1 = anp
′
n−2 + p′n−3, q

′
n−1 = anq

′
n−2 + q′n−3,

since
a′n−1 = an,

ie the (n− 1)th entry in α′ is the nth entry in α.
Hence

pn = a0p
′
n−1 + q′n−1,

= a0(anp
′
n−2 + p′n−3) + (anq

′
n−2 + q′n−3),

= an(a0p
′
n−2 + q′n−2) + (a0p

′
n−3 + q′n−3),

= anpn−1 + pn−2;

with the second result
qn = anqn−1 + qn−2

following in exactly the same way.

We can regard this as a recursive definition of pi
qi
, starting with

p0
q0

=
a0
1
,
p1
q1

=
a0a1 + 1

a1
,

and defining
p2
q2
,
p3
q3
,
p4
q4
, . . .

successively.
Actually, we can go back two futher steps.

Proposition 17.1. If we set

p−2 = 1, q−2 = 0,

p−1 = 0, q−1 = 1,

then

pi = aipi−1 + pi−2,

qi = aiqi−1 + qi−2,

for all i ≥ 0.

One more or less obvious result.

Proposition 17.2. Both the p’s and q’s are strictly increasing:

0 < q0 < q1 · · · < qn,

p0 < p1 · · · < pn.

Proof. This follows at once by repeated application of the recursive identities

pi = aipi−1 + pi−2, qi = aiqi−1 + qi−2,

since a1, a2, . . . , an > 0 and q0 = 1, q1 = a1,.



17.4 Uniqueness
Consider the continued fraction for a rational number x. If n > 0 and an > 1
then

[a0, a1, . . . , an] = [a0, a1, . . . , an − 1, 1].

And if n = 0, ie x ∈ Z, then

[x0] = [x0 − 1, 1].

Thus with our example above,

57

33
= [1, 2, 2, 1, 4] = [1, 2, 2, 1, 3, 1].

So there are at least 2 ways of expressing x as a continued fraction.

Proposition 17.3. A rational number x ∈ Q has just two representations
as a continued fraction: one with n = 0 or n > 1, an > 1, and the other with
n > 0 and an = 1.

Proof. It is sufficient to show that x has just one representation of the first
kind. Suppose

x = [a0, a1, . . . , am] = [b0, b1, . . . , bn],

We may assume that m ≤ n.
We argue by induction on n. The result is trivial if m = n = 0.

Lemma 17.1. If n > 0 and an > 1 then

a0 < [a0, a1, a2, . . . , an] < a0 + 1.

Proof. We argue, as usual, by induction on n. This tells us that

[a1, a2, . . . , an] > 1,

from which the result follows, since

[a0, a1, a2, . . . , an] = a0 +
1

[a1, a2, . . . , an]
.

It follows that
[x] = a0 = b0.

Thus

x−a0 =
1

[a1, a2, . . . , am]
=

1

[b1, b2, . . . , bn]
=⇒ [a1, a2, . . . , am] = [b1, b2, . . . , bn],

from which the result follows by induction.

We will take the first form for the continued fraction of a rational number
as standard, ie we shall assume that the last entry an > 1 unless the contrary
is stated.

17.5 A fundamental identity
Theorem 17.2. Successive convergents pi/qi, pi+1/qi+1 to the continued frac-
tion [a0, a1, . . . , an] satisfy the identity

piqi+1 − qipi+1 = (−1)i+1.

Proof. We argue by induction on i, using the relations

pi = aipi−1 + pi−2,

qi = aiqi−1 + qi−2.

Thus

piqi+1 − qipi+1 = pi(ai+1qi + qi−1) = qi(ai+1pi + pi−1)

= piqi−1 − qipi−1
= −(pi−1qi − qi−1pi)
= −(−1)i

= (−1)i+1.

The result holds for i = −2 since

p−2q−1 − q−2p−1 = 0 · 0− 1 · 1
= (−1)−1.

We conclude that the result holds for all i ≥ 0.

Proposition 17.4. The even convergents are monotonically increasing, while
the odd convergents are monotonically decreasing:

p0
q0
<
p2
q2
< · · · ≤ x ≤ · · · < p3

q3
<
p1
q1
.



Proof. By the last Proposition, if i is even then

pi+1

qi+1

− pi
qi

=
pi+1qi − piqi+1

qiqi+1

=
1

qiqi+1

.

Thus
pi
qi
<
pi+1

qi+1

.

Moreover,

pi+1

qi+1

− pi+2

qi+2

=
pi+1qi+2 − pi+2qi+1

qi+2qi+1

=
1

qi+2qi+1

<
1

qi+2qi+1

.

It follows that pi+2/qi+2 is closer than pi/qi to pi+1/qi+1. Hence

pi
qi
<
pi+2

qi+2

<
pi+1

qi+1

.

So the even convergents are increasing; and similarly the odd convergents are
decreasing.

Also, any even convergent is less than any odd convergent; for if i is even
and j is odd then

pi
qi
<
pi+j−1
qi+j−1

<
pi+j
qi+j

<
pj
qj
.

And since x is equal to the last convergent, it must be sandwiched between
the even and odd convergents.

17.6 Infinite continued fractions
So far we have been considering continued fraction expansions of rational
numbers. But the concept extends to any real number α ∈ R.

Suppose α is irrational. We set

a0 = [α],

and let

α1 =
1

α− a0
.

Then we define a1, a2, . . . , successively, setting

a1 = [α1],

α2 =
1

α1 − a1
,

a2 = [α2],

α3 =
1

α2 − a2
,

and so on.

Proposition 17.5. Suppose

a0, a1, a2, · · · ∈ Z with a1, a2, · · · > 0.

Let
[a0, a1, . . . , ai] =

pi
qi
.

Then the sequence of convergents converges:

pi
qi
→ x as i→∞.

Proof. It follows from the finite case that the even convergents are increasing,
and the odd convergents are decreasing, with the former bounded by the
latter, and conversely:

p0
q0
<
p2
q2
<
p4
q4
< · · · < p5

q5
<
p3
q3
<
p1
q1
.

It follows that the even convergents must converge, to α say, and the odd
convergents must also converge, to β say.

But if i is even,
pi
qi
− pi+1

qi+1

=
1

qiqi+1

.

Since
pi
qi
< α ≤ β <

pi+1

qi+1

,

it follows that
0 ≤ β − α < 1

qiqi+1

<
1

q2i
.

Hence
α = β,

ie the convergents tend to a limit α ∈ R.

Proposition 17.6. Each irrational number α ∈ R has a unique expression
as an infinite continued fraction

α = [a0, a1, a2, . . . ].



Proof. One could argue that this follows from the algorithm above for con-
structing the continued fractions of α.

Express each rational numbers x < α as a continued fraction. For sim-
plicity, let us choose the version with final entry an > 1.

Lemma 17.2. Suppose

α = [a0, a1, . . . , ], β = [b0, b1, . . . , ];

and suppose
a0 = b0, . . . , an−1 = bn−1, an < bn.

Then

α < β if n is even,
α > β if n is odd.

Proof. This follows easily from the fact that even convergents are increasing,
odd convergents decreasing.

Now let a0 be the largest first entry among rational x < α; let a1 be the
least second entry among those rationals with a0 as first entry; let a2 be the
largest third entry among those rationals with a0, a1 as first two entries; and
so on. Then it is a simple exercise to show that

α = [a0, a1, a2, dots].

(Note that if the an (with given a0, . . . , an−1) at the (n+ 1)th stage were
unbounded then it would follow that α is rational, since

[a0, . . . , an−1, x]→ [a0, . . . , an−1]

if x→∞.)

17.7 Diophantine approximation
Theorem 17.3. If pn/qn is a convergent to α = [a0, a1, a2, . . . ] then

|α− pn
qn
| ≤ 1

q2n
.

Proof. Recall that α lies between successive convergents pn/qn, pn+1/qn+1.
Hence

|α− pn
qn
| ≤ |pn+1

qn+1

− pn
qn
|

=
1

qnqn+1

≤ 1

q2n
.

Remarks:

1. There is in fact inequality in the theorem except in the very special case
where α is rational, pn/qn is the last but one convergent, and an+1 = 1;
for except in this case qn < qn+1.

2. Since
1

qnqn+1

=
1

qn(anqn + qn−1)
≤ 1

anq2n
,

if an > 1 then
|α− pn

qn
| ≤ 1

2q2n
.

In particular, if α is irrational then there are an infinity of convergents
satisfying

|α− p

q
| ≤ 1

2q2

unless an = 1 for all n ≥ N .

In this case

α = [a0, a1, . . . , an, φ]

=
pnφ+ pn−1
qnφ+ qn−1

∈ Q(
√

5).

We have seen that the convergents are good approximations to α. The
next result shows that, conversely, good approximations are necessarily con-
vergents.

Theorem 17.4. If

|α− p

q
| ≤ 1

2q2

then p/q is a convergent to α.



Proof. Let us express p/q as a continued fraction:

p

q
=
pn
qn

= [a0, a1, . . . , an].

We want to express α in the form

α = [a0, . . . , an, x] = [a0, . . . , an +
1

x
].

In this case
α =

pn + pn−1x

qn + qn−1x
.

Solving for x,

x = − qnα− pn
qn−1α− pn−1

= − α− pn/qn
α− pn−1/qn−1

We want to ensure that x > 0. This will be the case if

(α− pn
qn

) and (α− pn−1
qn−1

)

are of opposite sign, ie α lies between the two convergents.
At first this seems a matter of good or bad luck. But recall that there

are two ways of representing p/q as a continued fraction, one of even length
and one odd. (One has last entry an > 1, and the other has last entry 1.)

We can at least ensure in this way that α lies on the same side of pn/qn
as pn−1/qn−1, since even convergents are < odd convergents; so if α > p/q
then we choose n to be even, while if α < p/q we choose n to be odd.

This ensures that x > 0. Now we must show that x ≥ 1; for then if

x = [b0, b1, b2, . . . ]

we have
α = [a0, . . . , an, b0, b1, b2, . . . ],

and
p

q
= [a0, . . . , an]

is a convergent to α, as required.
But now

|α− pn
qn
| ≤ 1

2q2n
;

and since
|pn
qn
− pn−1
qn−1
| = 1

qnqn−1

it follows that

|α− pn−1
qn−1
| ≥ |pn

qn
− pn−1
qn−1
| − |α− pn

qn
|

≥ 1

qnqn−1
− 1

2q2n

≥ 1

q2n
− 1

2q2n

=
1

2q2n
,

and so
|x| = |α− pn/qn|

|α− pn−1/qn−1|
≥ 1.

17.8 Quadratic surds and periodic continued
fractions

Recall that a quadratic surd is an irrational number of the form

α = x+ y
√
d,

where x, y ∈ Q, and d > 1 is square-free. In other words,

α ∈ Q(
√
d) \Q

for some quadratic field Q(
√
d).

Theorem 17.5. The continued fraction of α ∈ R is periodic if and only if x
is a quadratic surd.

Proof. Suppose first that α has periodic continued fraction:

α = [a0, . . . , am, b0, . . . , bn, b0, . . . , bn, . . . ].

Let

β = [b0, . . . , bn, β]

=
βp′n + p′n−1
βq′n + q′n−1



be the purely periodic part. Then β satisfies the quadratic equation

p′n−1β
2 + (q′n−1 − p′n)β − q′n = 0,

and so is a quadratic surd. And since

α = [a0, . . . , am, β]

=
βpm + pm−1
βqm + qm−1

,

it too is a quadratic surd.
The converse is more difficult. Suppose

α = [a0, a1, . . . ]

satisfies the quadratic equation

F (x) ≡ Ax2 + 2Bx+ C = 0 (A,B,C ∈ Z).

Let
αn = [an, an+1, . . . ].

We have to show that
αm+n = αn

for some m,n ∈ N, m > 0.
We shall do this by showing that αn satisfies a quadratic equation with

bounded coefficients.
Writing θ for an+1, for simplicity,

α = [a0, . . . , an, θ]

=
θpn + pn−1
θqn + qn−1

.

Thus

A(θpn + pn−1)
2 + 2B(θpn + pn−1)(θqn + qn−1) + C(θqn + qn−1)

2 = 0,

ie

A′θ2 + 2B′θ + C ′,

where

A′ = Ap2n + 2Bpnqn + Cq2n,

B′ = Apnpn−1 + 2B(pnqn−1 + pn−1qn) + Cqnqn−1,

C ′ = Ap2n−1 + 2Bpn−1qn−1 + Cq2n−1.

Now
A′ = q2nF (pn/qn).

Since F (α) = 0 and pn/qn is close to α, F (pn/qn) is small.
More precisely, since

|α− pn
qn
| ≤ 1

q2n
,

it follows by the Mean Value Theorem that

F (pn/qn) = −(F (α)− F (pn/qn))

= −F ′(t)(α− pn/qn),

where t ∈ [α, α + pn/qn].
Thus if we set

M = max
t∈[α−1,α+1]

|F ′(t)|

then

|F (pn/qn)| ≤ M

q2n

and so

|A′| ≤M.

Similarly
|C ′| ≤M.

Much the same argument applies to

B′ = qnqn−1F
+(pn/qn, pn−1/qn−1,

where
F+(x, y) = Axy +B(x+ y) + C

is the ‘polarised’ form of the quadratic form F (x).
Note that

F (x2)− F+(x, y) = (x− y)(Ax+B) =
1

2
(x− y)F ′(x).

Hence

F (pn/qn)− F+(pn/qn, pn−1/qn−1) =
1

2
(pn/qn − pn−1/qn−1)F ′(pn/qn),



and so

|F (pn/qn)− F+(pn/qn, pn−1/qn−1)| ≤
M

2qnqn−1
.

Since
|F (pn/qn)| ≤ M

q2n
<

M

qnqn−1
,

we conclude that

|B′| = qnqn−1|F+(pn/qn, pn−1/qn−1| ≤
3

2
M.

Thus A′, B′, C ′ are bounded for all n. We conclude that one (at least) of
these equations occurs infinitely often; and so one of the αn occurs infinitely
often, ie α is periodic.

Example: Let us determine the continued fraction for
√

3. We have
√

3 = 1 + (
√

3− 1),

1√
3− 1

=

√
3 + 1

2
= 1 +

√
3− 1

2
,

2√
3− 1

=
√

3 + 1 = 2 + (
√

3− 1),

1√
3− 1

= 1 +

√
3− 1

2
,

. . .

Thus √
3 = [1, 1, 2],

where we have overlined the periodic part.



Exercise 17
In exercises 1-10, determine the continued fraction of the given number.

** 1. 17
5

** 2. 5
17

** 3. −7
8

** 4. 1001
10001

** 5. 2317
2009

*** 6.
√

3

*** 7.
√

7

*** 8.
√

11

*** 9.
√
3+1
2

*** 10. 7
√

3

*** 11. Suppose the quadratic surd

α = [a0, a1, . . . ]

satisfies the equation

Ax2 + 2Bx+ c = 0.

where A,B,C ∈ Z with gcd(A,B,C) = 1. If the corresponding equa-
tion for

αn = [an, an+1, . . . ]

is
Anx

2 + 2Bnx+ cn = 0

show that
B2 − AC = B2

n − AnCn.

*** 12. Find the first 5 convergents to π.
***** 13. Show that

e = [2, 1, 2, 1, 1, 4, 1, 1, 6, . . . ].



Appendix A

Expressing numbers as sums of
squares

A.1 Sum of two squares
Theorem A.1. The positive integer n is expressible as a sum of two squares,

n = a2 + b2 (a, b ∈ Z),

if and only if every prime p ≡ 3 mod 4 divides n to an even power.

Proof.

Lemma A.1. If m,n are each expressible as the sum of two squares then so
is mn.

Proof. If
m = a2 + b2, n = x2 + y2

then
mn = (ax+ by)2 + (ay − bx)2.

Remark: The formula can be derived from the norms of complex numbers,
taking

z = a+ ib, w = x+ iy,

and using the fact that
|zw| = |z||w|.

Lemma A.2. 2n is a sum of two squares if and only n is a sum of two
squares.

Proof. If
2n = x2 + y2

then either x, y are both even, or both are odd. Thus x ± y are both even,
and

n =

(
x+ y

2

)2

+

(
x− y

2

)2

.

Conversely,
n = x2 + y2 =⇒ 2n = (x+ y)2 + (x− y)2.

Corollary A.1. If n = 2em, where m is odd, that n is a sum of two squares
if and only if that is true of m.

Lemma A.3. Every prime p ≡ 1 mod 4 is expressible as the sum of two
squares.

Proof. Since
(
−1

p

)
= 1,

−1 ≡ r2 mod p =⇒ p | r2 + 1.

Let the smallest sum of two squares divisible by p be

pd = a2 + b2.

If d = 1 we are done. Suppose d > 1. Let q be a prime diviisor of d. We can
find x, y coprime to q such that

ax+ by ≡ 0 mod q.

(We can regard this as a linear equation over the field Fq = Z/(p).) We may
assume that |x|, |y| < q/2, so that x2 + y2 < q2/2.

Now
pd(x2 + y2) = (ax+ bx)2 + (ay − bx)2,

and
q | ax+ by, q | pd =⇒ q | ay − bx.

Let
A =

ax+ by

q
, B =

ay − bx
q

.

Then
pd′ = A2 +B2,

where
d′ = d

x2 + y2

q2
< d/2,

contradicting the minimality of d. Hence d = 1 and

p = a2 + b2.

1–1



Lemma A.4. A prime p ≡ 3 mod 4 is not expressible as the sum of two
squares; and

p | n = a2 + b2 =⇒ p | a, b.

Proof. Suppose
p = a2 + b2

Then a and b are coprime to p (since a, b < p); and

(ab−1)2 + 1 ≡ 0 mod p,

contradicting
(
−1

p

)
= −1.

This argument also shows that

a2 + b2 ≡ 0 mod p ⇐⇒ p | a, b.

Corollary A.2. If the prime p ≡ 3 mod 4 divides n = a2 + b2 then p divides
n to an even power.

Proof. p2 | n since b | a, b. But now we can apply the same argument to

n/p2 = (a/p)2 + (b/p)2;

and repeating this as often as necessary we conclude that p divides n to an
even power.

A.2 Sum of three squares
Theorem A.2. The number n ∈ N is expressible as the sum of three squares
if and only if it is not of the form

n = 4e(8m+ 7).

The proof of the “if” part of this theorem would take us far beyond the
reach of the course. It depends on the study of quadratic forms in 3 variables
over Z. But it is easy to prove the “only if” part.

Proposition A.1. A postive integer of the form n = 4e(8m + 7) cannot be
expressed as the sum of three squares.

Proof. The result follows from the following two Lemmas.

Lemma A.5. A number n ≡ 7 mod 8 is not expressible as the sum of three
squares.

Proof. The quadratic residues modulo 8 are 0,1,4. It is not possible to express
7 as the sum of three numbers, each equal to 0,1 or 4.

Lemma A.6. 4n is a sum of three squares if and only n is a sum of three
squares.

Proof. If n = a2 + b2 + c2 then 4n = (2a)2 + (2b)2 + (2c)2.
Conversely, if 4n = a2 + b2 + c2 then by the argument in the proof of the

previous Lemma a, b, c are all even, say a = 2A, b = 2B, c = 2C; and then
n = A2 +B2 + C2.

A.3 Sum of four squares
Theorem A.3. Every n ∈ N is the sum of four squares:

n = a2 + b2 + c2 + d2 (a, b, c, d ∈ Z).

Proof. The basic idea is exactly the same as our proof that a prime p ≡
1 mod 4 is the sum of two squares.

Lemma A.7. If m,n are each expressible as the sum of four squares then
so is mn.

Proof. If
m = a2 + b2 + c2 + d2, n = x2 + y2 + z2 + t2

then

mn = (ax−by−cz−dt)2+(ay+bx+ct−dy)2+(az−bt+cx+dy)2+(at+bz−cy+dx)2.

Remark: The formula can be derived from the norms of quaternions,
taking

q1 = a+ ib+ jc+ kd, q2 = x+ iy + jz + kt,

and using the fact that
|q1q2| = |q1||q2|.

It is sufficient after the above Lemma to prove the result when n is prime.
This is trivially true if p = 2.



Lemma A.8. If p is an odd prime then any residue r coprime to p is ex-
pressible as the sum of two squares modulo p:

r ≡ x2 + y2 mod p.

Proof. Let s be the smallest quadratic non-residue modulo p. Then s− 1 is
a quadratic residue, so s− 1 ≡ x2 and

s ≡ x2 + 12 mod p.

As r runs through through the quadratic residues coprime to p, rs runs
through the quadratic non-residues. Hence if t is a quadratic non-residue
then

t = rs ≡ y2s ≡ (xy)2 + y2.

Applying this to −1 mod p gives

Corollary A.3. If p is an odd prime then every n ∈ Z is expressible as the
sum of three squares modulo p, at least one of which is coprime to p:

n ≡ a2 + b2 + c2 mod p.

Suppose p is an odd prime.
Let the smallest sum of four squares divisible by p be

pd = a2 + b2 + c2 + d2

If d = 1 we are done. Suppose d > 1.
Let q be a prime divisor of d. If we set

L1 = ax−by−cz−dt, L2 = ay+bx+ct−dy, L3 = az−bt+cx+dy, L4 = at+bz−cy+dx

then
pd(x2 + y2 + z2 + t2) = L2

1 + L2
2 + L2

3 + L2
4.

Consider the 4 linear equivalences

Li(x, y.z.t) ≡ 0 mod q (i = 1, 2, 3, 4)

We can regard these as 4 linear equations over Fq = Z/(q). Recall that
m < n simultaneous linear equations in n unknowns always have a non-
trivial solution. It follows that we can find x, y, z, t, not all divisible by q,
such that the last 3 equivalences hold:

L2 ≡ 0, L3 ≡ 0, L4 ≡ 0 mod q;

and we may assume that |x|, |x|, |x|, |x| < q/2, so that x2 + y2 + z2 + t2 < q2.
But now, since q | pd, it follows that

L1 ≡ 0 mod q

also. Let
A =

L1

q
, B =

L2

q
, C =

L3

q
, D =

L4

q
.

Then
pd′ = A2 +B2 + C2 +D2,

where
d′ = d

x2 + y2 + z2 + t2

q2
< d,

contradicting the minimality of d. Hence d = 1 and

p = a2 + b2 + c2 + d2.



Appendix B

The Structure of Finite Abelian
Groups

B.1 The Structure Theorem
Theorem B.1. Every finite abelian group A can be expressed as a direct sum
of cyclic groups of prime-power order:

A = Z/(pe11 )⊕ · · · ⊕ Z/(perr ).

Moreover the powers pe11 , . . . , perr are uniquely determined by A.

Note that the primes p1, . . . , pr are not necessarily distinct.
We prove the result in two parts. First we divide A into its primary

components Ap. Then we show that each of these components is expressible
as a direct sum of cyclic groups of prime-power order.

B.2 Primary decomposition
Proposition B.1. Suppose A is a finite abelian group. For each prime p,
the elements of order pn in A for some n ∈ N form a subgroup

Ap = {a ∈ A : pna = 0 for some n ∈ N}.

Proof. Suppose a, b ∈ Ap. Then

pma = 0, pnb = 0,

for some m,n. Hence
pm+n(a+ b) = 0,

and so a+ b ∈ Ap.
Definition B.1. We call the Ap the primary components or p-component of
A.

Proposition B.2. A finite abelian group A is the direct sum of its primary
components Ap:

F = ⊕pAp.
Proof. Suppose a ∈ A By Lagrange’s Theorem, na = 0 for some n > 0 Let

n = pe11 · · · perr ;

and set
mi = n/epii .

Then gcd(m1, . . . ,mr) = 1, and so we can find n1, . . . , nr such that

m1n1 + · · ·+mrnr = 1.

Thus
a = a1 + · · ·+ ar,

where
ai = minia.

But
peii ai = (peii mi)nia = nnia = 0

(since na = 0). Hence
ai ∈ Api .

Thus A is the sum of the subgroups Ap.
To see that this sum is direct, suppose

a1 + · · ·+ ar = 0,

where ai ∈ Api , with distinct primes p1, . . . , pr. Suppose

peii ai = 0.

Let
mi = pe11 · · · p

ei−1

i−1 p
ei+1

i+1 · · · perr .
Then

miaj = 0 if i 6= j.

Thus (multiplying the given relation by mi),

miai = 0.

But gcd(mi, p
ei
i ) = 1. Hence we can find m,n such that

mmi + npeii = 1.

But then
ai = m(miai) + n(peii ai) = 0.

We conclude that A is the direct sum of its p-components Ap.

2–1



Proposition B.3. If A is a finite abelian group then Ap = 0 for almost all
p, ie for all but a finite number of p.

Proof. If A has order n then by Lagrange’s Theorem the order of each element
a ∈ A divides n. Thus Ap = 0 if p - n.

B.3 Decomposition of the primary components
We suppose in this Section that A is a finite abelian p-group (ie each element
is of order pe for some e).

Proposition B.4. A can be expressed as a direct sum of cyclic p-groups:

A = Z/(pe1)⊕ · · · ⊕ Z/(per).

Proof. We argue by induction on #A = pn. We may assume therefore that
the result holds for the subgroup

pA = {pa : a ∈ A}.

For pA is stricty smaller than A, since

pA = A =⇒ pnA = A,

while we know from Lagrange’s Theorem that pnA = 0.
Suppose

pA = 〈pa1〉 ⊕ · · · ⊕ 〈par〉.
Then the sum

〈a1〉+ · · ·+ 〈ar〉 = B,

say, is direct. For suppose

n1a1 + · · ·+ nrar = 0.

If p | n1, . . . , nr, say ni = pmi, then we can write the relation in the form

m1(pa1) + · · ·+mr(par) = 0,

whence mipai = niai = 0 for all i.
On the other hand, if p does not divide all the ni then

n1(pa1) + · · ·+ nr(par) = 0,

and so pniai = 0 for all i. But if p - ni this implies that pai = 0. (For the
order of ai is a power of p, say pe; while pe | nip implies that e ≤ 1.) But
this contradicts our choice of pai as a generator of a direct summand of pA.
Thus the subgroup B ⊂ A is expressed as a direct sum

B = 〈a1〉 ⊕ · · · ⊕ 〈ar〉.

Let
K = {a ∈ A : pa = 0}.

Then
A = B +K.

For suppose a ∈ A. Then pa ∈ pA, and so

pa = n1(pa1) + · · ·+ nr(par)

for some n1, . . . , nr ∈ Z. Thus

p(a− n1a1 − · · · − nrar) = 0,

and so
a− n1a1 − · · · − nrar = k ∈ K.

Hence
a = (n1a1 + · · ·+ nrar) + k ∈ B +K.

If B = A then all is done. If not, then K 6⊂ B, and so we can find
k1 ∈ K, k1 /∈ B. Now the sum

B1 = B + 〈k1〉

is direct. For 〈k1〉 is a cyclic group of order p, and so has no proper subgroups.
Thus

B ∩ 〈k1〉 = {0},
and so

B1 = B ⊕ 〈k1〉
If now B1 = A we are done. If not we can repeat the construction, by

choosing k2 ∈ K, k2 /∈ B1. As before, this gives us a direct sum

B2 = B1 ⊕ 〈k2〉 = B ⊕ 〈k1〉 ⊕ 〈k2〉.

Continuing in this way, the construction must end after a finite number
of steps (since A is finite):

A = Bs = B ⊕ 〈k1〉 ⊕ · · · ⊕ 〈ks〉
= 〈a1〉 ⊕ · · · ⊕ 〈ar〉 ⊕ 〈k1〉 ⊕ · · · ⊕ 〈ks〉.

B.4 Uniqueness
Proposition B.5. The powers pe1 , . . . , per in the above decomposition are
uniquely determined by A.

Proof. This follows by induction on #A. For if A has the form given in the
theorem then

pA = Z/(pe1−1)⊕ · · · ⊕ Z/(per−1).

Thus if e > 1 then Z/(pe) occurs as often in A as Z/(pe−1) does in pA. It
only remains to deal with the factors Z/(p). But the number of these is now
determined by the order ‖A‖ of the group.



B.5 Note
Note that while the Structure Theorem states that A can be expressed as
a direct sum of cyclic subgroups of prime-power order, these subgroups will
not in general be unique, although their orders will be.

The only case in which the expression will be unique is if A is cyclic, ie if
A = Z/(n). For in this case each p-component Ap is also cyclic, since every
subgroup of a cyclic abelian group is cyclic. Thus the expression for A as a
direct sum in the Theorem is just the splitting of A into its p-components
Ap; and we know that this is unique.

Conversely, if A is not cyclic, then some component Ap is not cyclic, and
we have seen that in this case the splitting is not unique.



Appendix C

RSA encryption

C.1 The RSA algorithm
Choose two distinct primes p, q, and let

n = pq.

We know that if x is coprime to n (ie gcd(x, n) = 1) then

xφ(n) = x(p−1)(q−1) ≡ 1 mod n.

Choose an exponent e coprime to φ(n), and let α : Z/(n)→ Z/(n) be the
map

α : x 7→ xe.

Then we can determine f such that

ef ≡ 1 mod φ(n),

eg by using the Euclidean algorithm. Let β : Z/(n)→ Z/(n) be the map

α : x 7→ xf .

Then if x is coprime to n

xef ≡ x mod n,

ie

β(α(x)) = x;

β is the inverse of α, at least for x not divisible by p or q.

C.2 Encryption
Let us choose very large primes p, q, say with about 150 digits, or about 500
bits, each.

This will not take long, using either the Miller-Rabin or the AKS test.
If we take an odd integer u with about 150 digits at random, and then test
u, u + 1, u + 2, . . . for primality we can be be reasonably sure that we will
meet a prime in about lnu ≈ 15 ln 10 steps, by the Prime Number Theorem.
(Of course we can reduce the number of tests by omitting even numbers, and
perhaps numbers divisible by small primes, so the number might be reduced
to a dozen or so.)

Next we choose e ∈ (1, φ(n)) at random. We publish the numbers n and
e — RSA is a public key encryption system, and these are our public keys.

Now if someone wants to send us a secret message they encode it using
our public keys. We have computed the secret key f , and thus can decode
the message.

We are betting that nobody can determine the factors p and q by fac-
torising n, or determine f in some other way. In effect, we are relying on
the belief that factorisation cannot be computed in polynomial time. More
precisely, there is no algorithm that can factorise any number n in less that
P (lnn) steps, where P (x) is some fixed polynomial.

For example, dividing by all numbers up to
√
n is an exponential time

algorithm since √
x = elnx/2.

Remarks:

1. If we want 1000-bit security, we would probably choose n to have 1024
bits, to simplify computation.

2. Note that xe mod n can be computed in polynomial time (probably in
quadratic time) by repeatedly squaring x, always working modulo n.

3. There is an extremely small probability that some block x of the mes-
sage will be divisible by p or q, and will therefore be “corrupted”. How-
ever, we can ignore this possibility on the grounds that is far more
likely to be corrupted in other ways.

C.3 Elliptic curve encryption

After the RSA encryption algorithm was published, it was realised that
other groups arising in number theory could perhaps be used in place
of (Z/n)×.

The most popular candidate was elliptic curves. A general curve of
degree 3 in x and y is an elliptic curve. An elliptic curve can be brought
to the standard form

y2 = x3 + ax2 + bx+ c.

There ia a natural group structure on an elliptic curve, arising as fol-
lows. Suppose P,Q are 2 points on the curve. Suppose the line PQ
has the equation L(x, y) = 0, where L(x, y) is linear. The points where
PQ meets the elliptic curve will be given by a cubic polynomial in x,
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say. Two of the three roots of this polynomial will correspond to P
and Q. Thus the cubic polynomail will factorise completely into linear
factors, and the third factor will correspond to a point R = P ◦ Q. If
the coefficients a, b, c of the elliptic curve are rational, and the points
P,Q have rational coordinates then the point R will also have ratio-
nal coordinates. This defines a natural group structure on the set of
rational points on the curve.

All this can be carried out with elliptic curves defined over a finite field,
eg F2n . The encryption generally corresponds to the map

P 7→ eP,

where e plays a similar rôle to e in the RSA encryption, except that
now the bet is that nobody will be able to compute the inverse map

eP 7→ P.

(This is known as the “discrete log problem”, and can be applied equally
to the group (Z/n)×.)

Elliptic curve cryptography (ECC) is gradually taking over from RSA
encryption. It is generally believed to be more secure, and the compu-
tations involve smaller numbers, so can be carried out in less time.

‘Arithmetic on elliptic curves’ is probably the most active area of re-
search in number theory today, and was the basic tool in Wiles’ proof
of Fermat’s Last Theorem. Elliptic curves give rise to zeta functions
like Riemann’s, with Euler-like factorisation into terms corresponding
to primes.



Appendix D

Quadratic Reciprocity: an
alternative proof

Hundreds of different proofs of this theorem have been published. Gauss,
who first proved the result in 1801, gave eight different proofs. We gave a
group-theoretic proof in chapter 10. Here is a shorter combinatorial proof.

Theorem D.1. (The Law of Quadratic Reciprocity) Suppose p, q ∈ N are
odd primes. Then(

p

q

)(
q

p

)
= (−1)

p−1
2

q−1
2 =

{
−1 if p ≡ q ≡ 3 mod 4

1 otherwise.

Proof. Let

S = {1, 2, . . . , p− 1

2
}, T = {1, 2, . . . , q − 1

2
}.

We shall choose remainders modp from the set

{−p
2
< i <

p

2
} = −S ∪ {0} ∪ S,

and remainders modq from the set

{−q
2
< i <

q

2
} = −T ∪ {0} ∪ T.

By Gauss’ Lemma, (
q

p

)
= (−1)µ,

(
p

q

)
= (−1)ν .

Writing #X for the number of elements in the set X,

µ = #{i ∈ S : qi mod p ∈ −S}, ν = #{i ∈ T : pi mod q ∈ −T}.

By ‘qi mod p ∈ −S’ we mean that there exists a j (necessarily unique)
such that

qi− pj ∈ −S.

But now we observe that, in this last formula,

0 < i <
p

2
=⇒ 0 < j <

q

2
.

The basic idea of the proof is to associate to each such contribution to µ
the ‘point’ (i, j) ∈ S × T . Thus

µ = #{(i, j) ∈ S × T : −p
2
< qi− pj < 0};

and similarly
ν = #{(i, j) ∈ S × T : 0 < qi− pj < q

2
},

where we have reversed the order of the inequality on the right so that both
formulae are expressed in terms of (qi− pj).

Let us write [R] for the number of integer points in the region R ⊂ R2.
Then

µ = [R1], ν = [R2],

where

R1 = {(x, y) ∈ R : −p
2
< qx−py < 0}, R2 = {(x, y) ∈ R : 0 < qx−py < q

2
},

and R denotes the rectangle

R = {(x, y) : 0 < x <
p

2
, 0 < y <

p

2
}.

The line
qx− py = 0

is a diagonal of the rectangle R, and R1, R2 are strips above and below the
diagonal (Fig D).

This leaves two triangular regions in R,

R3 = {(x, y) ∈ R : qx− py < −p
2
}, R4 = {(x, y) ∈ R : qx− py > q

2
}.

We shall show that, surprisingly perhaps, reflection in a central point
sends the integer points in these two regions into each other, so that

[R3] = [R4].

Since
R = R1 ∪R2 ∪R3 ∪R4,

R3

R4

R1

R2

Figure D.1: p = 11, q = 7
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it will follow that

[R1] + [R2] + [R3] + [R4] = [R] =
p− 1

2

q − 1

2
,

ie

µ+ ν + [R3] + [R4] =
p− 1

2

q − 1

2
.

But if now [R3] = [R4] then it will follow that

µ+ ν ≡ p− 1

2

q − 1

2
mod 2,

which is exactly what we have to prove.
It remains to define our central reflection. Note that reflection in the

centre (p
4
, q
4
) of the rectangle R will not serve, since this does not send in-

teger points into integer points. For that, we must reflect in a point whose
coordinates are integers or half-integers.

We choose this point by “shrinking” the rectangleR to a rectangle bounded
by integer points, ie the rectangle

R′ = {1 ≤ x ≤ p− 1

2
, 1 ≤ y ≤ q − 1

2
}.

Now we take P to be the centre of this rectangle, ie

P = (
p+ 1

2
,
q + 1

2
).

The reflection is then given by

(x, y) 7→ (X, Y ) = (p+ 1− x, q + 1− y).

It is clear that reflection in P will send the integer points of R into
themselves. But it is not clear that it will send the integer points in R3 into
those in R4, and vice versa. To see that, let us shrink these triangles as we
shrank the rectangle. If x, y ∈ Z then

qx− py < −p
2

=⇒ qx− py ≤ −p+ 1

2
;

and similarly

qx− py > q

2
=⇒ qx− py ≥ q + 1

2
.

Now reflection in P does send the two lines

qx− py = −p+ 1

2
, qx− py =

q + 1

2

into each other; for

qX − pY = q(p+ 1− x)− p(q + 1− y) = (q − p)− (qx− py),

and so

qx− py = −p+ 1

2
⇐⇒ qX − pY = (q − p) +

p+ 1

2
=
q + 1

2
.

We conclude that
[R3] = [R4].

Hence
[R] = [R1] + [R2] + [R3] + [R4] ≡ µ+ ν mod 2,

and so
µ+ ν ≡ [R] =

p− 1

2

q − 1

2
.

Example: Take p = 37, q = 47. Then(
37

47

)
=

(
47

37

)
since 37 ≡ 1 mod 4

=

(
10

37

)
=

(
2

37

)(
5

37

)
= −

(
5

37

)
since 37 ≡ −3 mod 8

= −
(

37

5

)
since 5 ≡ 1 mod 4

= −
(

2

5

)
= −(−1) = 1.

Thus 37 is a quadratic residue mod47.

We could have avoided using the result for
(

2

p

)
:

(
10

37

)
=

(
−27

37

)
=

(
−1

37

)(
3

37

)3

= (−1)18
(

37

3

)
=

(
1

3

)
= 1.
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