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Chapter 0

Prerequisites

0.1 The number sets

We follow the standard (or Bourbaki) notation for the number sets N, Z, Q, R, C.

Thus N is the set of natural numbers 0,1,2,...; Z is the set of integers
0,£1,+2,...; Q is the set of rational numbers n/d, where n,d € Z with
d # 0; R is the set of real numbers, and C the set of complex numbers x + iy,
where z,y € R.

Note that Z is an integral domain, ie a commutative ring with 1 having
no zero divisors:

zy=0 = z=0o0ry=0.

Also Q,R and C are all fields, ie integral domains in which every non-zero
element has a multiplicative inverse.

All 5 sets are totally ordered, ie given 2 elements z,y of any of these sets
we have either z < y, x = y or x > y. Also the orderings are compatible (in
the obvious sense) with addition and multiplication, eg

xr>20,y>0 = z+y >0, xy > 0.

0.2 The natural numbers

According to Kronecker, “God gave us the integers, the rest is Man’s”.
(“Gott hat die Zahlen gemacht, alles andere ist Menschenwerk.”)
We follow this philosophy in assuming the basic properties of N.
In particular, we assume that N is well-ordered, ie a decreasing sequence
of natural numbers
ag > a1 > ag. ..

is necessarily stationary: for some n,

an:an—i-l:"'-)

We also assume that we can “divide with remainder”; that is, given n,d €
N with d # 0 we can find ¢, € N such that

n=qd+r,
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with remainder
0<r<d.

If we wanted to prove these results, we would have to start from an
axiomatic definition of N such as the Zermelo-Fraenkel, or ZF, axioms. But

we don’t want to get into that, and assume as ‘given’ the basic properties of
N.

0.3 Divisibility
If a,b € Z, we say that a divides b, written a | b, or a is a factor of b, if
b=ac

for some c € Z.
Thus every integer divides 0; but the only integer divisible by 0 is 0 itself.

0-2



Chapter 1

The Fundamental Theorem of
Arithmetic

1.1 Primes

Definition 1.1. We say that p € N s prime if it has just two factors in N,
1 and p itself.

Number theory might be described as the study of the sequence of primes
2,3,5,7,11,13,....
Definition 1.2. 1. We denote the nth prime by p,.

2. If x € R then we denote the number of primes < z by m(x).

Thus
p1:27 p2:37 p3:57"'7

while

1.2 The fundamental theorem

Theorem 1.1. Every non-zero natural number n € N can be expressed as a
product of primes
n=pi - pr;

and this expression is unique up to order.

By convention, an empty sum has value 0 and an empty product has
value 1. Thus n = 1 is the product of 0 primes.

Another way of putting the theorem is that each non-zero n € N is
uniquely expressible in the form

n = 2035 ...

where each e, € N with e, = 0 for all but a finite number of primes p.

The proof of the theorem, which we shall give later in this chapter, is
non-trivial. It is easy to lose sight of this, since the theorem is normally met
long before the concept of proof is encountered.
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1.3 Euclid’s Algorithm

Definition 1.3. Suppose m,n € Z. We say that d € N is the greatest
common divisor of m and n, and write

d = ged(m,n),
if
d|m, d|n,

and if e € N then
elm,e|ln = e|d

The term highest common factor (or hef), is often used in schools; but
we shall always refer to it as the ged.

Note that at this point we do not know that ged(m, n) exists. This follows
easily from the Fundamental Theorem; but we want to use it in proving the
theorem, so that is not relevant.

It is however clear that if ged(m, n) exists then it is unique. Forifd,d" € N
both satisfy the criteria then

d|d,d|d = d=d.
Theorem 1.2. Any two integers m,n have a greatest common divisor
d = ged(m,n).
Moreover, we can find integers x,y such that
d =mx + ny.
Proof. We may assume that m > 0; for if m = 0 then it is clear that
ged(m,n) = |nl,

while if m < 0 then we can replace m by —m.
Now we follow the Euclidean Algorithm. Divide n by m:

n=qgm-+ry (0<ro<m).
If ro # 0, divide m by rg:

m=qro+m (0<r <rp).
If , # 0, divide rq by 71:

ro=qar1+r2 (0< 71y <)

Continue in this way.
Since the remainders are strictly decreasing:

g >1T1>T9 > -,
the sequence must end with remainder 0, say

Tsy1 = 0.
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We assert that
d = ged(m,n) =7y,

ie the ged is the last non-zero remainder.

For
d =|rs_1 since rs_1 = qs417s-
Now
d|re,rs1 = d|rsgsince ry_o =1y — qsrs_1;
d|rs_1,75—2 = d|rs_3since re_g =151 — ¢s_175-2;
d|ry,m = d|m;
d|ri,m = d|n
Thus

Conversely, if e | m,n then

e | ro since g = n — gom;
e | ry since 1 = m — qi7o;

e|rssince rg =rg 1 — qsrs_ 1.

Thus
e|lmmn = eld.

We have proved therefore that ged(m,n) exists and
ged(m,n) =d = rs.

To prove the second part of the theorem, which states that d is a linear
combination of m and n (with integer coefficients), we note that if a,b are
linear combinations of m,n then a linear combination of a, b is also a linear
combination of m,n.

Now 7y is a linear combination of m, n, from the first step in the algorithm;
ro is a linear combination of m, rq, and so of m, n, from the second step; and
so on, until finally d = r; is a linear combination of m,n:

d =mx + ny.

We say that m,n are coprime if
ged(m,n) = 1.
Corollary 1.1. If m,n are coprime then there exist integers x,y such that

mx +ny = 1.
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1.4 Speeding up the algorithm

Note that if we allow negative remainders then given m,n € Z we can find
q,r € 7Z such that
n=qm-+r,

where |r| < |m|/2.
If we follow the Euclidean Algorithm allowing negative remainders then
the remainder is at least halved at each step. It follows that if

27‘ §n< 2T+1

then the algorithm will complete in < r steps.

Another way to put this is to say that if n is written to base 2 then it
contains at most r bits (each bit being 0 or 1).

When talking of the efficiency of algorithms we measure the input in
terms of the number of bits. In particular, we define the length £(n) to be
the number of bits in n. We say that an algorithm completes in polynomial
time, or that it is in class P, if the number of steps it takes to complete its
task is < P(r), where P(z) is a polynomial and r is the number of bits in
the input.

Evidently the Euclidian algorithm (allowing negative remainders) is a
polynomial-time algorithm for computing ged(m,n).

1.5 Example

Let us determine
ged (1075, 2468).

The algorithm goes:

2468 = 2 - 1075 + 318,
1075 = 3 - 318 + 121,
318 = 3- 121 — 45,

121 = 3 - 45 — 14,

45 =314+ 3,
4=5-3-1,
3=3-1.

Thus
ged (1075, 2468) = 1;

the numbers are coprime.
To solve
1075x + 2468y = 1,



we start at the end:

1=5-3—14
—5(45—3-14) —14=5-45—16-14
—5-45—16(3-45 —121) = 16 - 121 — 43 - 45
— 16121 —43(3 - 121 — 318) = 43 - 318 — 113 - 121
— 43318 — 113(1075 — 3 - 318) = 382 - 318 — 113 - 1075
— 382(2468 — 2 - 1075) — 113 - 1075 = 382 - 2468 — 877 - 1075.

Note that this solution is not unique; we could add any multiple 1075t to
x, and subtract 2468t from y, eg

1 = (382 —1075) - 2468 + (2468 — 877) - 1075
= 1591 - 2468 — 693 - 1075.

We shall return to this point later.

1.6 An alternative proof

There is an apparently simpler way of establishing the result.

Proof. We may suppose that z,y are not both 0, since in that case it is
evident that ged(m,n) = 0.
Consider the set S of all numbers of the form

mx + ny (z,y € Z).
There are evidently numbers > 0 in this set. Let d be the smallest such

integer; say
d = ma + nb.

We assert that
d = ged(m,n).

For suppose d t m. Divide m by d:
m = qd+r,
where 0 < r < d. Then
r=m—qd=m(l — qa) — nqd,

Thus r € S, contradicting the minimality of d.
Hence d | m, and similarly d | n.

On the other hand
d|mn = d|ma+nb=d.

We conclude that
d = ged(m,n).
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The trouble with this proof is that it gives no idea of how to determine
ged(m,n). It appears to be non-constructive.

Actually, that is not technically correct. It is evident from the discussion
above that there is a solution to

mx +ny=d

with
2] < nl, |yl < |m].

So it would be theoretically possible to test all numbers (x,y) in this range,
and find which minimises mx + ny.

However, if x,y are very large, say 100 digits, this is completely imprac-
tical.

1.7 Euclid’s Lemma

Proposition 1.1. Suppose p is prime; and suppose m,n € Z. Then
plmn = p|morp|n.

Proof. Suppose
ptm.

Then p, m are coprime, and so there exist a,b € Z such that
pa +mb = 1.

Multiplying by n,
pna + mnb = n.

Now
p | pna, p| mnb = p|n.

1.8 Proof of the Fundamental Theorem

Proof.

Lemma 1.1. n is a product of primes.

Proof. We argue by induction on n If n is composite, ie not prime, then
n=rs,

with
1<rs<n.

By our inductive hypothesis, r, s are products of primes. Hence so is
n. [



To complete the proof, we argue again by induction. Suppose

n=pipr=qc s

are two expressions for n as a product of primes.
Then

piln = p|la-qs
— p1|Qj

for some j.
But since g; is prime this implies that

q; = P1-

Let us re-number the ¢’s so that ¢; becomes ¢;. Then we have

n/p1:p2...przq2...qs_

Applying our inductive hypothesis we conclude that » = s, and the primes
P2y ..., pp and qa, ..., qs are the same up to order.
The result follows. O

1.9 A postscript

Suppose ged(m,n) = 1. Then we have seen that we can find integers xo, yo
such that
mxo + nyy = 1.

We can now give the general solution to this equation:
(,y) = (zo + tn, yo — tm)

for t € Z.
Certainly this is a solution. To see that it is the general solution note
that

mz +ny =d = mx +ny = mxy + nyo
— m(z —x9) =n(yo — y).
Now n has no factor in common with m, by hypothesis. Hence all its factors

divide = — xg, ie

n|r—=Try = T—Tg=1n
= r=2x0+1tn
= Yy =1y —tm.
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Exercise 1

In exercises 1-3 determine the ged d of the given numbers m, n and find
integers x,y such that d = mx + my.

* 1.
* 2.
* 3.

**5

kookok 6

**7

* 8.

kokok 9

5 10.

kksk 11.

**12.
kksk 13.

23,39

87, —144

2317, 2009.

Given integers m,n > 0 with ged(m,n) = 1 show that all integers
N > mn are expressible in the form

N =mx + ny

with z,y > 0.

. Find the greatest integer n not expressible in the form

n=17x + 23y

with z,y > 0.

Which integers n are not expressible in the form
n=17r — 23y

with z,y > 07

. Define the gcd

d = ged(ny, ng, ... ;)

of a finite set of integers ny,ns,...,n, € Z; and show that there exist
integers x1, To, ..., x, € Z such that

nxy + nea + - - - + npx, = d.
Find z,y, z € Z such that

24z 4+ 30y 4+ 452 = 1.

How many ways are there of paying €10 in 1,2 and 5 cent pieces?
Show that if m,n > 0 then

ged(m,n) x lem(m,n) = mn.
Show that if m,n > 0 then
ged(m + n,mn) = ged(m, n).

Show that if n > 9 and both n — 2 and n + 2 are prime then 3 | n.
Suppose

flz) =ap+a1x+ -+ aza”
where ag, ay, . ..,a, € Z. Show that f(n) cannot be a prime for all n
unless f(z) is constant.

Find all integers m,n > 1 such that

m" =n".
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*kokok 16.
*kkk 17.
kksk 18.

19,

20

k21

If p¢ || n! show that

e = [n/p] + [n/p*] + [n/p’) +--- .

[Note: if p is a prime we say that p® exactly divides N, and we write
p || N if p¢ | N but p*™' t N |

How many zeros does 1000! end with?

Prove that n! divides the product of any n successive integers.

If F}, is the nth Fibonacci number, show that

ng(FTM Fn+1) = 1

and
ng(Fn, Fn+2) - 1
[Note: FO = 1, F1 =2 and Fn+2 = Fn + Fn+1-]
Use the program /usr/games/primes on the mathematics computer

system to find the next 10 primes after 1 million. [You can find how
to use this program by giving the command man primes.]

Use the program /usr/games/factor on the mathematics computer
system to factorise 123456789. [You can find how to use this program
by giving the command man factor.|

Show that the product of two successive integers cannot be a perfect
square.

Can the product of three successive integers be a perfect square?

Show that there are an infinity of integers x,y, z > 1 such that

x¥yY = 2%,
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Chapter 2

Euclid’s Theorem

Theorem 2.1. There are an infinity of primes.

This is sometimes called Euclid’s Second Theorem, what we have called
Euclid’s Lemma being known as Euclid’s First Theorem.

Proof. Suppose to the contrary there are only a finite number of primes, say

P1, P2, Pr.

Counsider the number
N=pips---p + 1.

Then N is not divisible by p; for ¢ = 1,...,r, since N has remainder 1
when divided by each of these primes.

Take any prime factor ¢ of N. (We know from the Fundamental Theorem
that there is such a prime.)

Then ¢ differs from all of the primes pq, ..., p,, since it divides N.

Hence our assumption that the number of primes is finite is untenable. [J

2.1 Variants on Euclid’s proof

Proposition 2.1. There are an infinite number of primes of the form
p=4n — 1.

Proof. Suppose there are only a finite number of such primes, say

b1,pP2,---,Pr-

Consider the number
N =dpipy---pr — 1.
Since N is odd, it is a product of odd prime factors.
Any odd number is of the form 4n + 1 or 4n — 1. If all the prime factors

of N were of the form 4n + 1 their product N would be of this form. Since
it is not, we conclude that N has a prime factor of the form 4n — 1.

This must differ from py, ..., p,, since none of these primes divides N.
Hence we have a further prime of the form 4n — 1, contradicting our
original assumption. O]

Rather suprisingly, perhaps, we cannot show in the same way that there
are an infinity of primes of the form 4n + 1, although that is true.

2-1



2.2 The zeta function

Having established that there are an infinity of primes, the question arises:
How are these primes distributed? Riemann’s zeta function is the major tool
in this study.

Definition 2.1. Riemann’s zeta function ((s) is defined by

when this series converges.

Although Riemann’s name is given to this function, it was in fact in-
troduced by Euler. However, Euler only considered the function for real s.
Riemann’s contribution was to consider the function for complex s, in a revo-
lutionary paper “On the number of primes less than a given value”, published
in 1859, using the theory of complex functions laid down by Cauchy some 20
years before.

Note that the terms in the series can be defined, for real and complex s,
by

n—s — e—slnn'
We see from this that
n—(l’-i-iy)) — e—aclnn e—iylnn7
and so
] =),

since |e?| = 1 for all real 6.
A simple but useful tool allows us to determine when the series converges.

Lemma 2.1. If f(z) is a monotone function then

Zf(n) converges <= / f(z)dz converges.

The lower limits on each side so not matter; it is sufficient that f(x) is
defined for x > X.

One might think it should be specified that f(z) is continuous. But
in fact any monotone function f(x) is necessarily Riemann integrable (and
so Lebesgue integrable). This follows from the fact that f(z) has only an
enumerable set of discontinuities, so the partitions in Riemann sums can be
chosen with end-points avoiding these points.

Proof. We may assume (replacing f(x) by —f(x) if necessary) that f(x) is
decreasing. We may also assume that f(x) — 0 as z — oo; for we know that
f(x) tends to a limit ¢ (possibly —o00), and if £ # 0 then it is easy to see that
both sum and integral diverge.

If n <z <n-+1 then

() < f(2) < fn+1).

Hence
f(n)g/ F@)dz < fn+1).
Thus
Fm)+F(mA1)+ -+ f(n—1) > / " f(e)dz > D)+ fmt2) 4 (),

from which the result follows. O



Proposition 2.2. The series for ((s) converges for R(s) > 1.

Proof. For real s > 1 this follows from the previous lemma, since

1
/xsda: = — sl
s—1

And it follows from this that > n~* is absolutely convergent if R(s) > 1,
since [n =% = n %), O

2.3 Euler’s Product Formula

If ai,as, ... is an infinite sequence of real of complex numbers, we say that
the infinite product ajas - - - converges to £ # 0 if the partial products

A, =aiay---ay,

converge to £. (If A, — 0 then we say that the product diverges to 0.)
If the a, are real and positive we can convert an infinite product to an
infinite series by taking logarithms:

I I a, converges <— E In a, converges.

Because of this logarithmic connection we usually take the product in the
form [](1 + a,). This allows us to pass to complex a,, provided |(|a,) < 1,
since in that case

1 1 1
1n(1+an):an—ﬁaingai—é—lai%—---.

Lemma 2.2. Suppose Y. a2 is absolutely convergent. Then
H(l + a,) converges <= Zan converges.
In particular the product is convergent if the series is absolutely convergent.

Proof. Since

1 1 1
\gai—gai+1ai—"'|
1 1 1
S 5\%\2 + g\an\g + Z|Oln|4 +
1
< 5 (@l + laaf® + fau]* +---)
o 1 |an|2
21— |an)?
< |an|2a
if Jan| < 1/2.

It follows that

N N N
][+ an) =D anl <D lanl
M M M
provided |a,| < 1/2 for n € [M, N], from which the result follows. O
Theorem 2.2. For R(s) > 1,

) =[a-»"

p

where the infinite product extends over all prime numbers p.



Proof. The formula can be written
142743445+ =
(T2 +272 4+ ) (143743 2+ ) (145452 +-- ).
If n = 2°3°°5% ... then
N — 9easg—elsg—ess :

and we see that n™® on the left is matched by 27¢2° from the first factor on
the right, 37%° from the second factor, and so on.

]
Theorem 2.3. The series )
25
(where p runs over the primes) diverges.

Proof. Taking s = 1 in the above formula, the series
>
n

diverges. So the product

also diverges.
It follows that the inverse

ie the partial product
- 1
P, = 1——-]—>0
1:[ ( p)
as n — oo.

We say that the infinite product ‘diverges to 0’.
Taking logarithms, it follows that

1
Zlog (1 — —) = —00.
> p
Recall that
log(l —z)=—2+2%/2—2%/34---.

If = is small, say |z| < 1/2, we can combine the second and later terms:

2%/2 —2?)3+ | < 2?20+ x4+ 2%+ )
2

oz
2(1 —x)
< 22
Thus . )
— = —log(l— =)+ a,.
p ph
where ) a, converges, since
1
ap| < —,
| P| pg

and Y 1/p? converges with > 1/n?.
We conclude that > 1/p is the sum of a divergent series and a convergent
series, and therefore diverges. O



Note that ]
p pT

converges for r > 1, since

1

nT‘
n

converges (by comparison with the integral [1/2").

2.4 Dirichlet’s Theorem
Theorem 2.4. There are an infinity of primes in any arithmetic sequence
at+dn (n=0,1,2,...)

with d > 0 and ged(a, d) = 1.



Exercise 2

In exercises 1-10 determine whether the given sum over N is convergent
or not:

* 1.

Do i
¥2. Yo
4. Zn nli2n
5y, n

_q\n

62, 58
*k 7 Zn (;11/)2"
%k 8 Zn cozn
kkk Q. Zn tazn
**10. sinn

In exercises 11-13 determine whether the given sum over the primes
is convergent or not:

], me}lp
*kx 19 Zp (=nr

P

*kk 13 Zp (—\/113)”

% 14, Determine ((2).
ik 15, Determine ((4).




Chapter 3

Fermat and Mersenne Primes

3.1 Fermat primes

Theorem 3.1. Suppose a,n > 1. If
a” +1

1s prime then a is even and

n = 2°

for some e.

Proof. 1f a is odd then a™ 4 1 is even; and since it is > 5 it is composite.
Suppose n has an odd factor r, say

n=rs.
We have
A l=(r+ 1)@ - — DD,
On substituting x = a®,
a®+1|a"+1,

and so a” + 1 is composite.
Thus n has no odd factor, and so

a = 2°

Definition 3.1. The number
F(n)=2"" +1
1s called a Fermat number; and if it is prime it is called a Fermat prime.

Thus

F(0)=3, F(1)=5, F(2) =17, F(3) = 257, F(4) = 65537, F(5) = 4,294, 967,297, ...

Fermat conjectured that the Fermat numbers are all prime. Sadly this
has proved untrue.

F(0) to F(4) are indeed prime, but F'(5) is composite.

How do I know? There is a standard Unix program factor for factorizing
numbers. Here is what I get:

tim@walton:™> /usr/games/factor 65537
65537: 65537

tim@walton:™> /usr/games/factor 4294967297
4294967297: 641 6700417

3-1



range:

tim@walton:™> /usr/games/primes 1000 1020
1009
1013
1019

No further Fermat primes have been found, and a heuristic argumnent
suggests there probably are no more. (A heuristic argument is one that
suggests a result is true, but does not prove it.)

The probability that

F(n) =2""
is prime is
1 1
In(F(n) ~ 27In2’

Thus the expected number of Fermat primes F(n with n > 5 is

1 111

~
~

In?2 on ~ 1n2 16
n>5

So one could wager that there are no more Fermat primes after F'(4).

3.2 Mersenne primes
Theorem 3.2. Suppose a,n > 1. If
a” —1
1s prime then a = 2 and n is prime.
Proof. We have
" — 1= (-1 +2" 2 1)

Thus
a—1|a" -1,

and so a” — 1 is composite if a > 2.
Now suppose n is composite, say

n=rs,
with ;s > 1. We have
"+ l=(r+ 1)@t 2" " 1 ).

Substituting x = a°,
a®—1]a" -1,

and so a” — 1 is composite.
Hence n is prime. O

Definition 3.2. For each prime p the number
M(p)=2"—1
is called a Mersenne number; and if it is prime it is called a Mersenne prime.
We have

M(2) =3, M(3) =8, M(5) =31, M(7) =63, M(11) = 2047, . ..



11

In(2» —1)  pln2

Thus the expected number of Mersenne primes is
1 1
n2 Z D’

where the sum runs over all primes.
But we have seen that .
2

is divergent. So this suggests (strongly) that the number of Mersenne primes
is infinite.

We shall see later that there is a subtle test — the Lucas-Lehmer test —
for the primality of the Mersenne number M (p). This allows the primality
of very large Mersenne numbers to be tested on the computer much more
quickly than other numbers of the same size.

For this reason, the largest known prime is invariably a Mersenne prime;
and the search for the next Mersenne prime is a popular pastime.

The Great Internet Mersenne Prime Search, or GIMPS (http://www.
mersenne.org/), is a communal effort — which anyone can join — to find
the next Mersenne prime. The record to date, the 48th known Mersenne

prime, is
057,885,161 _ |

This was discovered in 2013, and has over 17 million digits.
We hope to join the search, and possibly win a large prize!

3.3 Perfect numbers

Definition 3.3. We denote the sum of the divisors of n > 0 by o(n)

Note that we include 1 and n in the factors of n. Thus

Definition 3.4. The integer n > 0 is said to be perfect if it is the sum of its
proper divisors, ie if
o(n) = 2n.

Thus 6 is the first perfect number.
Theorem 3.3. If M(p) =2 — 1 is a Mersenne prime then
n =212 - 1)
is perfect; and every even perfect number is of this form.

Proof. The number n above has factors
2" and 2"M (p)
forr=20,1,...,p— 1, with sum
on)=(1+2+22 4 +2271) (1 4+ M(p)) = (2* — 1)2° = 2n.

Lemma 3.1. The function o(n) is multiplicative in the number-theoretic
sense, i€
ged(m,n) =1 = o(mn) = a(m)o(n).

DPornnt Tf occdlrr ») — 1 +theon the facrtarae of v are +he niimhbore e whore


http://www.mersenne.org/
http://www.mersenne.org/

where m is odd. Then

o(n) = (2" — 1)o(m).
But o(n) = 2n. Thus

2¢Tm = (2T — 1) o (m).

It follows that
2L — 1 | m,

say
m= (2" — 1)q.

Then
o(m) =2"g=m+q.

But m and ¢ are both factors of m. It follows that they are the only
factors of m. Hence ¢ = 1 and

m =21 — 1
is prime. ]

It is not known if there are any odd perfect numbers. If there are, then
the first one is > 10159,






Chapter 4

Modular arithmetic

4.1 The modular ring

Definition 4.1. Suppose n € N and x,y € Z. Then we say that x,y are
equivalent modulo n, and we write

r =y modn

n|lx—uy.

It is evident that equivalence modulo n is an equivalence relation, dividing
Z into equivalence or residue classes.

Definition 4.2. We denote the set of residue classes mod n by Z/(n).
Evidently there are just n classes modulo n if n > 1;
#(Z/(n)) = n.

We denote the class containing a € Z by a, or just by a if this causes no
ambiguity.

Proposition 4.1. If
then
r+y=2+y, xy=2y.
Thus we can add and multiply the residue classes modd.
Corollary 4.1. Ifn >0, Z/(n) is a finite commutative ring (with 1).

Ezample: Suppose n = 6. Then addition in Z/(6) is given by

+10 1 2 3 45
0/0 1 2 3 45
111 23 450
212 3 45 01
313 45 01 2
414 5 01 2 3
51501 2 3 4
while multiplication is given by
x[0 1 2 3 45
0/0 00O 00O
1101 2 3 4 5
210 2 40 2 4
3103 03 0 3
410 4 2 0 4 2
510 5 4 3 21




Theorem 4.1. The ring Z/(n) s a field if and only tf n s prime.

Proof. Recall that an integral domain is a commutative ring A with 1 having
no zero divisors, ie
zy=0 = xz=0o0ry=0.

In particular, a field is an integral domain in which every non-zero element
has a multiplicative inverse.
The result follows from the following two lemmas.

Lemma 4.1. Z/(n) is an integral domain if and only if n is prime.
Proof. Suppose n is not prime, say
n=rs,

where 1 < r, s < n. Then
rs=n=0.

So Z/(n) is not an integral domain.
Conversely, suppose n is prime; and suppose

rs=rs=0.

Then
nlrs = n|rorn|s = r=0o0rs=0.

Lemma 4.2. A finite integral domain A is a field.

Proof. Suppose a € A, a # 0. Consider the map
r—ar:A— A
This map is injective; for
ax=ay = alr—y)=0 = 2—y=0 = x=y.

But an injective map
f: X=X

from a finite set X to itself is necessarily surjective.
In particular there is an element x € A such that

ar =1,

ie a has an inverse. Thus A is a field.

4.3 The additive group

If we ‘forget’ multiplication in a ring A we obtain an additive group, which we
normally denote by the same symbol A. (In the language of category theory
we have a ‘forgetful functor’ from the category of rings to the category of
abelian groups.)

Proposition 4.2. The additive group Z/(n) is a cyclic group of order n.
This is obvious; the group is generated by the element 1 mod n.

Proposition 4.3. The element a mod n is a generator of Z/(n) if and only

if
ged(a,n) = 1.



If d > 1 then 1 is not a multiple of @ mod n, since
l=ramodn = l=ra+sn = d| 1.
Conversely, if d = 1 then we can find r, s € Z such that
ra—+ sn = 1;

SO
ra = 1 mod n,

Thus 1 is a multiple of @ mod n, and so therefore is every element of Z/(n).
]

Note that there is only one cyclic group of order n, up to isomorphism.
So any statement about the additive groups Z/(n) is a statement about finite
cyclic groups, and vice versa. In particular, the result above is equivalent to
the statement that if G is a cyclic group of order n generated by g then ¢g" is
also a generator of G if and only if ged(r,n) = 1.

Recall that a cyclic group G of order n has just one subgroup of each
order m | n allowed by Lagrange’s Theorem, and this subgroup is cyclic. In
the language of modular arithmetic this becomes:

Proposition 4.4. The additive group Z/(n) had just one subgroup of each
order m | n. If n = mr this is the subgroup

(ry ={0,72r,...,(m—1)r}.

4.4 The multiplicative group

If A is a ring (with 1, but not necessarily commutative) then the invertible
elements form a group; for if a, b are invertible, say

ar=ra =1, bs = sb =1,

then
(ab)(rs) = (rs)(ab) = 1,

and so ab is invertible.
We denote this group by A*.

Proposition 4.5. The element a € Z/(n) is invertible if and only if
ged(a,n) = 1.

Proof. 1f a is invertible modn, say
ab =1 mod n,

then
ab =1+ tn,

and it follows that
ged(a,n) = 1.

Conversely, if this is so then
ar +ny =1,
and it follows that z is the inverse of a mod n. O]

We see that the invertible elements in Z/(n) are precisely those elements
that generate the additive group Z/(n).

Definition 4.3 We denote the aroun of invertible elements im 7Z./(n) by



0<r<nand ged(r,n) = 1.

This function is called Euler’s totient function. As we shall see, it plays
a very important role in elementary number theory.
Ezample:

It is evident that if p is prime then

since every number in [0, p) except 0 is coprime to p.
Proposition 4.6. The order of the multiplicative group (Z/n)* is ¢(n)

This follows from the fact that each class can be represented by a remain-
der r € [0,n).

Example: Suppose n = 10. Then the multiplication table for the group
(Z/10)* is

1379
111 3 79
313 91 7.
7|71 9 3
919 7 3 1
We see that this is a cyclic group of order 4, generated by 3:
(Z/10)* = Cy.

Suppose ged(a,n) = 1. To find the inverse = of @ mod n we have in effect
to solve the equation
ar +ny = 1.

As we have seen, the standard way to solve this is to use the Euclidean
Algorithm, in effect to determine ged(a,n).

FExample: Let us determine the inverse of 17 mod 23. Applying the Eu-
clidean Algorithm,

23 = 17 + 6,

17=3-6—-1.
Thus

1=3-6-17

=3(23 —17) — 17

=3-23—4-17.
Hence

177! = —4 = 19 mod 23.

Note that having found the inverse of a we can easily solve the congruence
ar = bmodn

In effect
x=a ‘b

For example, the solution of

17t = 9 mod 23



ouppose m | n. T'hen each remainder mod n defines a remainder mod m.
For example, if m = 3, n = 6 then

0 mod 6 — 0 mod 3,
1 mod 6 — 1 mod 3,
2 mod 6 — 2 mod 3,
3 mod 6 +— 0 mod 3,
4 mod 6 — 1 mod 3,
5 mod 6 — 2 mod 3.

Proposition 4.7. If m | n the map
r modn—r modn

1S a ring-homomorphism

Z](n) — ZJ(m).

4.6 Finite fields

We have seen that Z/(p) is a field if p is prime.

Finite fields are important because linear algebra extends to vector spaces
over any field; and vector spaces over finite fields are central to coding theory
and cryptography, as well as other branches of pure mathematics.

Definition 4.5. The characteristic of a ring A is the least positive integer

n such that

n 1’s
—_—~—
1+1+---+1=0.

If there is no such n then A is said to be of characteristic 0.

Thus the characteristic of A, if finite, is the order of 1 in the additive
group A.
Evidently Z, Q, R, C are all of characteristic 0.

Proposition 4.8. The ring Z/(n) is of characteristic n.
Proposition 4.9. The characteristic of a finite field is a prime.
Proof. Let us write .
n -1 for m
Suppose the order n is composite, say n = rs. By the distributive law,
n-1=(@r-1)(s-1).
There are no divisors of zero in a field; hence
r-1=0o0fs-1=0,
contradicting the minimality of n. O]

The proof shows in fact that the characteristic of any field is either a
prime or 0.

Proposition 4.10. Suppose F' is a finite field of characteristic p. Then F
contains a subfield isomorphic to Z/(p).

Proof. Consider the additive subgroup generated by 1:

1) =1{0,1,2-1,....(p—1)- 1}

T+ 2 v A T<r xrmre Ll A 4Tt 4130 camdt v AT~ 379 T A ad 34~ a1 vt 1l4 3T At e o



Lorollary 4.4. LNhere 1s just one jield containing p elements, up to 1S0mor-
phism, namely Z/(p).

Theorem 4.2. A finite field F' of characteristic p contains p" elements for
somen > 1

Proof. We can consider F’ as a vector space over its prime subfield P. Suppose
this vector space is of dimension n. Let eq,...,e, be a basis for the space.
Then each element of F' is uniquely expressible in the form

aieq + Tt + AnCn,

where aq,...,a, € P. There are just p choices for each a;. Hence the total
number of choices, ie the number of elements in F', is p™. ]

Theorem 4.3. There is just one field F' containing ¢ = p" elements for each
n > 1, up to isomorphism.

Thus there are fields containing 2,3,4 and 5 elements, but not field con-
taining 6 elements.
We are not going to prove this theorem until later.

Definition 4.6. We denote the field containing ¢ = p" elements by F,.

The finite fields are often called Galois fields, after Evariste Galois who
discovered them.



*k 5

* 6.
* 7.
. 2mod 31

. —2mod 31
kokok 10.

*k Q

**9

*11.
*12.
*13.
14,

*15.
*16.
*17.
*18.
*19.

*20.
* 21.
* 22
k23,
k24,

ok 25,
9 26.
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*1.
* 2.
* 3.
*4.

3 mod 5
3 mod 6
2 mod 7
—13 mod 14

. 100000 mod 123456

In Exercises 6-10 determine the multiplicative order of the given ele-
ment.

3 mod 5
7 mod 12

2 mod 3°

In Exercises 11-15 determine the multiplicative inverse of the given
element.

3 mod 5

3 mod 13

2 mod 111
137 mod 253

In Exercises 16-20 determine the order of the given multiplicative
group, and list its elements.

(Z/2)*

(Z/6)

(Z/8)*

(Z/12)*

(Z/15)

Determine ¢(45)

Determine ¢(3")

Determine all positive integers n with ¢(n) =n — 1.
Determine all positive integers n with ¢(n) =n — 2.
What is the smallest value of ¢(n)/n?

Show that there is a field containing 4 elements.

Show that there is no field containing 6 elements.



Chapter 5

The Chinese Remainder Theorem

5.1 Coprime moduli
Theorem 5.1. Suppose m,n € N, and
ged(m,n) = 1.
Given any remainders r mod m and s mod n we can find N such that
N =r mod m and N = s mod n.

Moreover, this solution is unique mod mn.

Proof. We use the pigeon-hole principle. Consider the mn numbers
0< N < mn.
For each N consider the remainders
r = N mod m, s = N mod n,
where r, s are chosen so that
0<r<m,0<s<n.

We claim that these pairs r, s are different for different N € [0,mn). For
suppose N < N’ have the same remainders, ie

N’ = N mod m and N’ = N mod n.

Then
m| N —Nandn|N — N.

Since ged(m,n) = 1, it follows that
mn | N'— N.
But that is impossible, since

0< N —N < mn.

Example: Let us find N such that
N =3 mod 13, N =7 mod 23.
One way to find N is to find a, b such that

a =1 mod m, a =0 mod n,

b= 0modm, b=1mod n.

For then we can talke



20 = 410 —09,

13=4-3+1,
giving
1=13-4-3
=13 —4(2-13 — 23)
=4-23-7-13.

Thus we can take
a=4-23=92, b=-7-13 = —91.

giving
N=3-92-7-91 =276 - 637 = —361.

Of course we can add a multiple of mn to N; so we could take
N =13-23 — 361 =299 — 361 = —62,
if we want the smallest solution (by absolute value); or
N =299 — 62 = 237,

for the smallest positive solution.

5.2 The modular ring

We can express the Chinese Remainder Theorem in more abstract language.

Theorem 5.2. If gcd(m,n) = 1 then the ring Z/(mn) is isomorphic to the
product of the rings Z/(m) and Z/(n):

Z/(mn) = Z/(m) x Z/(n).
Proof. We have seen that the maps
N — N mod m and N — N mod n
define ring-homomorphisms
Z/(mn) — Z/(m) and Z/(mn) — Z/(n).
These combine to give a ring-homomorphism
Zf(mn) — Z/(m) x Z/(n),

under which
r mod mn +— (r mod m,r mod n).

But we have seen that this map is bijective; hence it is a ring-isomorphism.
O

5.3 The totient function
Proposition 5.1. Suppose gcd(m,n) = 1. Then
ged(N,mn) = ged(N, m) - ged(N, n).

Proof. Let
d = ged(N, mn).

Suppose
p° || d.



ged(lN,mn) =1 <= ged(N,m) =1 and ged(/V,n) = 1.
From this we derive

Theorem 5.3. Fuler’s totient function is multiplicative, ie
ged(m,n) =1 = ¢(mn) = ¢(m)é(n).

This gives a simple way of computing ¢(n).

n=]]

1<ier

Proposition 5.2. If

where the primes py, ..., p, are different and each e;/gel. Then

o(n) =[] pi " (i = 1).
Proof. Since ¢(n) is multiplicative,
o(n) = [ o(x5)-
The result now follows from

Lemma 5.1. ¢(p°) = p*(p — 1).

Proof. The numbers r € [0, p°®) is not coprime to p” if and only if it is divisible
by p, ie
re{0,p,2p,...,p° — p}.

There are
p°/p) =p°"

such numbers. Hence

o(p°) =p° —p ' =p"p—1).

Example: Suppose n = 1000.

¢(1000) = ¢(2°5%)
= $(2%)9(5%)
22(2—1)5%(5 —1)
=4-1-25-4
4

there are just 400 numbers coprime to 1000 between 0 and 1000.

5.4 The multiplicative group
Theorem 5.4. If ged(m,n) =1 then
(Z/mn)* = (Z[m)* x (Z/n)".
Proof. We have seen that the map
r mod mn — (r mod m, r mod n) : Z/(mn) — Z/(m) x Z/(n)

maps r coprime to mn to pairs (r, s) coprime to m,n respectively. Thus the
ctibeet (7 /m17)% mane to the prodiiet of the cubeete (7. /)% and (7. /n)*%



The Chinese Remainder ['neorem extends to more than two moduli.
Proposition 5.3. Suppose nqi,no, ..., n, are pairwise coprime, ie
i #j = ged(ng,n;) =1;

and suppose we are given remainders ai, s, . . ., a, modult ny,ng, ..., Ny, rE-
spectively. Then there exists a unique N mod nins - --n, such that

N = ay mod ny, N =as mod ny,..., N = a, mod n,.

Proof. This follows from the same pigeon-hole argument that we used to
establish the Chinese Remainder Theorem.
Or we can prove it by induction on r; for since

ng(TLlTLQ Ny, ni+1) = ]_,

we can add one modulus at a time,
Thus if we have found N; such that

N; = a; mod nq, N; = as mod no, ..., N; = a; mod n;
then by the Chinese Remainder Theorem we can find V;,; such that

Niy1 = N; mod ning - --n; and N1 = a;01 mod n;yq

and so
Nii1 =ay mod ny, N;jy1 =as mod ng, ..., Nixy = a;01 mod njyq,
establishing the induction. O

Example: Suppose we want to solve the simultaneous congruences
n=4modb, n=2mod 7, n=1mod 8.

There are two slightly different approaches to the task.
Firstly, we can start by solving the first 2 congruences. As is easily seen,
the solution is
n =9 mod 35.

The problem is reduced to two simultaneous congruences:
n =9 mod 35, n =1 mod 8§,

which we can solve with the help of the Euclidean Algorithm, as before.
Alternatively, we can find solutions of the three sets of simultaneous con-
gruences

ny = 1mod 5, ny =0mod 7, ny =0 mod 8,
ny =0 mod 5, ng =1 mod 7, ny =0 mod 8,

nz =0 mod 5, ng =0 mod 7, n3 = 1 mod 8§,
ie

n; = 1 mod 5, ny = 0 mod 56,
no = 1 mod 7, ny = 0 mod 40,

nz = 1 mod 8, ng = 0 mod 35,
which we can solve by our previous method. The required solution is then

n = 4nq + 2ny + ngz,



We have seen that ¢(n) 1s multiplicative. ''here are several other multiplica-
tive functions that play an important role in number theory, for example:

1. The number d(n) of divisors of n, eg

d(2) =1, d(12) = 3, d(32) = 5.

2. The sum o(n) of the divisors of n, eg

o(2) =3, 0(12) = 28, ¢(32) = 63.

3. The Mo6bius function

(—1)¢ if n is square-free and has e prime factors,
p(n) = . )
0 if n has a square factor n = p*m.

4. The function (—1)".

5. The function
1 if n =1 mod 4,

f(n) =< —1 ifn=3mod4,

0 if n is even.

5.7 Perfect numbers

Definition 5.1. We say that n € N s perfect if it is the sum of all its
divisors, except for n itself.

In other words,
n is perfect <= o(n) = 2n.

Theorem 5.5. If M(p) = 2 — 1 is prime then
n = 2" M(p)
15 perfect. Moreover, every even perfect number is of this form

Remark: Euclid showed that every number of this form is perfect; Euler
showed that every even perfect number is of this form.

Proof. Note that
o(n) =n+1 <= nis prime.

For if n = ab (where a,b > 1) then o(n) >n+1+a.
Also
c(29)=1+2+2% .- 420 =21 1,
Thus if n = 2°"'M(p), where P = M(p) is prime, then (since 2¢ and
M (p) are coprime)

= (2" =1)(M(p)+1)
= (2 - 1))
=2n

Conversely, suppose n is an even perfect number. Let n = 2°m, where m

is odd. Then
o(n) =0o(2%0(m) = 2n,

1e



But z is a factor of m. So if z is not 1 or m then
om)>m+z+1.

Hence v = lorm If x = m then 27! —1 =1 = e = 0, which is not
possible since n is even.
It follows that = = 1, so that

m=2"—1=M(e+1).

Also
o(m)=m+ 1.

Thus m = M(e+ 1) is prime (and therefore e + 1 = p is prime), and
n=2"""M(p),
as stated. O]

But what if n is odd? [t is not known if there are any odd perfect numbers.
This is one of the great unsolved problems of mathematics.
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*1. 3z =1 mod 23
*2. Tr =1 mod 47
*¥* 3. 5x = 2 mod 210
** 4. 62 = 7 mod 25
** 5. 8¢ =5 mod 31
*¥* 6. 8r =12 mod 32
** 7 122 = 6 mod 21
** 8. 2r =2mod 16
*¥* 9. 202 = 8 mod 24
4% 10. Tx = —3 mod 2009
** 11, 22 =1 mod 12
**12. 22 = —1 mod 15
**13. 224+ 2+1=0mod 3
14, 22 -2 +3=0mod 5
** 15 22 —2=0mod 7
Rk 16, 2t + 222 +2—2=0mod 7
*17. What is the order of 10 in the additive group Z/(24)7
**18. Determine the orders of the elements 7,11,21 in the multiplicative
group (Z/36)*.
*%19. What is the order of the group (Z/36)*?
% 20. Is the group (Z/36)* cyclic?
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**26.
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ok 98

ai, ..., aj; of numbers from {—1,0,1} such that the sum
a1y + ... +anri

is divisible by 2009.

Construct the field containing 4 elements.

Show that there is no field containing 6 elements.
Determine the orders of all the elements in F},?
What is the order of the multiplicative group F;?
How many elements are there of order 4 in F}.?7

Prove that there is a multiple of 2009 which ends with the digits
000001.



Polynomial Rings

6.1 Polynomials
A polynomial of degree n over a ring A is an expression of the form
f(x) = ana”™ + an_q2" ' 4 -+ ag,

where a; € A and a,, # 0.

(It is better not to think of f(x) as a function, since a non-zero polynomial
may take the value 0 for all x € A, particularly if A is finite.)

We know how to add and multiply polynomials, so the polynomials over
A form a ring.

Definition 6.1. We denote the ring of polynomials over the ring A by Alx].

In practice we will be concerned almost entirely with polynomials over a
field k. We will assume in the rest of the chapter that k denotes a field.

In this case we do not really distinguish between f(x) and cf(z), where
¢ # 0. To this end we often restrict the discussion to monic polynomials, ie
polynomials with leading coefficient 1:

fx)=2" +a 2™ '+ +a,.

6.2 Long division

Proposition 6.1. Suppose k is a field, and suppose f(x),g(x) € kl[z], with
g(x) # 0. Then there exist unique polynomials q(x),r(x) € k[x] with deg(r(x)) <
deg(g(x)) such that

f(@) = q(x)g(x) + r(z).

Proof. We begin by listing some obvious properties of the degree of a poly-
nomial over a field:

Lemma 6.1. 1. deg(f + g) < max(deg(f),deg(g));
2. deg(fg) = deg(f) deg(g).

The existence of ¢(x) and r(z) follows easily enough by induction on
deg(f(x)). To see that the result is unique, suppose

f(x) = q(x)g(x) +ri(x) = @2(x)g(x) + 72(2)

Then

9(@) (1 (z) — @2(2)) = ra(x) — ri(2).
The term on the left has degree > deg(g(z)), while that on the right has
degree < deg(g(x)). O

6.3 Irreducibility

Definition 6.2. The polynomial p(z) € k[x] is said to be irreducible if it
cannot be factorised into polynomials of lower degree:

p(z) = g(x)h(x) = g(x) of h(x) is constant.

In particular, any linear polynomial (ie of degree 1) is irreducible.



e(x) | f(z), g(x) = e(z) | d(z).
Furthermore, there exist polynomials u(x),v(x) such that
d(z) = u(z)f(x) + v(z)g(z).

Proof. The Euclidean Algorithm extends almost unchanged; the only differ-
ence is that deg(r(x)) takes the place of |r|.
Thus first we divide f(x) by g(x):

f(z) = qo(r)g(r) + ro(x),

where deg(ro(x)) < deg(g(z)).
If ro(z) = 0 we are done; otherwise we divide g(z) by ro(x):

9(z)(z) = q1(x)ro(z) + ri(x),

where deg(ri(z)) < deg(ro(z)).

Since the polynomials are reducing in degree, we must reach 0 after at
most deg(g(z)) steps. It follows, by exactly the same argument we used with
the Euclidean Algorithm in Z, that the last non-zero remainder r¢(z) is the
required ged:

ged(f(x), g(x)) = rq(z).

The last part of the Proposition, the fact that d(x) is a linear combination
(with polynomial coefficients) of f(x) and g(z), follows exactly as before. [

6.5 Unique factorisation

Theorem 6.1. A monic polynomial f(x) € k[x] can be expressed as a product
of irreducible monic polynomials, and the expression is unique up to order.

Proof. 1f f(x) is not itself irreducible then f(z) = g(x)h(z), where g(x), h(zx)
are of lower degree. The result follows by induction on deg(f(x)).
To prove uniqueness we establish the polynomial version of Euclid’s Lemma;

Lemma 6.2. If p(x) is irreducible then
p(x) | f(z) g(x) = p(z) | f(z) or p(z) | g(x).
Proof. As with the classic Euclidean Algorithm, suppose p(x) {1 f(z). Then
ged(p(x), f(x)) = 1.
Hence there exist u(z), v(z) such that
w(@)p(z) +v(@) f(x) = 1
Multiplying by g(x),
u(@)p()g(z) +v(x) f(2)g(r) = g(x).
Now p(z) divides both terms on the left. Hence p(x) | g(z), as required. [

To prove uniqueness, we argue by induction on deg(f(z)). Suppose

f(x) =pi(x) - pe(z) = qu () - - - gs(2).

Then py(x) | g;(z), and so pi(z) = g;(x), for some j; and the result follows
on applying the inductive hypothesis to

f(@)/pr(x) = pa(@) -+ pr(2) = (@) -+ gra(2)gria () - - - gs ().



N

Proof. Suppose f(x) is coprime to p(x), ie represents a non-zero element of
k[x] mod p(z). Then we can find polynomials u(z),v(z) such that

f@)u(z) + p(r)v(e) = 1,

But then
F(z)u(x) = 1 mod p(x),

ie fx) has the inverse u(x) modulo p(z). O
This is particularly striking if & is a prime field F,,.

Corollary 6.1. Suppose f(x) € Fp[z]| is an irreducible polynomial of degree
n. Then K =TF,[z]/(f(x)) is a finite field with p" elements.

Proof. This follows from the fact that the residues modulo f(z) are repre-
sented by the p™ polynomials

ao+ a1z + - 4+ @™t (0 <ag,aq,...,a,_1 <Dp).
]

Ezample: Let us look at the first irreducible polynomials in Fy[x].

Every linear polynomial x — ¢ in k[z] is irreducible, by definition. Thus
there are two irreducible polynomials of degree 1 in Fo[z]: x and = + 1.

If one of the four polynomials of degree 2 is not irreducible then it must
be one of the 3 products of z and x + 1,

P rr+l)=2 4 (r+1)* =22+ 1.

This leave one irredicible polynomial of degree 2: 2% +x + 1.
Turning to the eight polynomials of degree 3, there are four linear prod-
ucts:

2?2t (r+ )= 4z, e+ 1) =24z, e+ 1) =P+ a4+ L
There are two other ‘composite’ polynomials:
v+ D)=+ +o+1, 2+ 1)@+ +1) =2+ 1.
We are left with two irreducibles:
24+ 1, 24+ 1

Each polynomial of degree d in Fy[z] can be represented by d digits. Thus
the irreducible polynomials listed above can be written:

10, 11, 111, 1101, 1011,....
These compare with the familar prime numbers, in binary form:
10, 11, 101, 111, 1001, ....

The field Fo[z]/(2* + = + 1) has 4 elements, represented by the residues
0,1,z,z 4+ 1. The addition and multiplication tables for this field of order 4
are

+ 0 1 T r+1 X 0 1 T z+1
0 0 1 T z+1 0 0 0 0 0
1 1 0 r+1 T 1 0 1 T r+1
T T r+1 0 1 T 0 T z+1 1
r+1|z+1 T 1 0 z+1]0 x+1 1 T




Proof.
Lemma 6.3. Each polynomial f(z) € Q[x] can be expressed in the form

f(x) = qF(x)

where g € Q, F(x) € Z[z] and the coefficients of F(z) are coprime; moreover,
this expression is unique up to =+.

Proof. Tt is evident that f(x) can be brought to this form, by multiplying
by the lem of the coefficients and then taking out the gcd of the resulting
integer coefficients.

If there were two such expressions, then multiplying across we would have

anl (ZL’) = TLQFQ(I).

The ged of the coefficients on the left is |nq|, while the ged of those on the
right is |ny|. Thus ny = £n9, and the result follows. O

Lemma 6.4. Suppose
u(z) = v(z)w(w),

where u(z),v(z),w(x) € Zlx]. If the coefficients of v(x) are coprime, and
those of w(x) are also coprime, then the same is true of u(zx).

Proof. Suppose to the contrary that the prime p divides all the coefficients
of f(z). Let

v(x) = byx" + -+ by, w(x) = csx® + -+ o, u(T) = ap T+ + ag.
By hypothesis, p does not divide all the b;, or all the ¢;. Suppose
P ’ bT, brfl, ce ,bi+1 but P * bi,

and similarly
plcs,cs1,... ¢ but ptey,

Then
Pt aiy; =bipjco+biyj1c1 + -+ bicj + biicjin + -+ boCiy,
for p divides every term in the sum except b;c;, which it does not divide since
plbic; = p|biorp|ec.
So p does not divide all the coefficients of u(z), contrary to hypothesis. [
Writing f(x), g(x), h(x) in the form of the first Lemma,

@ F(r) = (¢G(2))(gsH (2)),
where the coefficients of each of F(z), G(x), H(x) are coprime integers. Thus
F(z) = (q2q3/ 1) G () H(z).

Since the coefficients of both F'(z) and G(z)H (z) are coprime, by the second
Lemma they are equal up to sign, and the result follows. O

6.8 FEuclidean domains, PIDs and UFDs

Definition 6.3. An integral domain A is said to be a euclidean domain if
there exists a function N : A — N such that N(a) = 0 <= a =0, and
given a,b € A with b # 0 there exists q,v € A with



2.a€Abel = abel,

Ezample: The whole ring A is an ideal in A, and so is the set {0}.
If a € A then (a) = {ax : x € A} is an ideal. An ideal of this form is said
to be principal.
If a,b € A then
bla < (a) C (b).
Also

where e is a unit.

Definition 6.6. An integral domain A is said to be a principal ideal domain
(PID) if every ideal I C A is principal: I = (a) for some a € A.

Proposition 6.5. A euclidean domain is a principal ideal domain.

Proof. Suppose I is an ideal in the euclidean domain A. If I # (0) let d € [
be a non-zero element with minimal N(d). Suppose a € I. Then d | a, for
else

a=qd+r,

with N(r) < N(d); and then r € I contradicts the definition of d. O

Definition 6.7. An element p in an integral domain A is said to be primitive
ifplab = plaorplb.

Proposition 6.6. A primitive element p cannot be factored; if p = ab then
either a or b

Proof. Since p | p = ab, p | a or p | b. Suppose p | a, say a = pc. Then
p=pcb = bc =1, so that b is a unit. O

Definition 6.8. A unique factorisation domain (UFD) is an integral domain
A with the property that every non-zero element a € A is expressible in the
form

a = epip2 - . . Pr,

where e 1s a unit and py,ps, ..., p. are primitive elements.

We allow a = e with r = 0. Also, we note that we can omit e if r > 1
since ep is primitive if p is primitive.

Theorem 6.3. A principal ideal domain is a unique factorisation domain:

PID — UFD.

Proof. Suppose A is a PID; and suppose a € A, a # 0. We may assume that
a is not a unit, since the result holds trivially (with no primitive elements)
in that case.

We must show that a cannot be factorised into an arbitrarily large number
of non-units. Suppose that is false.

Then in particular x = yg29, where yg, 29 are non-units. One of yq, 2o,
say 1o, can be factorised into an arbitrarily large number of non-units. In
particular yg = y127, where yq, z; are non-units. One of ¥, 21, say y;, can
be factorised into an arbitrarily large number of non-units. In particular
Y1 = Yoz2, Where 1o, 29 are non-units.

Continuing in this way, we obtain an infinite sequence

Yi,Y2,Y3, - -+,
such that y;,; | y; for all i. Thus

(11) C (y2) C (y3) C---
Let
I'=(y)U(y2)U(ys)U---.

It is readily verified that I is an ideal. Since A is a PID, it follows that
I = (d) for some d € A. Thus d € (y,,) for some n. But y,,+1 € (d). It follows
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Determine the irreducible polynomials of degree 3 over Fs.

How many irreducible polynomials are there of degree 4 over F3?
Determine the irreducible polynomials of degree 2 over F5.
Determine the irreducible polynomials of degree 2 over 5.

Show that an irreducible polynomial over R is of degree 1 or 2.

Determine the irreducible polynomials over C.
In exercises 11-20 determine if the given polynomial is irreducible over

Q.

2+ +1
2+ 2r+1
41
x4+ 2

xt +4

a2t 4423+ 1

Determine the irreducible polynomials of degree 2 over F5.



Finite fields

7.1 The order of a finite field

Definition 7.1. The characterisitic of a ring A is the additive order of 1, ie
the smallest integer n > 1 such that

n-l=14+1+---+1=0,
—_——

n terms

iof there is such an integer, or oo if there is not.

Examples: 7,Q, R, C all have infinite characteristic.
[, = Z/(p) has characteristic p.

Proposition 7.1. The characteristic of an integral domain A is either a
prime p, or else 0o.
In particular, a finite field has prime characteristic.

Proof. Suppose A has characteristic n = ab where a,b > 1. By the distribu-
tive law,
Lot l= (Lt YL+,

n t:a;ms a t;;ms b t;;ms
Hence
l1+---+1=0o0r 14+---4+1=0,
—_—— —_——
a terms b terms
contrary to the minimal property of the characteristic. O

Proposition 7.2. Suppose the finite field F' has characteristic p. Then F
contains p" elements, for some n.

Proof. The elements {0,1,2,...,p — 1} form a subfield of F' isomorphic to
IF,. We can consider I as a vector space over this subfield. Let e, eq,... ¢,
be a basis for this vector space. Then the elements of F' are

T1€1 + X + - - + Tpey (0 < 21,29,...,2, < D).

Thus the order of F is p™. O

7.2 On cyclic groups
Let us recall some results from elementary group theory.

Proposition 7.3. The element g* in the cyclic group C,, has ordern/ ged(n,1).

Proof. This follows from

(¢) =1 < nlic < | e.

ged(n, 1)
O

Corollary 7.1. C,, contains ¢(n) generators, namely the elements g* with
0 < i <mn for which ged(n,i) = 1.

Proposition 7.4. The cyclic group C,, = (g) has just one subgroup of each
order d | n, namely the cyclic subgroup C; = (g%,
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n)=
u(n) i(—l)’" if n is square-free and has r prime factors
Thus
pl) =1, p(2) = =1, p(3) = =1, p(4) =0, u(5) = -1,

1,
u(6) =1, pu(7) = -1, u(8) =0, u(9) =0, p(10) = 1.

Theorem 7.1. Given an arithmetic function f(n), suppose

g(n) =3 f(n).

dln

Then
) =3 uln/d)g(n).

din

Proof. Given arithmetic functions u(n),v(n) let us defined the arithmetic
function u o v by

(wov)(n) =3 udpw(n/d) = 3" ul)o(y).

din n=zxy

(Compare the convolution operation in analysis.) This operation is commu-
tative and associative, ie vou = uowv and (uov)ow = wuo (vow). (The
latter follows from

Lemma 7.1. We have

S} 0=

otherwise.
din
Proof. Suppose n = pi*---pS. Then it is clear that only the factors of
p1 - - - pr Will contribute to the sum, so we may assume that n = p;--- p,.
But in this case the terms in the sum correspond to the terms in the

expansion of
1-H1-1)---(1-1)

N S
-

r products

giving 0 unless r =0, ie n = 1. ]

Let us define d(n), €(n) by

() = {1 ifn=1

0 otherwise,

e(n) =1 for all n

It is easy to see that
Sof=]

for all arithmetic functions f. Also the lemma above can be written as
[Loe=7a,
while the result we are trying to prove is
g=eof = f=pogy.

This follows since
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Since this polynomial has degree p™ — 1, and we have p™ —1 roots, it factorizes
completely into linear terms:

Now suppose d | p* — 1. Since
fla)=a"=1]U(x)

it follows that z¢ — 1 factorizes completely into linear terms, say

fla)= 1] (@ - a).

0<i<d
Lemma 7.2. Suppose there are o(d) elements of order d in F*. Then
D ole) =d.
eld

Proof. Any element of order e | d must satisfy the equation f(z) = 0; and
conversely any root of the equation must be of order e | d. The result follows
on adding the elements of each order. ]

> dle) =d.

eld

Lemma 7.3. We have

Proof. Since the function ¢(d) is multiplicative, so (it is easy to see) is
> ela®(d). Hence it is only necessary to prove the result for d = p", ie
to show that

o(p?) + o(p") + -+ 0(1) = p°,

which follows at once from the fact that ¢(p™) = p™ — p"~ L. ]

From the two Lemmas, on applying Mobius inversion,

o(d) =Y e=¢(d).

eld

In particular,
o(p" —1)=0op"-1) 21,

from which the theorem follows, since any element of this order will generate
Fx. m

Remarks:

1. It is not necessary to invoke Md&bius inversion to deduce from the two
Lemmas that o(d) = ¢(d), since it follows by simple induction that if
the result holds for e < d then it holds for d.

2. For a slight variant on this proof, suppose a € F'* has order d. Then a
satisfies the equation f(z) = x¢—1 = 0, as do the d elements a*(0 < i <
d). Moreover any element of order d satisfies this equation. It follows
that the elements of order d are all in the cyclic subgroup Cy = (a).



Since the order of an element divides the order of the group, which is 6 in
this case, it follows that 3 has order 6 mod 7, and so is a primitive root.
If g generates the cyclic group G then so does g~!. Hence

37'=5mod 7
is also a primitive root mod 7.

Proposition 7.5. There are ¢(p — 1) primitive roots mod p. If w is one
primitive root then the others are w where 0 < i < p—1 and ged(p—1,4) = 1.

This follows from Proposition 7.3 above.
Ezamples: Suppose p = 11. Then (Z/11)* has order 10, so its elements
have orders 1,2,5 or 10. Now

2° =32 =—1mod 11.

So 2 must be a primitive root mod 11.
There are

¢(10) = 4

primitive roots mod 11, namely
2,23 27 29 mod 11,
ie
2,8,7,6.

Suppose p = 23. Then (Z/23)* has order 22, so its elements have orders
1,2,11 or 28.

Note that since a*> =1 for all a € (Z/29)*, it follows that a'! = +1.

Working always modulo 23,

2=32=9 = 21=81=12 = 2''=24=1.
So 2 has order 11. Also
FP=2 = 39=2%=2 —= 3'=3.8=1.
So 3 also has order 11. But
=2 = 5=2"=9 = 5'=45=-1.

Since 52 = 2 = 5* = 22 = 4, we conclude that 5 is a primitive root modulo
23.

7.5 Uniqueness

Theorem 7.3. Two fields F, F' of the same order p"™ are necessarily isomor-
phic.

Proof. If a € F* then a?"~! =1, ie a is a root of the polynomial
Uz) =2 — 1.
Hence

acFXx

since the number p™ — 1 of elements is equal to the degree of U(z).
Now suppose U(x) factorises over F,, into irreducible polynomials

Ulz) = fi(z)--- f.(z).
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7= 0<r<p'—1)

(together with 0 +— 0) is a homomorphism.

It is easy to see that O(zy) = O(z)O(y). It remains to show that O(z +
y) = O(z) + O(y). Suppose & = %, y = 7°, x+y = 7°. Then 7 satisfies the
equation

flz) =2 + 2% — 2"
It follows that
fi@) | f(z).
On passing to F’,
f(ﬂl) —0) — 7T/a + 7r/b — 71_/c7

as required.

Finally, a homomorphism © : F' — F’ from one field to another is neces-
sarily injective. For if x # 0 then z has an inverse y, and then

O(z) =0 = 6(1) = B(zy) = O(x)O(y) = 0,

contrary to fact that ©(1) = 1. (We are using the fact that © is a homo-
morphism of additive groups, so that ker © = 0 implies that © is injective.)
Since F' and F’ contain the same number of elements, we conclude that © is
bijective, and so an isomorphims. O

7.6 Existence

Theorem 7.4. There exists a field F' of every prime power p".

Proof. We know that if f(z) € F,[z] is of degree d, then F,[z]/(f(x)) is a
field of order p™. Thus the result will follow if we can show that there exist
irreducible polynomials f(z) € F,[z] of all degrees n > 1.

There are p™ monic polynomials of degree n in F,[z]. Let us associate
to each such polynomial the term x™. Then all these terms add up to the

generating function
n, .n 1
" = .
D pet =

neN

Now consider the factorisation of each polynomial

f(@) = fi(@) - frx)

into irreducible polynomials. If the degree of f;(z) is d; this product corre-

sponds to the power
md1€1+"'+drer

Putting all these terms together, we obtain a product formula analagous to
Euler’s formula. Suppose there are o(n) irreducible polynomials of degree n.
Let d(f) denote the degree of the polynomial f(z). Then

1 d(f) | 2d(f)
1—px:, H (1+x +x +)
irreducible f(z)

1
- H 1 — 24

irreducible f(x)

=[Ja-anH—~.

deN

As we have seen, we can pass from infinite products to infinite series by
taking logarithms. When dealing with infinite products of functions it is

11ca1191lv eacior tao 11cee loocarithmic differontiation:



Applying Mébius inversion,
no(n) = 3 u(n/d)p"
dn

The leading term p" (arising when d = 1) will dominate the remaining
terms. For these will consist of terms +p® for various different e < n. Thus
their absolute sum is

<> P

e<n—1
_pr-l
= P—
<p".

It follows that o(n) > 0. ie there exists at least one irreducible polynomial
of degree n. O

Corollary 7.2. The number of irreducible polynomials of degree n over IF,
18

LS i /dyp

dn
Examples: The number of polynomials of degree 3 over Fj is

2% -2
— =

(1(1)2° + pu(3)2) = 2

W

namely the polynmials 2% + 2% + 1, 23 + z + 1.
The number of polynomials of degree 4 over F, is

24__22

= 3.
4

((1)2* + u(3)2° + p(1)2) =

P

(Recall that 1(4) = 0, since 4 has a square factor.)
The number of polynomials of degree 10 over Fs is
1 ~ 990

= (910 _ 95 _ 92 _ 777
(219 —2° — 22 4 2) 0

10 9

The number of polynomials of degree 4 over ;5 is

_12_

9.
8

(3~ )
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Determine the irreducible polynomials of degree 3 over Fs.

How many irreducible polynomials are there of degree 4 over F3?
Determine the irreducible polynomials of degree 2 over F5.
Determine the irreducible polynomials of degree 2 over 5.

Show that an irreducible polynomial over R is of degree 1 or 2.

Determine the irreducible polynomials over C.
In exercises 11-20 determine if the given polynomial is irreducible over

Q.

2+ +1
2+ 2r+1
41
x4+ 2

xt +4

a2t 4423+ 1

Determine the irreducible polynomials of degree 2 over F5.
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8.1 Lagrange’s Theorem

Let us recall (without proof) this basic result of group theory: If G is a finite
group of order n then
g" =1

forall g € G.
If G is commutative (as all the groups we consider will be) there is a
simple way of proving this: Let

G=A{q, -, 9n}

Then
{991,992, -..,99.}

are the same elements, in a different order (unless g = 1). Multiplying these
elements together:

(991)(992) - - - (99n) = 9192 - - Gn,
1e
g”(gng o 'gn) = (9192 . 'gn)-
Multiplying by (g192 - gn) L,

gt =1.

8.2 FKuler’s Theorem
Theorem 8.1 (Euler’s Theorem). For all x coprime to n,
%™ = 1 mod n.

Proof. The group (Z/n)* has order ¢(n). The result follows on applying
Lagrange’s Theorem. O

8.3 Fermat’s Little Theorem

As a particular case of Euler’s Theorem, since ¢(p) = p — 1 if p is prime, we
have

Theorem 8.2 (Fermat’s Little Theorem). If p is prime then
2?71 =1 mod p
for all © coprime to p.

The title ‘Fermat’s Little Theorem’ is sometimes given to the following
variant.

Corollary 8.1. If p is prime then
2 = x mod p

for all x.

Pronf Tf nt +» the rectilt followe on mitl+inliine the conoriience i1 the Theno



vniortunately, 1t turns out tiiat some Composite nuinpers cal satisly rer-
mat’s test for all x.

Definition 8.1. We say that n € N is a Carmichael number if n is composite
but
2" = x mod n for all x.

Ezxample: The smallest Carmichael number is
561 =3-11-17.

To see that 561 is a Carmichael number, note that 3—1=2,11—-1=10
and 17 — 1 = 16 all divide 561 — 1 = 560.
Suppose first that x is coprime to 561. By Fermat’s Little Theorem,

2=1mod 3 = 2°°=1mod 3
Similarly,

2% =1mod 11 = 2°° =1 mod 11,
2% =1mod 17 = 2°°° =1 mod 17.

Putting these together, we deduce that
29 =1mod 3 -11-17 =561 = 2°%' = 2 mod 561.

But what if x is not coprime to 561, say 17 | = but 3,11 { 2?7 Then
x = 17y, where ged(y, 33) = 1.
The congruence is trivially satisfied mod 17:

(17y)*! = 17y mod 17.
So we only have to show that
(17y)**! = 17y mod 33,

Now ¢(33) = 2-10 = 20. Since 17 and y are coprime to 33, it follows by
Euler’s Theorem that

17 = 1 mod 33 and y* = 1 mod 33.
Hence

(179)*° = 1 mod 33 = (17y)°*° = 1 mod 33
— (17y)°*! = 17y mod 33.

The other cases where z is divisible by one or more of 3,11,17 can be
dealt with similarly.

We shall prove the following result later. The argument is similar to that
above, but requires one more ingredient, which we shall meet in the next
Chapter.

Proposition 8.1. The number n is a Carmichael number if and only if it is
square-free, and

n=mpip2---Pr
where r > 2 and
pi—1l|n—1
foro=1,2,...,r.
There are in fact an infinity of Carmichael numbers — this was only

proved about 20 years ago — although they are sparsely distributed. (There
are about N'/3 Carmichael numbers < N.)

Note that if a number fails Fermat’s test then it is certainly composite.
The converse is not true, as we have seen; a number may pass the test but
not be prime.

However, Fermat’s test does provide a reasonable probabilistic algorithm,
for determining “beyond reasonable doubt” if a large number n is prime:
Choose a random number z; € [2,n — 1], and see if



e—1 2

<x2 m) = 1 mod p.
It follows that

227 = 41 mod p;
for Z/(p) is a field; so if © € Z/(p) then

=1 = (z-1Dx+1)=1 = z=+1
Now suppose
227" = 1 mod p.

Then we can repeat the argument, if e > 1, to see that

26—2

x© ™ =41 mod p.
Continuing in this way, we see that either
2'm

™= —1modp

for some i € [0,e — 1]. or else

m

™ =1 mod p.

That is the Miller-Rabin test. It turns out that if a number n passes the
test for all z coprime to n then it must be prime; there is no analogue of
Carmichael numbers.

But we shall need the results of the next chapter to establish this . ...

8.6 The AKS algorithm

The Miller-Rabin test (like the Fermat test) is probabilistic. It will only
determine up to a given probability if a number is prime. Just over 10 years
ago, three Indian mathematicians — Agrawal, Kayal and Saxena — found a
deterministic polynomial-time primality algorithm.

This algorithm is based on a simple extension of Fermat’s Little Theorem
to polynomias.

Theorem 8.3. The integer n > 2 is prime if and only if
(x+a)"=2"+amodn
for all a.

Remark: Suppose f(z) = > a;a’, g(x) = > b’ € Z[z]. We say that
f(z) = g(x) mod n if a; = b; mod n for all i.

Proof.
Lemma 8.1. If p is prime then

1 (3)

iy _pp—1)---(p—i+1)
D i(i—1)---1 '
The only term divisible by p is the first term in the numerator. ]

fori#£0,p.
Proof. We have

It follows from this lemma that the relation in the theorem holds if n is
prime.
Suppose n is not prime, say p’ || n where p is prime. Then

()

7/ \ 7o\ nln — 1) (n —p 1)

For
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Show that if p is a prime then there are ¢(d) elements of order d in
the group (Z/p)*.

Show that the group (Z/n)* is cyclic if and only if n = p® or 2p°,
where p is prime.

How many elements of each order are there in (Z/32)*?

What is the order of 7 mod 2¢ for each e?

Show that if p and ¢ are primes and ¢ | (a? — 1) then either ¢ | (a — 1)
orp|(g—1).
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9.1 Introduction

Definition 9.1. We say that a € Z is a quadratic residue mod n if there
exists b € Z such that
a = b? mod n.

If there is no such b we say that a is a quadratic non-residue mod n.

Example: Suppose n = 10.
We can determine the quadratic residues mod n by computing b* mod n
for 0 < b < n. In fact, since

(—=b)* = b* mod n,

we need only consider 0 < b < [n/2].
Thus the quadratic residues mod 10 are 0,1,4,9,6,5; while 3,7,8 are
quadratic non-residues mod 10.

Proposition 9.1. If a,b are quadratic residues mod n then so is ab.

Proof. Suppose
a=7r% b= s*mod p.

Then
ab = (rs)? mod p.

9.2 Prime moduli

Proposition 9.2. Suppose p is an odd prime. Then the quadratic residues
coprime to p form a subgroup of (Z/p)* of index 2.

Proof. Let @) denote the set of quadratic residues in (Z/p)*. It 0 : (Z/p)* —
(Z/p)* denotes the homomorphism under which

r— r%> mod p

then
kerf = {£1}, im0 = Q.

By the first isomorphism theorem of group theory,
|kerd| - [im 6] = |(Z/p)*|.
Thus @ is a subgroup of index 2:

_p—1
|Q| - 2 °
L]

Corollary 9.1. Suppose p is an odd prime; and suppose a,b are coprime to
p. Then

1. 1/a is a quadratic residue if and only if a is a quadratic residue.

2. If both of a,b, or neither, are quadratic residues, then ab is a quadratic
restdue;

3. If one of a,b is a quadratic residue and the other is a quadratic non-
residue then ab is a quadratic non-residue.



Proposition 9.4. Suppose p is an odd prime. Then

(2) = a"1/2 mod p.
p

Proof. The result is obvious if p | a.
Suppose p 1 a. Then

(a(p—1>/2)2 =a”' =1 mod p,

by Fermat’s Little Theorem. It follows that

(ﬁ) = +1 mod p.
p

Suppose a is a quadratic residue, say a = r? mod p. Then
P D2 = =1 =1 mod p

by Fermat’s Little Theorem.
These provide all the roots of the polynomial

f(z) =2® b2 1,

Hence
a? V2 = _1 mod p

if a is a quadratic non-residue.

9.5 Gauss’s Lemma

Suppose p is an odd prime. We usually take r € [0, p — 1] as representatives
of the residue-classes mod p But it is sometimes more convenient to take

rel=-(p—-1)/2,(p—1)/2],ie {—p/2 <r <p/2}/
Let P denote the strictly positive residues in this set, and N the strictly
negative residues:

P={1,2.. .. (p—1)/2}, N=—P={-1,-2,...,—(p—1)/2}.

Thus the full set of representatives is N U {0} U P.
Now suppose a € (Z/p)*. Consider the residues

p—1
5 a}.

Each of these can be written as +s for some s € P, say

aP ={a,2a,...,

ar = e(r)m(r),
where €(r) = +1. It is easy to see that the map
m: P — P
is injective; for

7(r) =x(r') = ar = +ar’ mod p
= r = 4r' mod p
= r =71 mod p,
since s and s’ are both positive.
Thus 7 is a permutation of P (by the pigeon-hole principle, if you like).
It follows that as r runs over the elements of P so does m(r).
Thus if we multiply together the congruences



1. Note that we could equally well choose the residues in [1,p — 1], and
define ¢ to be the number of times the residue appears in the second

half (p+1)/2,(p —1).

2. The map a — (—1)" is an example of the transfer homomorphism in
group theory. Suppose H is an abelian subgroup of finite index r in
the group GG. We know that GG is partitioned into H-cosets:

G291HU'~'UQTH.

If now g € G then
99 = gjhi

for i € [1,r]. Now it is easy to see — the argument is similar to the
one we gave above — that the product h = hy - - - h, is independent of
the choice of coset representatives ¢y, ..., ¢g,, and the map

7T:G—= 8

is a homomorphism, known as the transfer homomorphism from G to

S.

If G is abelian — which it is in all the cases we are interested in — we
can simply multiply together all the equations gg; = g;h;, to get

T

m(9)=9".

—1
9.6 Computation of [ —
p

Proposition 9.5. If p is an odd prime then

(—_1)_ 1 if p=1mod 4,
p) —1 if p=—1 mod 4.

Proof. The result follows at once from Euler’s Criterion

(2) = ¢P~V/2 mod p.
p

But it is instructive to deduce it by Gauss’s Lemma.
We have to consider the residues

—1,-2,...,—(p—1)/2 mod p.

All these are in the range N = [—(p — 1)/2,(p — 1)/2]. It follows that
t = (p—1)/2; all the remainders are negative.

Hence
(__1) _ (—1)e0r2
p

_J1lif p=1mod4,
] -1ifp=—1mod4.

Ezxample: According to this,

B-()--



2,4,6,...,(p—1) mod p.

We have to determine the number ¢ of these residues in the first half of
[1,p — 1], and the number in the second. We can describe these two ranges
as {0 <r < p/2} and {p/2 < r < p}. Since

p/2<2x <p <= p/d<z<p/2

it follows that
t=1p/2] = [p/4].
Suppose
p=8n+r,

where r = 1,3,5,7. Then
|p/2] =4n+ |r/2], |p/4| =2n+ |r/4].

Thus
t=[r/2] + [r/4] mod 2.

The result follows easily from the fact that

0 forr=1
1 forr=3

9| =
Lr/2] 2 forr=5
3 forr=7,

while

0 forr=1.,3
4] = T
Lr/4] {1 for r=5,7

Ezxample: Since 71 = —1 mod 8,
2\ = 1
)
2% = 2 mod 717

@)

29 = —1 mod 109.

Can you find the solutions of

Again Since 19 = 3 mod 8,

So by Euler’s criterion,

Checking,
=3 — 22°=9 — 2° =18 mod 19.

9.8 Composite moduli

Proposition 9.7. Suppose m,n are coprime; and suppose a is coprime to
m and n. Then a is a quadratic residue modulo mn if and only if it is a

1y A tan meondore v ndarla v A e A A 0



A

e

t — ¢ mod p

then
kerf = {£}.

Proof. Suppose
a®>—1=(a—1)(a+1)=0mod p°.
Then
pla—landpla+1 = p|2a = p|a,

which we have excluded. If p | a + 1 then p® | a — 1; and if p | a — 1 then
p°|a+1. Thus
a = +1 mod p°.

O

It follows that the quadratic residues modulo p® coprime to p form a
subgroup of index 2 in (Z/p®)*, ie just half the elements of (Z/p®)* are
quadratic residues modulo p°. Since just half are also quadratic residues
modulo p, the result follows. O

Remark: For an alternative proof, we can argue by induction of e. Sup-
pose a is a quadratic residue modp®, say

a = r? mod p°,

ie
a=r1r?+tp°.
Set
s =1+ xp°.
Then
§2 = 12 £ 20p° + aPpPe
= 12 4+ 2xp® mod p°*!
=a + (t + 22)p° mod p*™
= ap® mod p!
if
t 4 2x = 0 mod p,
ie

r = —1/2 mod p,
using the fact that 2 is invertible modulo an odd prime p.

Corollary 9.2. The number of quadratic residues in (Z/p®)* is

o) _ (p—Lp~
2 2

The argument above extends to moduli 2¢ with a slight modification.

Proposition 9.9. Suppose p is an odd prime; and suppose a € Z is coprime
to p. Then a is a quadratic residue modulo p® (where e > 1) if and only if it
1 quadratic restdue modulo p.

Proof. The argument we gave above for quadratic residues modulo p still
applies here.

Lemma 9.2. If 0 : (Z/p*)* — (Z/p°)times is the homomorphism under



1e

a=r?+tp°.

Set
s =1+ xp°.
Then
2 = 12 4 2upt + 22p

= r? 4+ 2xp® mod p°*!

= a+ (t + 2x)p° mod p°**

= q mod p°H!
if

t + 2z = 0 mod p,

ie

r = —t/2 mod p,
using the fact that 2 is invertible modulo an odd prime p.

Corollary 9.3. The number of quadratic residues in (Z/p®)* is

o(p°) _ (p— 1"
2 2

The argument above extends to moduli 2¢ with a slight modification.

Proposition 9.10. Suppose a is an odd integer. Then a is a quadratic
residue modulo 2¢ (where e > 3) if and only if a = 1 mod 8

Proof. 1t is readily verified that 1 is the only odd quadratic residue modulo
8; 3,5 and 7 are quadratic non-residues.

We show by induction on e that if a is an odd quadratic residue modulo
2¢ then it is a quadratic residue modulo 2¢*!. For suppose

a =r? mod 2¢,

say

a =1’ +12°
Let

s=r+t2°71
Then

s? = r? + t2° mod 2¢T!
= a.
O]

Corollary 9.4. The number of quadratic residues in (Z/2°)* (where e > 3)

N 6(2°)

=7 26—3‘

4

Remarks:
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In exercises 6-15, determine if the given congruence has a solution,
and if it does find the smallest solution = > 0.

** 6. 22 =5 mod 10
*¥* 7 22 =5mod 11
k8 2?2 = 5mod 12
9. 22 =4 mod 15
**10. 22 = —1 mod 105
11, 22+ 32z +1=0mod 13
%12, 22 +3x +1=0mod 13
*kk 13, 22 = 2 mod 27
% 14, 2242 =0 mod 81
*** 15, 2?2 = 4 mod 25

#%416. Show that if p is a prime satisfying p = 1 mod 4 then z = ((p—1)/2)!
satisfies
2?2 +1 = 0 mod p.



10.1 Gauss’ Law of Quadratic Reciprocity

This has been described as ‘the most beautiful result in Number Theory’.

Theorem 10.1. Suppose p,q are distinct odd primes. Then

(I_?) (Q) _ (_1)1’7‘1% _ )1 ifp= q =3 mod 4
q p 1 otherwise.

More than 200 proofs of this have been given. Gauss himself gave 11.

We give a short proof of the Theorem below. It is due to Rousseau, and
is fairly recent (1989), although it is said to be based on Gauss’ 5th proof.
It is subtle, but requires nothing we have not met.

10.2 Wilson’s Theorem

We start with a preliminary result which is not really necessary, but which
simplifies the formulae in the proof.

Proposition 10.1. If p is an odd prime then
(p—1)!'=—1mod p.

Proof. Consider the numbers 1,2,...,p— 1. Each number z has a reciprocal

27! mod p in this set. The number z is equal to its reciprocal if and only if

=1 = z ==+1mod p.

It follows that the remaining p — 3 numbers divide into pairs, each with
product 1 mod p. Hence the product of all p — 1 numbers is

1-—1=—1mod p.

We shall find our formulae are simplified if we set

P=(p-1)/2, Q=(¢-1)/2.
Corollary 10.1. (P!)? = (=1)P*! mod p.

Proof. This follows from Wilson’s Theorem on replacing the numbers {P +
1,...,p—1} by {—1,-2,...., — P mod p}. O

Recall the definition of the quotient-group G/H, where H is a normal
subgroup of G. (We will only be interested in abelian groups, in which case
every subgroup is normal.) The elements of G/H are the cosets of H in G.
If we write 2’ ~ x to mean that 2/, z are in the same H-coset, ie 2/ = xh for
some h € H, then the basic step in defining the product operation on G/H
is to show that

¥~xy v~y = 2y ~oay.

It follows from this that if we take representatives xi,...,z, of all the
cosets of H then the coset containing the product x; - - - z, is independent of
the choice of representatives:

’ . ’ /
miwxiforlgzgr = T X~ Xy Ty,



{((L‘,y)IZL'E {17,]7_1}, Yy e {Lyq_l}}
We are going to consider the quotient of this group by the subgroup

In other words, we are going to divide the group into pairings {(x,y), (—x, —y)}.
The group has order (p — 1)(¢ — 1) = 4PQ, so there are 2P(Q pairings.

We are going to choose one representative from each pairing, in two dif-
ferent ways. In each case we will form the product of these representatives.
by the argument above, the two products will differ by a factor £1.

For our first division, let us take the first half of (Z/p)*, and the whole
of (Z/q)*. In other words, we take the representatives

{(z,y): 1<z <P 1<y<q-—1}.

We want to compute the product of these elements.
The z-components are 1,2, ..., P, repeated ¢ — 1 times. Their product is

(PY = ((P)?)? = (-=1)"*% mod p,

by the Corollary to Wilson’s Theorem.
The y-components are 1,2,...,q — 1, repeated P times. By Wilson’s
Theorem, their product is
(—1)” mod q.

Thus the product of the representatives is
(=1)P+12 mod p, (=1)” mod ).

We could equally well choose representatives by taking the whole of
(Z/p)* and the first half of (Z/q)*. The product of these representatives
would be

((=1)? mod p, (—=1)7@*V) mod ¢).

However, what we need is a third way of choosing representatives, by
choosing the first half of (Z/pqg)*. By this we mean the pairs (n mod
p, n mod q), where n runs through the numbers 1, ..., (pg — 1)/2 not divis-
ible by p or ¢, ie the set of numbers A\ B, where

A={1,2,....p—1,p+1,ps,....2p—1,...,Qp+1,...,Qp+ P},

while B denotes the numbers in this set divisible by ¢, ie

B ={q,2q,...,Pq}.

Again, we compute the product (X mod p, Y mod ¢q) of these represen-
tatives. The first component X mod p is

(p—1H9-Pl/g" - Pl = ((p—1))?/¢" = (=1)?/¢" mod p.

But by Eisenstein’s criterion,
¢ = (ﬂ) mod p.
p

X =(-1)? (]%) mod p.

Similarly, the second component ¥ mod ¢ is

Y = (—1)F (g) mod g.

Comparing the products of the two choices of representatives,

Thus

(1P mod b, (11 mod o) = (-2 (L) mod ». (—117 (2 mod o).
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In exercises 6-15, determine if the given congruence has a solution,

and if it does find the smallest solution = > 0.
** 6. 22 = 10 mod 36
¥* 7 224+ 12=0mod 75
RE S 22 = 8 mod 2009
k9 2?2 = 56 mod 2317
#4510, 22 + 22+ 17 = 0 mod 35
K], 22 + 32+ 1=0mod 13
** 12, 2% = —1 mod 105
*¥% 13, 27 = 3 mod 17
¥ 14, 2342 =0mod 27
4% 15, 2% +3x + 1 = 0 mod 25

ARk 16. If n > 0 is an odd number, and n = p;...p,, we define the Jacobi

() =G ()

Show that if m,n > 0 are both odd then

(m)(n)_ —lifm=n=—-1mod4,
n m/) |1 otherwise .

symbol (2) by
n
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2009
2317

Is there a power 7" which ends with the digits 0000117 If so, what is
the smallest such n?
Is there a power of 2009 which ends with the digits 23177

Is there a power of 2319 which ends with the digits 20097

Determine (

procity.

p

3
) for an odd prime p without using Quadratic Reci-
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11.1 Gaussian Numbers

Definition 11.1. A gaussian number is a number of the form
z=x+1y (zr,y€Q).

If x,y € Z we say that z is a gaussian integer.

Proposition 11.1. The gaussian numbers form a field.
The gaussian integers form a commutative ring.

Proof. The only part that is not, perhaps, obvious is that the inverse of a
gaussian number z = x + iy is a gaussian number. In fact

11

;_x—i—iy

B T —1y
 (z+iy)(z —iy)
_r oy
T2ty P2+

]

We denote the gaussian numbers by Q(7), and the gaussian integers by
Z[i] or I'. (We will be mainly interested in this ring.)

11.2 Conjugates and norms
Definition 11.2. The conjugate of the gaussian number
z=x+1y € Q(»7)
18
zZ=x—1y.
Proposition 11.2. The map

is an automorphism of Q(i). In fact it is the only automorphism apart from
the trivial map z — z.

Proof. 1t is evident that z — Z preserves addition. To see that it preserves
multiplication, note that

(x +iy)(u + i) = (zu — yv) + i(xv + yu) — (zu — yv) — i(zv + yu),
while
(x —iy)(u — ) = (xu — yv) — i(zv + yu).

Suppose 6 is an automorphism of Q(7). By definition,

Hence
On)=1+---+1=n

for n € N. It follows easily that 8(n) = n for n € Z, and that if ¢ = n/d € Q
then



Nizw) = (zw)(zw)
= zZwzZw
= (22)(ww)

= NN (w).

11.3 Units
Recall that an element € of a ring A is said to be a unit if it is invertible, ie
if there exists an element 1 € A such that

en =1=ne.

The units in A form a group A*.
Evidently Z* = {£1}.

Proposition 11.4. The units in [ are: +1,+1
Proof. Evidently +1, £¢ are units.
Lemma 11.1. Ife € T then

€ is a unit <= N(e) = 1.
Proof. Suppose € is a unit, say

en = 1.
Then
en=1 = N(eN(n) =N(1) =1
= N(e) =N(n) =1.

O
Suppose € = m +in € ' is a unit. Then
N(e)=m?+n*=1.
Evidently the only solutions to this are
(m,n) = (£1,0) or (0,£1),
giving £1, 4. O

11.4 Division in [

Proposition 11.5. Suppose z,w € ', with w # 0. Then we can find q,7 € T’

such that
Z=qw -+,
with
N(r) < N(w).
Proof. Suppose
z
w

where z,y € Q.
Let m,n € Z be the nearest integers to z,y, respectively. Then

|:1c—m|<l |y—n|<1.
-2 -2
Set
q=m-+n.

Then
z

E—q:(x—m)—i-i(y—n).



uz +vw = 0.

Proof. We follow the Euclidean Algorithm as in Z, except that we use N (z)
in place of |n.
We start by dividing 2z by w:

z=qow+re, N(ro) <N(w).
If r = 0, we are done. Otherwise we divide w by ry:
w=qro+ry, N(r)<N(r).
If r1 =0, we are done. Otherwise we continue in this way. Since
N(w) > N(rog) > N(ry) >+,
and the norms are all positive integers, the algorithm must end, say

Ty = qiri—1, Tit1 = 0.

Setting
6 =Ty,
we see successively that
5 | ri—1,Ti—2,...,T0, W, 2.
Conversely, if 0’ | z,w then
!/
0| z,w,rg, 1, .. T = 0.

The last part of the Proposition follows as in the classic Euclidean Algo-
rithm; we see successively that 1,79, ...,7; = 0 are each expressible as linear
combinations of z,w with coefficients in I. O

11.6 Unique factorisation

If A is an integral domain, we say that a € A is a prime element if
a = bc = b is a unit, or c is a unit.
(We often just say “a is prime” if that cannot cause confusion.) We say that

two prime elementsw, 7’ are equivalent, and we write m ~ «’, if

7T/:€7T

for some unit e.

Definition 11.4. We say that an integral domain A is a Unique Factori-
sation Domain (UFD) if each non-zero element a € A is expressible in the
form

a = €pr---Pr;

where € is a unit, and py,...,p, are prime elements, and if moreover this
expression is unique up to order and multiplication by units, ie if

17 /
a=c¢€p]...p,

then r = s, and after re-ordering if necessary,
/ .
b; ~ Di-

If » > 1 we could of course combine e with one of the prime elements,
and write



Multiplying by w,
uTw + vZw = w.

Since 7 divides both terms on the left,
| w.
m

Now the proof is as before. Again, we argue by induction on N (z).
Suppose

/

Z=¢€p1 - pr=¢€p...P,
Then

m |

for some i. Hence
T ~ T

Now we can divide both sides by 7, and apply the inductive hypothesis. [J

Definition 11.5. If A is a unique factorisation domain we use the term
prime for a prime element, with the understanding that equivalent prime
elements define the same prime.

More precisely perhaps, a prime is a set {er : € € A*} of equivalent prime
elements.

11.7 (Gaussian primes

Having established unique factorisation in I', we must identify the primes.
Proposition 11.7. Fach prime © in I' diwides just one rational prime p.

Proof. Let us factorise N(7) in N:

On factorising both sides in I', it follows that

ﬂ-’pi

for some 1.
Now suppose 7 divides two primes p,q. Since p,q are coprime, we can
find u,v € Z such that
up +vqg = 1.

But now
T|pg = 7|1,

which is absurd. O
Proposition 11.8. Fach rational prime p splits into at most 2 primes in I.

Proof. Suppose
p=Tr T

Then
N(p) =p* = N(m)---N(m).

Since N (7;) > 1, it follows that

Proposition 11.9. If the rational prime p splits in I, say



But this is impossible, since
a’> =0 or 1 mod 4.

]

Proposition 11.11. If p = 1 mod 4 (where p is a rational prime) then p
splits in I' into two distinct but conjugate primes:

p=TT.

Proof. This is more subtle. We know that

Thus there exists an r such that

r? = —1 mod p,
where we may suppose that 0 < r < p. Then

2 4+1=0mod p
ie

plr?+1=(r+i)(r—1).
If p does not split in I" then
plr+iorpl|r—i.

But either implies that

pll
which is absurd.
Thus
p=mo,
where 7, ¢ are primes. But then
N(r) =n7w =p,
ie p is the product of two conjugate primes in I'.
Finally,
T b T.
For

T=er = p=N(r)=n7=enr’.

But if # = m + in this implies that

2 —n? 4 2imn).

m?* 4+ n® = e(m
The coefficient of ¢ on the right must vanish. If e = 41 this gives mn = 0,
which is absurd. If e = +i it gives

2

m?*—n?>=0 = m=4n = p=2m?

— p=2

The rational prime 2 has a special property in I'.

Proposition 11.12. The rational prime 2 ramifies in I, ie it splits into 2

Y



and suppose p | n, where p = 3 mod 4. Then
plx+iyorp|z—iy.

In either case
plxandp|y.

But p? | n and we can divide the equation by p*:

n/p® = (z/p)* + (y/p)*.

But now the result for n follows from that for n/p*.
Now suppose that n has this form, say

7‘2 S
n=2pf" - pt qlfl...qgf,

where py,...,p, are primes = 1 mod 4 and ¢y, ..., qs are primes = 3 mod 4.
Each rational prime p; splits into conjugate primes, say
b = ;.
Let
0=m+in=(1+)n"-- -7rf7'q{1 . --qfs.
Then
N(9) =m* +n?

=N+ )N+ D)N(m)™ - N(m) N ()™ - N(go)"
— QGP? . er 2f1 2fs

gyt s
=n.
[
Example: Since
2317 =7-331,
7 occurs just once in 2317. So 2317 is not the sum of two squares.
But
2009 =7-7-41.
Here 7 occurs twice, while 41 = 1 mod 4. Hence 2009 is the sum of two

squares.
Our argument shows that if

2009 = m? + n?
then
7| m,n.
If we set
m = Ta, n ="Tb,
then
41 = a® + b°.

Now it is easy to see that a,b = 5,7 (if we restrict to positive solutions), ie

2009 = 352 + 40°.

The argument also gives the number of ways of expressing a number as
the sum of two squares.
Proposition 11.14. Suppose

.2 2f,
n=2p - plrgift g,

where py,...,p, are primes =1 mod 4 and qi, . ..,qs are primes = 3 mod 4.
Then n can be expressed as
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3+ 5t

S5+ 3

234+ 1T

11 4 23
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In exercises 11-15, either express the given number as a sum of two
squares, or else show that this is not possibles.

233
317
613
1009
2010

Find a formula expressing
($2+y2+22+t2)(X2—|—Y2—|—ZZ+T2)

as a sum of 4 squares.
Show that every prime p can be expressed as a sum of 4 squares.

Deduce from the last 2 exercises that every n € N can be expressed
as a sum of 4 squares.

Show that if n = 7 mod 8 then n cannot be expressed as a sum of 3
squares.

Show that if n = 4°(8m + 7) then n cannot be expressed as a sum of
3 squares.



skokokok 25.

Show that if the prime p = m? + n? and p = £1 mod 10 then
5| xy.

Find the smallest n € N such that n,n + 1,n + 2 are each a sum of 2
squares, but none is a perfect square.

Show that there are arbitrarily long gaps between successive integers
expressible as a sum of 2 squares.



integers

12.1 Algebraic numbers

Definition 12.1. A number a € C s said to be algebraic if it satisfies a
polynomial equation

fx)y=2"+aa" '+ +a,=0
with rational coefficients a; € Q.

For example, v/2 and i/2 are algebraic.

A complex number is said to be transcendental if it is not algebraic. Both
e and 7 are transcendental. It is in general extremely difficult to prove a
number transcendental, and there are many open problems in this area, eg
it is not known if 7€ is transcendental.

Theorem 12.1. The algebraic numbers form a field Q C C.

Proof. 1f « satisfies the equation f(x) = 0 then —« satisfies f(—z) = 0, while
1/ satisfies 2" f(1/2) = 0 (where n is the degree of f(z)). It follows that
—a and 1/« are both algebraic. Thus it is sufficient to show that if «, 3 are
algebraic then so are a + 3, af3.

Lemma 12.1. Suppose V C C is a finite-dimensional vector space over Q,
with V 2 0; and suppose x € C. If

2V CV

then x € Q.

Proof. Let ey, ..., e, be a basis for V. Suppose

xrey = apre; + - a1ptn

Tey = Ag1€1 + - - A2pCy

Ty = Ap1€C1 + ** * Apnln-

Then
det(zl — A) =0,
where
app @iz -0 Qin
A Q21 Q2 -+ Q2
an1 Qp2 - App
This is a polynomial equation with coefficients in Q. Hence = € Q. m

Consider the vector space
V=B :0<i<m, 0<j<n)
over Q spanned by the mn elements o/3’. Evidently
oV cV, pvcV.

Thus
(a+B)VCV, (af)V CV.

- A 4 oY



Lemma 12.2. Suppose S C C is a finitely-generated abelian group, with
S # 0; and suppose x € C. If
xS CS

then x € 7.

Proof. Let sq,...,s, generate S. Suppose

r81 = a1181 + - A1pSn

TSy = 9181 + ++* A9pSn

TSy = Ap1S1 + ** * ApnSn-

Then
det(zl — A) = 0.

This is a monic equation with coefficients in Z. Hence z € Z. O]
Consider the abelian group
S={a'p:0<i<m, 0<j<n)

generated by the mn elements o37. Evidently

aSCS, S cs.
Thus
(a+pB)SCS, (apf)S CS.
Hence o + 8 and af are algebraic integers. m

Proposition 12.1. A rational number ¢ € Q is an algebraic integer if and
only if it is a rational integer:

ZNnQ =7

Proof. Suppose ¢ = m/n, where ged(m,n) = 1; and suppose c¢ satisfies the
equation
't ar o bag=0 (a; €7).

Then
m? +amitn+ - 4 agn? = 0.

Since n divides every term after the first, it follows that n | m?. But that is
incompatible with ged(m,n) = 1, unless n = 1, ie ¢ € Z. ]
12.3 Number fields and number rings
Suppose F' C C is a field. Then 1 € F', by definition, and so

QcFcc.

We can consider F' as a vector space over Q.

Definition 12.3. An algebraic number field (or simply number field is a
subfield F' C C which is a finite-dimensional vector space over Q. The degree
of F' is the dimension of this vector space:

deg F' = dimg F.
Proposition 12.2. The elements of a number field F' are algebraic numbers:

Qc FcQ.



is a gaussian number. We have to show that z is an algebraic integer if and
only if x,y € Z. ) B )
If m,n € Z then m + in € 7Z, since m,n,i € Z and Z is a ring.
Conversely, suppose B
z=z+1y € Z.
Then
Z=x—1wy el
since z and Z satisfy the same polynomials over Q. Hence

24+2=20€ZNQ=2.

Similarly )
—iz=y—ix €L = 2y €.
Thus ,
m—+n
z =
2 )
with m,n € Z.
But now
N(Z)=22€ZNQ=272,
ie
24yt = m21n2 Z.

ie
m? +n? =0 mod 4.
But m?,n?> =0 or 1 mod 4. So

m?*+n*=0mod 4 = 2|m,n
== zcl.

Ezample: /2 is an algebraic integer, since it satisfies the equation
z*—2=0.
But v/2/2 is not an algebraic integer. For if it were,
(V2/2)* =1/2

would be an algbraic integer (since Z is a ring), which we have just seen is
not so.

Algebraic number theory is the study of number rings. The first question
one might ask is whether a given number ring is a Unique Factorisation
Domain.

We have seen that the number rings Z and I' are. But in general number
rings are not UFDs.

The foundation of algebraic number theory was Dedekind’s amazing dis-
covery that unique factorisation could be recovered if one added what Dedekind
called ‘ideal numbers’, and what are today called ‘ideals’.

However, we are not going into that theory. We shall only be looking at
a small number of quadratic number rings which are UFDs.

12.4 Integral closure

Recall that any integral domain A can be extended to its field of fractions,
which we shall denote by Q(A), since we follows exactly the same process as
in creating the field of rational numbers QQ from the ring of integers Z. We
define Q(A) to be the quotient set X/E. where X is the set of pairs (n. d),
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number rings

12.1 Quadratic number fields

Definition 12.1. A quadratic number field is a number field of degree 2.

The integer d € Z is said to be square-free if it has no square factor, ie
a’|d = a=+l.
Thus the square-free integers are
+1,4£2,£3,£5,....
Proposition 12.1. Suppose d # 1 is square-free. Then the numbers
r+yvVd (r,y€Q)

form a quadratic number field Q(\/c_l
Moreover, every quadratic number field is of this form; and different
square-free integers d,d # 1 give rise to different quadratic number fields.

Proof. Recall the classic proof that v/d is irrational;

\/E:E — n’d =m?,
n

and if any prime factor p | d divides the left hand side to an odd power, and
the right to an even power.

It is trivial to see that the numbers = + yv/d form a commutative ring,
while

1 B x—y\/a
v+yvd  (z—yVd)(x+ yVd)

2 — dy?’

where 22 — dy? # 0 since Vd ¢ Q.

It follows that these numbers form a field; and the degree of the field is 2
since 1, v/d form a basis for the vector space.

Conversely, suppose F' is a quadratic number field. Let 1,6 be a basis
for the vector space. Then 1,0,6? are linearly independent, ie # satisfies a
quadratic equation

al* +b0 +c=0 (a,b,ccQ).
Since F' is of degree 2, a # 0, and we can take a = 1. Thus

 —b+VD
-2

6

with D = b — 4ec.
Now
D = ad?d,

where d is a square-free integer (with a € Q). It follows easily that

F =Q(Vd).
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If d < 0 then this coincides with the complex conjugate; but if d > 0 then
both z and Z are real; and

2=z <= z€Q.
Proposition 12.2. The map

s an automorphism on(\/El). In fact it is the only such automorphism apart
from the trivial map z — z.

The proof is identical to that we gave for gaussian numbers.
Definition 12.3. The norm of z = x + yvd € Q(\/d) is
N(z) = 22 = 2* — dy*.
Proposition 12.3. 1. N(z) € Q;
2.N(2)=0 < 2=0;
3. N(zw) = N(2)N(w);
4. If a € Q then N(a) = a?;

Again, the proof is identical to that we gave for the corresponding result
for gaussian numbers.

12.3 Quadratic number rings
We want to determine the number ring
A=Q(Wd)NZ

associated to the number field Q(v/d), ie we want to find which numbers
x + yV/d are algebraic integers.

Theorem 12.1. Suppose
2=z +yVde QW)
Then

1. If d # 1 mod 4 B
z €l — z:m—irn\/;l,

where m,n € 7.

2. If d =1 mod 4 then

m~|—n\/c_i

zGZ(z)z: 5

where m,n € Z and m = n mod 2.

Proof. If B
z=2x +y\/3 ez

then B
f=zeyJdel

since z and Z satisfy the same polynomials over Q. Hence

s T - Ry o N o 4



the other hand it m,n are both odd then
m? =n? =1 mod 4.

It follows that
d =1 mod 4.

In other words, if d # 1 mod 4 then m,n are even, and so
z=a+ b\/&,

with a,b € Z.
On the other hand, if d = 1 mod 4 then m,n are both even or both odd.
It only remains to show that if d =1 mod 4 and m,n are both odd then

m + n\/c_l =
2= ———§€Z,
2
It is sufficient to show that
1 _
g_1tVd 5
2
since
z=(a+bVd)+6,
where
a=(m—-1)/2,b=(n—-1)/2 € Z.
But

(0 —1/2)* =d/4,
le

0 — 0+ (1 —d)/4.
But (1 —d)/4 € Z if d =1 mod 4. Hence

0cZ.

12.4 Units I: Imaginary quadratic fields

Suppose F' is a number field, with associated number ring A (the algebraic
integers in F'). By ‘abuse of language’, as the French say, we shall speak of
the units of F' when we are really referring to the units in A.

Proposition 12.4. Suppose z € Q(\/E) 1s an algebraic integer. Then
zis a unit < N(z) = £1.
Proof. Suppose z is a unit, say
zw =1,
where w is also an integer. Then
N(zw) = NN (w) = N(1) = 1% = 1.
Since N (z), N (w) € Z it follows that

N(2) = N(w) = +1.



11 a = 1 1modad 4 tnen
m—l—n\/a
2 )

where m,n € Z with m = n mod 2. In this case,

€ =

2—d2
N(@z%zl,

ie
m? — dn? = 4.
If d < —7 then this implies that m = £1, n = 0. This only leaves the case

d = —3, where

m? + 3n? = 4.
This has 6 solutions: m = £2, n = 0, giving € = +1; and m = £1, n = +1,
giving € = fw, £w?. O

Units in real quadratic fields (where d > 0) have a very different character,
requiring a completely new idea from the theory of diophantine approxima-
tion; we leave this to another Chapter.
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Show that the real number ring Z[v/2] is a Unique Factorisation Do-
main, and determine the primes in this ring.

In exercises 7-10, determine the prime factorisation of the given num-
ber in the ring Z[v/2].

2

7

2+2

3+V3

. Show that the ring Z[v/5] is not a Unique Factorisation Domain.

[Note: this is not the number ring associated to the field Q(v/5).]

Show that the imaginary number ring Z[w] (where w® = 1, w # 1)
is a Unique Factorisation Domain, and determine the primes in this
ring.

In exercises 13-15, determine the prime factorisation of the given num-
ber in the ring Z[w].

1—w
24w
2—w

Show that the imaginary number ring Z[v/—5| is not a Unique Fac-
torisation Domain, by considering the factorisations of the number 6
in this ring, or in any other way.

Determine if the imaginary number ring Z[/—6]| is a Unique Factori-
sation Domain.

Determine if the imaginary number ring Z[/—7] is a Unique Factori-
sation Domain.

. Show that the real number ring Z[v/6] is a Unique Factorisation Do-

main.

. Show that the real number ring Z[v/7] is a Unique Factorisation Do-

main.
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14.1 Kronecker’s Theorem

Diophantine approrimation concerns the approximation of real numbers by
rationals. Kronecker’s Theorem is a major result in this subject, and a very
nice application of the Pigeon Hole Principle.

Theorem 14.1. Suppose 0 € R; and suppose N € N, N # 0. Then there
exists m,n € Z with 0 <n < N such that

1
6 — < —.
nd —m| <

Proof. If x € R we write {«} for the fractional part of z, so that
x = [z] + {x}.
Consider then N + 1 fractional parts
0,{0},{20},... {N6};
and consider the partition of [0,1) into N equal parts;
[0,1/N),[1/N,2/N),...,[(N —1)/N,1).

By the pigeon-hole principal, two of the fractional parts must lie in the
same partition, say

{16}, {50} € [t/N, (t +1)/N],
where 0 < i < j < N. Setting
(0] = r, [j0] = s,
we can write this as

i —r, j0—s€[t/N,(t+1)/N).

Hence
(70 —s) = (0 —r)[ < 1/N,
le
|nf —m| < 1/N,
wheren =3 —1¢, m=r—swith0 <n < N. m

Corollary 14.1. If 0 € R is irrational then there are an infinity of rational
numbers m/n such that

m 1
0——| < —.
| n | n?
Proof. By the Theorem,

m
0 ——| <
n

1
nN
1
n



which in turn gives

where

zzar—l—ay\/E.

Thus z is a unit in the quadratic number field @(\/@ :

Let us denote the group of units in this number field by U. Every unit
¢ € U is not necessarily of this form. Firstly the coefficient of v/d must be
divisible by a; and secondly, if d = 1 mod 4 then we are omitting the units

of the form (m + nvd')/2.
But it is not difficult to see that these units form a subgroup U’ C U of
finite index in U. It follows that U’ is infinite if and only if U is infinite.
However, we shall not pursue this line of enquiry, since it is just as easy
to work with these numbers in the form

z::p—I—y\/E.
In particular, if
z:m+n\/a, w= M+ NVd

then
2w = (mM + dnN) + (mN + nM)Vd;

and on taking norms (ie multiplying each side by its conjugate),
(m* — dn®)(M? — dN?) = (mM + dnN)* — d(mN +nM)?
Similarly,

z_ (m +nVd)(M — NVd)

w M? — dN?
(mM + dnN) — (mN — nM)/d
B M? — dN? '
On taking norms,
MZ_gn: o w A

where
B mM +dnN mN —nM

M? —dN? "’ M? —dN?

Now to the proof.

Proof. By the Corollary to Kronecker’s Theorem there exist an infinity of
m,n € 7 such that

m 1
Vd-—] < .
n n
Since

V4= =2V (Vi- =)

it follows that m

Hence
m2 m m
d— —|=|Vd——| |Vd+ —|
n n mn
2d+1
n
Thus

Im? — dn®| < 2Vd + 1.



mM —dnN =m? —dn®> =t mod T
=0modT
(since t = £T'); and similarly

mN —nM =mn —nmmod T
=0modT.

Thus
T | mM —dnN, mN —nM

and so
u,v € 7.

14.3 Units 1I: Real quadratic fields

Theorem 14.3. Suppose d > 1 is square-free. Then there exists a unique
unit € > 1 in Q(v/d) such that the units in this field are

+e"
forn € Z.
Proof. We know that the equation
2 —dy? =1

has an infinity of solutions. In particular it has a solution (z,y) # (£1,0).
Let
n=a+yvd

Then

so 7 is a unit # +£1.
We may suppose that n > 1; for of the 4 units &n, n~! just one appears
in each of the intervals (—oo, —1), (—1,0), (0,1), (1, 00).

Lemma 14.1. There are only a finite number of units in (1,C), for any
C>1.

Proof. Suppose

d
e_ﬁ%?CEQ@)
is a unit. Then
e= VO nvd =
2
Thus
L emonvd
< 5 <
Hence
0O<m<C+1.
Since
m? —dn?® = +4

it follows that
n*<m®+4<(C+1)°+4.
O
We have seen that there is a unit n > 1. Since there are only a finite

number of units in (1, 7] there is a least such unit e.
Now suppose > 1 is a unit. Since € > 1,

N Ao as 1 — 00



15.1 The field Q(v/5)
Recall that the quadratic field
Q(VE) ={z+yv5:z,yeQ}
Recall too that the conjugate and norm of
zZ=x+ y\/g

are
Z=x—yV5, N(2) =22 = 2® — 5y,

We will be particularly interested in one element of this field.

Definition 15.1. The golden ratio is the number

¢:1+2\/5.

The Greek letter ¢ (phi) is used for this number after the ancient Greek
sculptor Phidias, who is said to have used the ratio in his work.

Leonardo da Vinci explicitly used ¢ in analysing the human figure.

Evidently

QV5) = Q(e),
ie each element of the field can be written
z=z+yo (z,y€Q)

The following results are immediate:
Proposition 15.1. 1. ¢ = %5;

2. ¢p+d=1, ¢pp=—1;

3. N(x+y¢) =2 +xy — v

4. ¢, ¢ are the roots of the equation

2—r—1=0.

15.2 The number ring Z[¢]

As we saw in the last Chapter, since 5 = 1 mod 4 the associated number ring

consists of the numbers

m + n\/g

5
where m = n mod 2, ie m,n are both even or both odd. And we saw that
this is equivalent to

Proposition 15.2. The number ring associated to the quadratic field Q(\/g)
18
Zlg] = {m+n¢ :m,n € Z}.



Then
z

E—q:(x—m)qt(y—n)(b.

Hence
z

N(E—CJ)=(x—m>2+(w—m)(y—n)—(y—n)Q-

It follows that

z 1
<N -9 <
and so
z
N(=—-q)| <5 <1,
ie

N (z = qu)| < [N (w)].
O

This allows us to apply the euclidean algorithm in Z[¢], and establish

Lemma 15.2. Any two numbers z,w € Z[¢p| have a greatest common divisor
0 such that
d|zw

and
8| z,w = &0

Also, 0 is uniquely defined up to multiplication by a unit.
Moreover, there exists u,v € Z[¢] such that

uz +vw = 9.

From this we deduce that irreducibles in Z[¢] are primes.

Lemma 15.3. If © € Z[@] is irreducible and z,w € Z[phi] then
T|zw = 7|z orm|w.

Now Euclid’s Lemma , and Unique Prime Factorisation, follow in the
familiar way. ]

15.4 The units in Z[¢]

Theorem 15.2. The units in Z[¢] are the numbers
+o" (n€Z).

Proof. We saw in the last Chapter that any real quadratic field contains units
# 41, and that the units form the group

{£e" :n € Z},

where € is the smallest unit > 1.

Thus the theorem will follow if we establish that ¢ is the smallest unit
> 1in Z[¢).

Suppose 1 € Z[¢] is a unit with

l<n=m+neo < ¢.
Then

N(n) =nn = +£1,



But

-14+¢<1.
Hence
m > 0,
and so
N> €.

15.5 The primes in Z|[¢)

Theorem 15.3. Suppose p € N is a rational prime.
1. If p=+1mod 5 then p splits into conjugate primes in Z[¢)|:
p = E7T.
2. If p=£2mod 5 then p remains prime in Z[@).

Proof. Suppose p splits, say

p=Tm
Then
N(p) = p* = N(m)N (')
Hence
N(m) =N(r") = £p
Suppose
™ =m + ne.
Then

N(7) =m? —mn —n? = £p,

and in either case

m? —mn —n? =0 mod p.

If p = 2 then m and n must both be even. (For if one or both of m,n are
odd then so is m? — mn — n%) Thus

2|,

which is impossible.
Now suppose p is odd, Multiplying by 4,

(2m —n)* — 5n* = 0 mod p.

But
n=0modp = m=0modp = p|m,

which is impossible. Hence n # 0 mod p, and so
r? = 5 mod p,

where
r = (2m —n)/n mod p.

(0

Thus



pln—vsorp|n+vs,

both of which imply that p | 1, which is absurd.
We conclude that

p=x1lmodb5 = p splits in Z[¢].
Finally we have seen in this case that if 7 | p then

N(m)=+p = p=£77.

15.6 Fibonacci numbers
Recall that the Fibonacci sequence consists of the numbers
0,1,1,2,3,5,8,13, ...
defined by the linear recurrence relation
Fon=Fo+ Fya,

with initial values
FO = O, F1 = 1

There is a standard way of solving a general linear recurrence relation
Ty = A1 Tp_1 + G2Lp_o + -+ + AqgTp_g-
Let the roots of the associated polynomial
p(t) =t — it — et ey

be Ai,..., Ag.
If these roots are distinct then the general solution of the recurrence
relation is

The coefficients C1, ..., Cy are determined by d ‘initial conditions’, eg by
specifying g, ..., T4 1.

If there are multiple roots, eg if A occurs e times then the term C'\™ must
be replaced by A"p(A), where p is a polynomial of degree e.

But these details need not concern us, since we are only interested in the
Fibonacci sequence, with associated polynomial

t?—t—1.
This has roots ¢, ¢. Accordingly,
F, = A¢™ + Bo".
Substituting for Fy =0, F; = 1, we get
A+B=0, Ap+ B¢ = 1.

Thus
B=—4, A(¢—6)=1

Since

1+\/5_1—\/5:\/g

b—¢= 2 2
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works for all primes.
Proposition 15.4. Suppose the prime p = 3 mod 4. Then
pP=2r—1

15 prime if and only if
»* = —1 mod P.

Proof. Suppose first that P is a prime.
Since p = 3 mod 4 and 2* = 1 mod 5,

2P =23 mod 5
= 3 mod 5.
Hence
P=2P—-1=2mod 5.
Now

2

1P P
= +2+\/5) mod P,

)

since P divides all the binomial coefficients except the first and last. Thus

1 5(P71)/2 5
of = + 5 \/—modP,

since 2 = 2 mod P by Fermat’s Little Theorem.

But .
P )

by Euler’s criterion. Hence by Gauss’ Quadratic Reciprocity Law,
5y (P
r) \5

since P = 2 mod 5. Thus

and so

But

It follows that
¢t = —1mod P,
1e

»* = —1 mod P.



and so, by the argument above, the order of ¢ mod () 1s 2.
We want to apply Fermat’s Little Theorem, but we need to be careful
since we are working in Z[¢] rather than Z.

Lemma 15.4 (Fermat’s Little Theorem, extended). If the rational prime Q
does not split in Z[¢| then

291 = 1 mod Q

for all z € Z[¢] with z # 0 mod Q.

Proof. The quotient-ring A = Z[¢] mod @ is a field, by exactly the same
argument that Z mod p is a field if p is a prime. For if z € A, z #£ 0 then
the map

wzw:A— A

is injective, and so surjective (since A is finite). Hence there is an element 2’
such that zz' = 1, ie z is invertible in A.
Also, A contains just Q? elements, represented by

m—+nv5 (0<m,n<Q).

Thus the group
A*=A\O

has order Q* — 1, and the result follows from Lagrange’s Theorem. O
In particular, it follows from this Lemma that
¢ =1mod Q,

ie the order of ¢ mod @ divides Q* — 1. But we know that the order of
¢ mod @ is 2P!. Hence

Q- 1=(Q-1)(Q+1).

But
ged(Q —1,Q+ 1) = 2.
It follows that either

20Q—1,2|Q+1or2||Q+1,2°|Q—1.

Since () < P = 2P — 1, the only possibility is

21Q+1,
ie Q = P, and so P is prime. m
This result can be expressed in a different form, more suitable for com-
putation.
Note that

»* = —1 mod P
can be re-written as

(p—1)

¢2p71 + ¢* = 0 mod P.

Let _ ,
ti=¢" +¢*
Then

92— (i+1)

2=¢" +2+9¢
=ty +2,



16.1 The field Q(v/3)

We have
Q(W3)={z+yV3:z,ycQ}.

The conjugate and norm of
z=x+yV3

are

Z=1—yV3, N(2) = 22 = 2> — 3%

16.2 The ring Z[V/3]

Since 3 #Z 1 mod 4,

Z(Q(V3) =Q(V3)NZ = {m+nV3:m,n € Z} = Z[V3).

16.3 The units in Z[/3]

Evidently

e:2+\/§

is a unit, since

Ne)=22-3-1>=1,
Theorem 16.1. The units in Z[¢] are the numbers
+e" (n€Z),

where

e:2+\/§.

Proof. We have to show that e is the smallest unit > 1.
Suppose 1 = m + nv/3 is a unit satisfying

l<n<e
Since N (n) = nij = +1,

T=m-—nV3==2n"te(-1,1).

Hence
n—7=2nV3e(0,1+e),
ie
0<n<(3+V3)/2vV3<2.
Thus
n=1
But now

Nmn)=+1 = m?> -3 =41

S B D 1
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[z —ml |y —m| <

Then we set

g =m+nv3,
so that ;
and - quw
NE=T) = (o= m)? = 3(y — n)?
Now 5 ]
Z— quw
_2 < < =
4_N( w )_4
In particular,
zZ— quw
<1
NEEL) <,

N (z = qu)| < IN(w)].

This allows the Euclidean Algorithm to be used in Z[v/3], and as a con-
sequence Eulid’s Lemma holds, and unique factorisation follows. O

16.5 The primes in Z[v/3]

Theorem 16.3. Suppose p € N is a rational prime. Then
1. If p=2 or 3 then p ramifies in Z[\/3];
2. If p = £1 mod 12 then p splits into conjugate primes in Z[\/3],
p = 7T,
3. If p = £5 mod 12 then p remains prime in Z[\/3].
Proof. To see that 2 ramifies, note that
(1+/3)% = 2,

where epsilon = 2 + V/3 is a unit. It is evident that 3 = \/32 ramifies.
Suppose p # 2, 3.
If p splits, say

then
Hence

Thus if 7 = m + nv/3 then
m? — 3n® = +p.

In particular,
m? — 3n? = 0 mod p.

Now
m=0Nmoad n — 229 — 0N med » — |



&/

in which case we can find a such that
a® = 3 mod p,
ie
pl(a®=3)=(a—V3)(a+V3).
If now p does not split then this implies that

pla—+V3orp|a++3.

But both these imply that p | 1, which is absurd. O

16.6 The Lucas-Lehmer test for Mersenne pri-
mality

Theorem 16.4. If p is prime then

P=2_-1
1s prime if and only if
2 = —1mod P,
where
€=2++3.

Proof. Suppose P is prime. Then

since

()

2 =92 mod P

for r #£ 0, P.
But

by Fermat’s Little Theorem, while

by Euler’s criterion. Thus

=24 <%)\/§

Now
2’ =(-1’=—-1mod 3 = P =1mod 3,

while
4|2P = P=—1mod4.

So by Gauss’ Reciprocity,



but nNow
(1-V3)(1+V3) = -2
and so
1—vV3=—-2(14+3)""
Thus

(1+v3)P*' = —2mod P,
le
(1++3)¥ = —2mod P,
ie
(2¢)* = —2 mod P.

To deal with the powers of 2, note that by Euler’s criterion

2(P-1)/2 — (%) mod P.

2\ J1if P=41modS§,
P) ) -1if P=41modS.

P=2P—1=—1modS.

Recall that

In this case,

Thus

2(P=1)/2 = 1 mod P,
and so

2(P+1)/2 = 9 mod P,
ie

22" =2 mod P.
So our previous result simplifies to
2= —1mod P.

This was on the assumption that P is prime. Suppose now that P is not
prime, but that the above result holds.
Then P has a prime factor ) < V/P. Also

2 = —1mod Q.

It follows that the order of € mod @ is 27.
But consider the quotient-ring

A=ZIV3)/(Q).
This ring contains just Q? elements, represented by

m4+nvs5 (0<m,n<Q).



4 11C11
it1 —(i41)
st=€e"" 124 ¢€
= Si+1 + 2,
ie
.2
Si+1 = S; — 2.

Since
So=€c+el=4

it follows that s; € N for all ¢, with the sequence starting 4, 14,194, . ...
Now we can re-state our result.

Corollary 16.1. Let the integer sequence s; be defined recursively by
— o2 —
Si+1 = S§; — 2, So = 4.

Then
P =2"—1isprime <= P|sy_o.



17.1 Finite continued fractions

Definition 17.1. A finite continued fraction is an expression of the form

.. _I_ J—
Qn
where a; € Z with ay,...,a, > 1. We denote this fraction by

[ag, a,. .., a,].

Example: The continued fraction

2,1,3,2] =2+

represents the rational number

1 7
2—|——2:2+§
1+?
25
9

Conversely, suppose we start with a rational number, say

57
33
To convert this to a continued fraction:
57 14 14
33 33"
Now invert the remainder:
33 5
S S
14 + 14
Again:
Mooy
5 5’
and again:
5 1
14 =
4 + 4’
and finally:
4
—y
1
Thus
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We start with the continued fraction
Qo
[ao] = Qg = T’
setting
p=ag, 9= 17

Now suppose that we have defined p, ¢ for continued fractions of length
< n; and suppose that under this definition

. b
ay = lag,as,...,a,] = ?
Then
1
a=ap+ —
aq
/
= CLO+;]7
app’ + ¢
So we set

p=ap' +q, ¢=p
as the definition of p, g for a continued fraction of length n. We set this out
formally in

Definition 17.2. The ‘canonical representation’ of a continued fraction
lag, ar,azg, ... ,a,] ==

is defined by induction on n, setting
p=ap' +d, ¢=p,

where

[a17a2v"‘7an} - -

is the canonical representation for a continued fraction of length n — 1. The
induction 1s started by setting

[ag] = —.
Henceforth if we write
[CLOa a,ag, . .. 7an] =

then p, ¢ will refer to the canonical representation defined above.

17.3 Successive approximants

Definition 17.3. If

a = [ag, a1, ..., a,]
then we call
Di
lag,a,...,a;] ==
qi

the ith convergent or approximant to « (for 0 <i <mn).

Ezxample: Continuing the previous example, the successive approximants

to
=~
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Theorem 17.1. If
a = [ag, ay, ..., ay]

then

Pi = Q;Pi—1 + Pi—2,
Qi = a;qi—1 + qi—2,

fori=2,3,...,n.

Proof. We argue by induction on n.
The result follows by induction for ¢ # n, since the convergents involved
are — or can be regarded as — convergents to

[a0a Qy, ... 7an—1]7

covered by our inductive hypothesis.
It remains to prove the result for ¢ = n. In this case, by the inductive
definition of p, g,

Pn = QD1 + Gy,
Pn—1 = aOp;L—2 + Q;L—27
P2 = QoPh_3 + ¢)_s.

But now by our inductive hypothesis,

/ . / / / - / /
Prn—1 = GnPp_o + pn737 dn—1 = AnQy_o + qn737

since

/ —
an—l = Qn,

ie the (n — 1)th entry in ' is the nth entry in .
Hence

Pn = aopiz—l + Q;L—h
= ao(anPj_s + Pys) + (@nG_s + @n_3),
= an(A0Pr_3 + Gn_2) + (0P, _5 + ¢5_3),
= ApPp—1 + Pn—2;
with the second result
Gn = AnQn—1 + gn—2

following in exactly the same way. O]

We can regard this as a recursive definition of %, starting with

Po_ G0 pi_ 001

Y Y

qo0 1" ¢ ay
and defining
P2 Py P
Q27 QS’ CI4’

successively.
Actually, we can go back two futher steps.

Proposition 17.1. If we set
P—2 = 17 q—2 = 07
p-1=0, g1 =1,

then



— =1[1,2,2,1,4] =[1,2,2,1,3,1].
33 [7777] [7 ]

So there are at least 2 ways of expressing z as a continued fraction.

Proposition 17.3. A rational number x € Q has just two representations
as a continued fraction: one withm =0 orn > 1, a, > 1, and the other with
n >0 and a, = 1.

Proof. Tt is sufficient to show that x has just one representation of the first
kind. Suppose
Tr = [a0aa1a"'7am] = [b())blv"'?bn]v

We may assume that m < n.
We argue by induction on n. The result is trivial if m = n = 0.

Lemma 17.1. Ifn > 0 and a,, > 1 then
ap < [ag, a1, ag,...,a,] < ag+ 1.
Proof. We argue, as usual, by induction on n. This tells us that
[ai,ag, ... a,) > 1,

from which the result follows, since

lag, ai,az, ..., a,) = ap+ m.
O
It follows that
[z] = ag = by
Thus
1 1
T—ag = or oo o] = RO = a1, a9,...,an] = [b1,b2,...,b,],
from which the result follows by induction. O

We will take the first form for the continued fraction of a rational number
as standard, ie we shall assume that the last entry a,, > 1 unless the contrary
is stated.

17.5 A fundamental identity

Theorem 17.2. Successive convergents p;/q;, Div1/qi+1 to the continued frac-
tion [ag, a1, ..., a,| satisfy the identity

PiGi+1 — @iPi+1 = (—1)i+1~

Proof. We argue by induction on ¢, using the relations

Pi = a;Pi—1 + Pi—2,
G = a;i¢;—1 + gi—2.

Thus

Pidi+1 — ¢iDiv1 = Pi(@iv1¢;i + gi—1) = qi(ai1p; + pi1)
= Piqi—1 — §;Pi—1
= —(pz‘—1%' - Qi—lpz’)

= —(-1)

7/ aNg+1



It follows that p;2/git2 is closer than p;/q; to py1/qi+1. Hence

Di < Pi+2 < pi+1.
qi qi+2 qit+1

So the even convergents are increasing; and similarly the odd convergents are
decreasing.
Also, any even convergent is less than any odd convergent; for if ¢ is even
and j is odd then
bi P Py By
4G  Qitj-1 Givy G5
And since z is equal to the last convergent, it must be sandwiched between
the even and odd convergents. O

17.6 Infinite continued fractions

So far we have been considering continued fraction expansions of rational
numbers. But the concept extends to any real number o € R.
Suppose « is irrational. We set

ap = [a],
and let
1
o] = .
a — Qo
Then we define aq, as, . . ., successively, setting
ap = [041]7
1
Qg = s
a1 — ap
Qo = [Ofg],
1
Qa3 = 9
o — A9
and so on.
Proposition 17.5. Suppose
ag, 1, A9, -+ € Z with ay,as, -+ > 0.
Let
Di
[Gg,al, c. ,CLZ'] = —.
qi

Then the sequence of convergents converges:

Di .
= S xasi— oo.

ai

Proof. Tt follows from the finite case that the even convergents are increasing,
and the odd convergents are decreasing, with the former bounded by the
latter, and conversely:

Po_P2 Pa_ P P51

G G2 Q4 B g3 Q1
It follows that the even convergents must converge, to a say, and the odd
convergents must also converge, to 3 say.

But if ¢ is even,
Pi  Pit1 1
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a < B ifn is even,

a > B ifnis odd.

Proof. This follows easily from the fact that even convergents are increasing,
odd convergents decreasing. O]

Now let ag be the largest first entry among rational x < «; let a; be the
least second entry among those rationals with ag as first entry; let ay be the
largest third entry among those rationals with ag, a; as first two entries; and
so on. Then it is a simple exercise to show that

a = [ag, ay, az, dots].

(Note that if the a,, (with given aq,...,a,_1) at the (n+ 1)th stage were
unbounded then it would follow that « is rational, since

[ag, ..., an_1,2] = [ag, ..., an 1]

if v — 00.)

17.7 Diophantine approximation

Theorem 17.3. If p,/q, is a convergent to o = [ag, ay, as,...| then
n 1
o= < .
Qn Qn

Proof. Recall that « lies between successive convergents p,/qn, Pni1/qni1-
Hence
‘Oé . & < ‘pn-l-l N Iﬁ

qn Gn+1 an
1

qndn+1
1

q_2.

<

Remarks:

1. There is in fact inequality in the theorem except in the very special case
where « is rational, p,/q, is the last but one convergent, and a, 1 = 1;
for except in this case ¢, < @ni1-

2. Since
1 1 1

< b
qndn+1 Qn(anQn + Qn—l) a an%%
if a, > 1 then

o — 2o 1
& 24y
In particular, if « is irrational then there are an infinity of convergents
satisfying
1
o — Z—9| <3
¢ 2q

unless a,, = 1 for all n > N.

In this case



Solving for z,

An® — Dn
Gn—1Q — Pn—1
. o — pn/Qn

o — pn—l/qn—l

r=—

We want to ensure that z > 0. This will be the case if

(@ — 2% and (o — 2271
Gn qn—1
are of opposite sign, ie « lies between the two convergents.

At first this seems a matter of good or bad luck. But recall that there
are two ways of representing p/q as a continued fraction, one of even length
and one odd. (One has last entry a, > 1, and the other has last entry 1.)

We can at least ensure in this way that « lies on the same side of p,/q,
as Pn—1/qn-1, Since even convergents are < odd convergents; so if o > p/q
then we choose n to be even, while if @ < p/q we choose n to be odd.

This ensures that x > 0. Now we must show that z > 1; for then if

€r = [bo,bl,bg,...]
we have
a = [a07'"7a'nab07b17627"']7
and »
= =[ag,...,a,]
q
is a convergent to «, as required.
But now
Dn 1
|Oé - _‘ = 2
In — 2q,
and since

it follows that

Pn—1 Pn Pn—1 Pn
o= Bty B Poty P
Gn—1 Gn Gn—1 dn
S 1 1
T @nGn1 22
1 1
4 24
1
2¢2’
and so
’Oé - pn—l/Qn—1|

]

17.8 Quadratic surds and periodic continued
fractions

Recall that a quadratic surd is an irrational number of the form
a=x+ y\/g,

where .y € O. and d > 1 is square-free. In other words.



a = |ag,ay,. ..
satisfies the quadratic equation
F(x) = A2*+2Bx+C =0 (A,B,C € 7).
Let

ap = [an, Gpit, -]

We have to show that
Amin = Oy
for some m,n € N, m > 0.
We shall do this by showing that «,, satisfies a quadratic equation with
bounded coefficients.
Writing 6 for a, 1, for simplicity,
a = lag,...,a,,0
_ epn + Pn—1
0% + Gn—1

Thus
A(Opy, + pn_1)? + 2B(O0py + pu_1)(0¢, + gn-1) + C(0qs + gn1)* = 0,

1e

A'9* +2B'6 + C,
where
A/ = Api + 2Bann + quw
B/ = Apnpn—l + 2B(ann—l +pn—1Qn) + CQnQn—la
C' = Ap, 1+ 2Bp,_1¢n-1+ Cq._,.
Now

A'=@Fpn/q).

Since F(a) = 0 and p,,/qy is close to «, F(p,/qn) is small.

More precisely, since

a-Pry<
Q’Vl Qn

it follows by the Mean Value Theorem that

F(pn/Qn) = —(F(Oz) - F(pn/Qn))
= —F'(t)(a = pa/an),

where t € [o, a + p,/¢y].
Thus if we set
M= max |F'(t)]

tela—1,a+1]

then
M
and so

|A'| < M.

Similarly



Thus A’, B',C" are bounded for all n. We conclude that one (at least) of
these equations occurs infinitely often; and so one of the «,, occurs infinitely
often, ie « is periodic. O

Ezample: Let us determine the continued fraction for v/3. We have

V3=1+(V3-1),

1 341 31
V3 + =1+‘f

V3ie1l o2 2
=V3+1=2+(3-1),

1 V3-1

=1+

V3—1 2

;

Thus

V3 =172,

where we have overlined the periodic part.



*okk Q- \/Tl

kkk V3+1

2
K10, 7V3
*** 11. Suppose the quadratic surd

a = [ag,ay, .. .|
satisfies the equation
Az? 4+ 2Bz 4+ ¢ =0.

where A, B,C' € Z with ged(A, B,C) = 1. If the corresponding equa-
tion for
ap = [an, Gpy1,y -]
is
A,x® +2Byx + ¢, =0
show that
B? — AC = B2 - A,C,.

*#% 12. Find the first 5 convergents to .

**kx%%k 13. Show that
e=1[2,1,2,1,1,4,1,1,6,...].
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A.1 Sum of two squares

Theorem A.1. The positive integer n is expressible as a sum of two squares,
n=a+b (a,b€Z),

if and only if every prime p = 3 mod 4 divides n to an even power.

Proof.

Lemma A.1. If m,n are each expressible as the sum of two squares then so
18 Mn.

Proof. If
m=a*+b* n=2>+19*
then
mn = (ax + by)* + (ay — bx)*.
[

Remark: The formula can be derived from the norms of complex numbers,
taking
z=a-+1b, w=u1x+1y,

and using the fact that
2w = |2||w].

Lemma A.2. 2n is a sum of two squares if and only n is a sum of two
squares.

Proof. 1f
on =z +1°
then either x,y are both even, or both are odd. Thus x £+ y are both even,
and ) )
_[(rT+y r—y
= (5 - (%)
Conversely,

n=v*+y* = 2n=(v+9y)>*+ (x—y>

[]

Corollary A.1. Ifn = 2°m, where m s odd, that n is a sum of two squares
if and only if that is true of m.

Lemma A.3. Fvery prime p = 1 mod 4 is expressible as the sum of two
squares.

—1
Proof. Since <—) =1,
p

~1=r"modp = p|r*+1.
Let the smallest sum of two squares divisible by p be
pd = a® + b
If d =1 we are done. Suppose d > 1. Let ¢ be a prime diviisor of d. We can
find x,y coprime to ¢ such that
ar + by = 0 mod q.

(We can regard this as a linear equation over the field F, = Z/(p).) We may
assume that |z, |y| < q/2, so that 2 + y* < ¢*/2.
Nﬂ“l



This argument also shows that
a>+b*=0modp <= pla,b.
O

Corollary A.2. If the prime p = 3 mod 4 divides n = a® + b* then p divides
n to an even power.

Proof. p* | n since b | a,b. But now we can apply the same argument to

n/p* = (a/p)* + (b/p)*;

and repeating this as often as necessary we conclude that p divides n to an
even power. ]

]

A.2 Sum of three squares

Theorem A.2. The number n € N is expressible as the sum of three squares
if and only if it is not of the form

n=4°8m+T7).

The proof of the “if” part of this theorem would take us far beyond the
reach of the course. It depends on the study of quadratic forms in 3 variables
over Z. But it is easy to prove the “only if” part.

Proposition A.1. A postive integer of the form n = 4°(8m + 7) cannot be
expressed as the sum of three squares.

Proof. The result follows from the following two Lemmas.

Lemma A.5. A number n =7 mod 8 is not expressible as the sum of three
squares.

Proof. The quadratic residues modulo 8 are 0,1,4. It is not possible to express
7 as the sum of three numbers, each equal to 0,1 or 4. O]

Lemma A.6. 4n is a sum of three squares if and only n is a sum of three
squares.

Proof. If n = a® + b* + ¢* then 4n = (2a)? + (2b)* + (2¢)2.

Conversely, if 4n = a® + b* + ¢2 then by the argument in the proof of the
previous Lemma a, b, ¢ are all even, say a = 24,0 = 2B, ¢ = 2C'; and then
n = A?+ B? 4+ C% O

]

A.3 Sum of four squares
Theorem A.3. Fvery n € N is the sum of four squares:
n=a+b++d (abecdc7).

Proof. The basic idea is exactly the same as our proof that a prime p =
1 mod 4 is the sum of two squares.

Lemma A.7. If m,n are each expressible as the sum of four squares then
50 18 mn.

Proof Tf



. e e

t=rs=y’s = (zy)* + 1~

Applying this to —1 mod p gives

Corollary A.3. If p is an odd prime then every n € Z is expressible as the
sum of three squares modulo p, at least one of which is coprime to p:

n = a® + b* + ¢ mod p.

Suppose p is an odd prime.
Let the smallest sum of four squares divisible by p be

pd=a*+b++d?

If d =1 we are done. Suppose d > 1.
Let ¢ be a prime divisor of d. If we set

Ly = ax—by—cz—dt, Ly = ay+br+ct—dy, Lz = az—bt+cx+dy, Ly = at+bz—cy+dx

then
pd(2® + 2 + 2+ = L+ L2+ L2+ L2

Consider the 4 linear equivalences
Li(z,y.zt) =0mod q (i =1,2,3,4)

We can regard these as 4 linear equations over F, = Z/(q). Recall that
m < n simultaneous linear equations in n unknowns always have a non-
trivial solution. It follows that we can find z,v, 2z, ¢, not all divisible by g,
such that the last 3 equivalences hold:

L,=0, L3y =0, Ly =0 mod g;

and we may assume that |z|, |z|, |z], |z| < ¢/2, so that z* + y? + 22 +t* < ¢°.
But now, since ¢ | pd, it follows that

L1 =0mod q
also. Let
A:&’ B:E’ O:E’ D:E
q q q q
Then
pd = A* + B* + C* + D?,
where

2?4+ y? + 22+t
e
contradicting the minimality of d. Hence d = 1 and

d=d

<d,

p=a*+b+c+d>



Theorem B.1. Every finite abelian group A can be expressed as a direct sum
of cyclic groups of prime-power order:

A=2Z/(p!")® - SL/(py).
Moreover the powers pi',...,ps" are uniquely determined by A.

Note that the primes pq, ..., p, are not necessarily distinct.

We prove the result in two parts. First we divide A into its primary
components A,. Then we show that each of these components is expressible
as a direct sum of cyclic groups of prime-power order.

B.2 Primary decomposition
Proposition B.1. Suppose A is a finite abelian group. For each prime p,
the elements of order p™ in A for some n € N form a subgroup
A,={ac A:p"a=0 for somen € N}.
Proof. Suppose a,b € A,. Then
p"a =0, p"b=0,

for some m,n. Hence
p" " (a+b) =0,

and so a+0b € A,. O]

Definition B.1. We call the A, the primary components or p-component of

A.

Proposition B.2. A finite abelian group A is the direct sum of its primary
components A,:
F=q,A,.

Proof. Suppose a € A By Lagrange’s Theorem, na = 0 for some n > 0 Let

— mél er.
n_pl ...pr’”7

and set

m; =njed.
Then ged(my,...,m,) =1, and so we can find ny,...,n, such that

miny + - +myn, = 1.
Thus
a=ay+--+a,

where

a; = m;n;a.
But

pita; = (pi'm;)n;a = nna =0

(since na = 0). Hence
a; € Api'

Thus A is the sum of the subgroups A,.
To see that this sum is direct, suppose

a+---+a. =0,
where a; € A,,, with distinct primes p,...,p,. Suppose
pita; = 0.
Let

el €i—1, €it+1 e
m; =py P Pig1 Py -

Then



pA={pa:ac A}
For pA is stricty smaller than A, since
pA=A = p"A=A,

while we know from Lagrange’s Theorem that p™A = 0.
Suppose

pA = (pai) ©--- @ (pa,).
Then the sum

say, is direct. For suppose
niay + -+ n.a, = 0.
If p|ny,...,n., say n; = pm;, then we can write the relation in the form
my(pay) + -+ - +my(pa,) =0,

whence m;pa; = n;a; = 0 for all 7.
On the other hand, if p does not divide all the n; then

nl(pal) +o-t nr<par) =0,

and so pn;a; = 0 for all i. But if p t n; this implies that pa; = 0. (For the
order of a; is a power of p, say p¢; while p® | n;p implies that e < 1.) But
this contradicts our choice of pa; as a generator of a direct summand of pA.
Thus the subgroup B C A is expressed as a direct sum

B={(a1)® - ®(a,).

Let
K ={a€ A:pa=0}.

Then
A=B+ K.

For suppose a € A. Then pa € pA, and so

pa = ny(pay) + - - - + n.(pa,)

for some nq,...,n, € Z. Thus

pla —may — -+ —mn,a,) =0,
and so

a—na,—- - —n.a, =ke K.
Hence

a=(nay+---+nea.)+keB+K.
If B = A then all is done. If not, then K ¢ B, and so we can find
ki € K, k; ¢ B. Now the sum
By = B+ (k1)

is direct. For (k;) is a cyclic group of order p, and so has no proper subgroups.
Thus
B (k) = {0},

and so

By =B ® (k1)

If now B; = A we are done. If not we can repeat the construction, by
choosing ky € K, ky ¢ B;. As before, this gives us a direct sum






Choose an exponent e coprime to ¢(n), and let a : Z/(n) — Z/(n) be the
map
x>t

Then we can determine f such that
ef =1 mod ¢(n),
eg by using the Euclidean algorithm. Let 5 :Z/(n) — Z/(n) be the map
a:x— ol
Then if x is coprime to n
¢ = 2 mod n,
ie

pla(z)) = z;

[ is the inverse of «, at least for x not divisible by p or q.

C.2 Encryption

Let us choose very large primes p, ¢, say with about 150 digits, or about 500
bits, each.

This will not take long, using either the Miller-Rabin or the AKS test.
If we take an odd integer u with about 150 digits at random, and then test
u,u+ 1,u + 2,... for primality we can be be reasonably sure that we will
meet a prime in about Inu ~ 151n 10 steps, by the Prime Number Theorem.
(Of course we can reduce the number of tests by omitting even numbers, and
perhaps numbers divisible by small primes, so the number might be reduced
to a dozen or so.)

Next we choose e € (1,¢(n)) at random. We publish the numbers n and
e — RSA is a public key encryption system, and these are our public keys.

Now if someone wants to send us a secret message they encode it using
our public keys. We have computed the secret key f, and thus can decode
the message.

We are betting that nobody can determine the factors p and ¢ by fac-
torising n, or determine f in some other way. In effect, we are relying on
the belief that factorisation cannot be computed in polynomial time. More
precisely, there is no algorithm that can factorise any number n in less that
P(Inn) steps, where P(x) is some fixed polynomial.

For example, dividing by all numbers up to /n is an exponential time

algorithm since
\/E _ elna:/Z'

Remarks:

1. If we want 1000-bit security, we would probably choose n to have 1024
bits, to simplify computation.

2. Note that 2¢ mod n can be computed in polynomial time (probably in
quadratic time) by repeatedly squaring x, always working modulo n.

3. There is an extremely small probability that some block x of the mes-
sage will be divisible by p or ¢, and will therefore be “corrupted”. How-
ever, we can ignore this possibility on the grounds that is far more
likely to be corrupted in other ways.
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‘Arithmetic on elliptic curves’ is probably the most active area of re-
search in number theory today, and was the basic tool in Wiles’ proof
of Fermat’s Last Theorem. Elliptic curves give rise to zeta functions
like Riemann’s, with Euler-like factorisation into terms corresponding
to primes.



(]_9) (g) _ (_1)%1% _ —1 ijpzqz3mod4
q) \p 1 otherwise.

—1 —1
sz{LzHWBE—LT:{LzHWiTq.

Proof. Let

We shall choose remainders modp from the set
{—§<i<§}:—5ugnus
and remainders modgq from the set

{—g<i<g}:—TUﬂHUT.

(G- -

Writing #X for the number of elements in the set X,

By Gauss’ Lemma,

p=#{ieS:ggmodpe S}, v=#{i €T :pimodqec —T}.

By ‘qi mod p € —S’ we mean that there exists a j (necessarily unique)
such that
qi —pj € =S.

But now we observe that, in this last formula,

.p . q
I<i<= = 0< <=
Sy 7 =73

The basic idea of the proof is to associate to each such contribution to u
the ‘point’ (i,75) € S x T. Thus

M:#{(i,j)eSxT;_§<qi_m<0};

and similarly
V:#{(i,j)ESXT:O<qi—pj<g}’

where we have reversed the order of the inequality on the right so that both
formulae are expressed in terms of (¢i — pj).
Let us write [R] for the number of integer points in the region R C R
Then
p=[Ri], v=[Ry],

where
Ri={(z,y) eR: —g <qr—py <0}, Ro={(z,y) € R:0<qr—py < %},

and R denotes the rectangle

p

R:{(x,y):0<x<2

p
O<y< =}
) y 2}

The line
qr —py =0

is a diagonal of the rectangle R, and R;, Ry are strips above and below the
diagonal (Fig[D).

This leaves two triangular regions in R,

Ry={(x,y) € R:qz —py < 2}, Ry ={(x,y) € R: qz —py > 3}.
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Now we take P to be the centre of this rectangle, ie

ptl g+l

P =
<2’2

).
The reflection is then given by
(z,y) = (X,)Y)=(p+1-zq+1-y).

It is clear that reflection in P will send the integer points of R into
themselves. But it is not clear that it will send the integer points in R3 into
those in Ry, and vice versa. To see that, let us shrink these triangles as we
shrank the rectangle. If x,y € Z then

p p+1
qr —py < 3 = qx —py < 5
and similarly
q q+1
qr — py > B = qrx —py = S
Now reflection in P does send the two lines
p+1 qg+1
T =Py = =5 T = pY = o

into each other; for

gX —pY =qp+1—2)—plg+1—-y)=(¢g—p)— (qz — py),
and so

p+1
r-py=——5— = QX pY =(¢-p)+ ="

We conclude that

[Rs] = [Ral.
Hence
[R] = [R] + [Ra] + [Re] + [Ra] = 1 + v mod 2,
and so
i P—1lg—1
e

Ezxample: Take p =37, ¢ = 47. Then

(7) -

—) since 37 = 1 mod 4

= —<%) since 37 = —3 mod 8
= —(%7) since 5 =1 mod 4
. 2

\5

Thus 37 1s a quadratic residue mod47.
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