Chapter 5

Modular arithmetic

5.1 The modular ring

Definition 5.1. Suppose $n \in \mathbb{N}$ and $x, y \in \mathbb{Z}$. Then we say that x, y are equivalent modulo n, and we write

$$x \equiv y \mod n$$

if

$$n \mid x - y.$$

It is evident that equivalence modulo n is an equivalence relation, dividing \mathbb{Z} into equivalence or *residue* classes.

Definition 5.2. We denote the set of residue classes $\operatorname{mod} n$ by $\mathbb{Z}/(n)$.

Evidently there are just n classes modulo n if $n \ge 1$;

$$\#(\mathbb{Z}/(n)) = n.$$

We denote the class containing $a \in \mathbb{Z}$ by \bar{a} , or just by a if this causes no ambiguity.

Proposition 5.1. If

$$x \equiv x', \ y \equiv y'$$

then

$$x + y \equiv x' + y', \ xy \equiv x'y'.$$

Thus we can add and multiply the residue classes modd.

Corollary 5.1. If n > 0, $\mathbb{Z}/(n)$ is a finite commutative ring (with 1).

Example: Suppose n = 6. Then addition in $\mathbb{Z}/(6)$ is given by

+	$egin{array}{c c} 0 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{array}$	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

while multiplication is given by

×	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0 0 0 0 0 0 0	5	4	3	2	1

5.2 The prime fields

Theorem 5.1. The ring $\mathbb{Z}/(n)$ is a field if and only if n is prime.

Proof. Recall that an *integral domain* is a commutative ring A with 1 having no zero divisors, ie

 $xy = 0 \implies x = 0 \text{ or } y = 0.$

In particular, a field is an integral domain in which every non-zero element has a multiplicative inverse.

The result follows from the following two lemmas.

Lemma 5.1. $\mathbb{Z}/(n)$ is an integral domain if and only if n is prime.

Proof. Suppose n is not prime, say

$$n = rs$$
,

where 1 < r, s < n. Then

$$\bar{r}\ \bar{s}=\bar{n}=0.$$

So $\mathbb{Z}/(n)$ is not an integral domain.

Conversely, suppose n is prime; and suppose

$$\bar{r}\ \bar{s} = \overline{rs} = 0.$$

Then

$$n \mid rs \implies n \mid r \text{ or } n \mid s \implies \bar{r} = 0 \text{ or } \bar{s} = 0.$$

Lemma 5.2. A finite integral domain A is a field.

Proof. Suppose $a \in A$, $a \neq 0$. Consider the map

$$x \mapsto ax : A \to A.$$

This map is injective; for

$$ax = ay \implies a(x - y) = 0 \implies x - y = 0 \implies x = y$$

But an injective map

 $f:X\to X$

from a *finite* set X to itself is necessarily surjective.

In particular there is an element $x \in A$ such that

$$ax = 1$$
,

ie a has an inverse. Thus A is a field.

5.3 The additive group

If we 'forget' multiplication in a ring A we obtain an additive group, which we normally denote by the same symbol A. (In the language of category theory we have a 'forgetful functor' from the category of rings to the category of abelian groups.)

Proposition 5.2. The additive group $\mathbb{Z}/(n)$ is a cyclic group of order n.

This is obvious; the group is generated by the element $1 \mod n$.

Proposition 5.3. The element $a \mod n$ is a generator of $\mathbb{Z}/(n)$ if and only if

$$gcd(a, n) = 1.$$

Proof. Let

 $d = \gcd(a, n).$

If d > 1 then 1 is not a multiple of $a \mod n$, since

 $1 \equiv ra \mod n \implies 1 = ra + sn \implies d \mid 1.$

Conversely, if d = 1 then we can find $r, s \in \mathbb{Z}$ such that

ra + sn = 1;

 \mathbf{SO}

$$ra \equiv 1 \bmod n,$$

Thus 1 is a multiple of $a \mod n$, and so therefore is every element of $\mathbb{Z}/(n)$.

Note that there is only one cyclic group of order n, up to isomorphism. So any statement about the additive groups $\mathbb{Z}/(n)$ is a statement about finite cyclic groups, and vice versa. In particular, the result above is equivalent to the statement that if G is a cyclic group of order n generated by g then g^r is also a generator of G if and only if gcd(r, n) = 1.

Recall that a cyclic group G of order n has just one subgroup of each order $m \mid n$ allowed by Lagrange's Theorem, and this subgroup is cyclic. In the language of modular arithmetic this becomes:

Proposition 5.4. The additive group $\mathbb{Z}/(n)$ had just one subgroup of each order $m \mid n$. If n = mr this is the subgroup

$$\langle r \rangle = \{0, r, 2r, \dots, (m-1)r\}.$$

5.4 The multiplicative group

If A is a ring (with 1, but not necessarily commutative) then the *invertible* elements form a group; for if a, b are invertible, say

$$ar = ra = 1, bs = sb = 1,$$

then

$$(ab)(rs) = (rs)(ab) = 1,$$

and so ab is invertible.

We denote this group by A^{\times} .

Proposition 5.5. The element $a \in \mathbb{Z}/(n)$ is invertible if and only if

$$gcd(a, n) = 1.$$

Proof. If a is invertible mod n, say

$$ab \equiv 1 \mod n$$
,

then

ab = 1 + tn,

and it follows that

gcd(a, n) = 1.

Conversely, if this is so then

$$ax + ny = 1$$

26

and it follows that x is the inverse of $a \mod n$.

We see that the invertible elements in $\mathbb{Z}/(n)$ are precisely those elements that generate the additive group $\mathbb{Z}/(n)$.

Definition 5.3. We denote the group of invertible elements in $\mathbb{Z}/(n)$ by $(\mathbb{Z}/n)^{\times}$. We call this group the multiplicative group mod n.

Thus $(\mathbb{Z}/n)^{\times}$ consists of the residue classes mod *n* coprime to *n*, ie all of whose elements are coprime to *n*.

Definition 5.4. If $n \in \mathbb{N}$, we denote by $\phi(n)$ the number of integers r such that

$$0 \leq r < n \text{ and } gcd(r, n) = 1.$$

This function is often called *Euler's totient function*. As we shall see, it plays a very important role in elementary number theory.

Example:

$$\phi(0) = 0, \phi(1) = 1, \phi(2) = 1, \phi(3) = 2, \phi(4) = 2, \phi(5) = 4, \phi(6) = 2.$$

It is evident that if p is prime then

$$\phi(p) = p - 1,$$

since every number in [0, p) except 0 is coprime to p.

Proposition 5.6. The order of the multiplicative group $(\mathbb{Z}/n)^{\times}$ is $\phi(n)$

This follows from the fact that each class can be represented by a remainder $r \in [0, n)$.

Example: Suppose n = 10. Then the multiplication table for the group $(\mathbb{Z}/10)^{\times}$ is

	1	3	7	9	
1	1	3	7	9	-
$\begin{array}{c} 1 \\ 3 \\ 7 \end{array}$	$\begin{vmatrix} 1\\ 3\\ 7 \end{vmatrix}$	9	1	7	
	7	1	9	3	
9	9	7	3	1	

We see that this is a cyclic group of order 4, generated by 3:

$$(\mathbb{Z}/10)^{\times} = C_4.$$

Suppose gcd(a, n) = 1. To find the inverse x of a mod n we have in effect to solve the equation

ax + ny = 1.

As we have seen, the standard way to solve this is to use the Euclidean Algorithm, in effect to determine gcd(a, n).

Example: Let us determine the inverse of 17 mod 23. Applying the Euclidean Algorithm,

$$23 = 17 + 6, 17 = 3 \cdot 6 - 1.$$

Thus

$$1 = 3 \cdot 6 - 17$$

= 3(23 - 17) - 17
= 3 \cdot 23 - 4 \cdot 17.

Hence

$$17^{-1} = -4 = 19 \mod 23.$$

Note that having found the inverse of a we can easily solve the congruence

$$ax = b \mod n$$

In effect

 $x = a^{-1}b.$

For example, the solution of

$$17x = 9 \mod 23$$

is

$$x = 17^{-1}9 = -4 \cdot 9 = -36 \equiv -13 \equiv 10 \mod 23.$$

5.5 Homomorphisms

Suppose $m \mid n$. Then each remainder mod n defines a remainder mod m. For example, if m = 3, n = 6 then

 $\begin{array}{l} 0 \mod 6 \mapsto 0 \mod 3, \\ 1 \mod 6 \mapsto 1 \mod 3, \\ 2 \mod 6 \mapsto 2 \mod 3, \\ 3 \mod 6 \mapsto 0 \mod 3, \\ 4 \mod 6 \mapsto 1 \mod 3, \\ 5 \mod 6 \mapsto 2 \mod 3. \end{array}$

Proposition 5.7. If $m \mid n$ the map

 $r \mod n \mapsto r \mod n$

is a ring-homomorphism

$$\mathbb{Z}/(n) \to \mathbb{Z}/(m).$$

5.6 Finite fields

We have seen that $\mathbb{Z}/(p)$ is a field if p is prime.

Finite fields are important because linear algebra extends to vector spaces over any field; and vector spaces over finite fields are central to coding theory and cryptography, as well as other branches of pure mathematics.

Definition 5.5. The characteristic of a ring A is the least positive integer n such that

$$\underbrace{1+1+\cdots+1}^{n \ 1's} = 0.$$

If there is no such n then A is said to be of characteristic 0.

Thus the characteristic of A, if finite, is the order of 1 in the additive group A.

Evidently \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} are all of characteristic 0.

Proposition 5.8. The ring $\mathbb{Z}/(n)$ is of characteristic n.

Proposition 5.9. The characteristic of a finite field is a prime.

Proof. Let us write

$$n \cdot 1$$
 for $\overbrace{1+1+\cdots+1}^{n \cdot 1^{\circ}}$.

- · ·

Suppose the order n is composite, say n = rs. By the distributive law,

$$n \cdot 1 = (r \cdot 1)(s \cdot 1).$$

There are no divisors of zero in a field; hence

$$r \cdot 1 = 0 \text{ of } s \cdot 1 = 0,$$

contradicting the minimality of n.

The proof shows in fact that the characteristic of any field is either a prime or 0.

Proposition 5.10. Suppose F is a finite field of characteristic p. Then Fcontains a subfield isomorphic to $\mathbb{Z}/(p)$.

Proof. Consider the additive subgroup generated by 1:

 $\langle 1 \rangle = \{0, 1, 2 \cdot 1, \dots, (p-1) \cdot 1\}.$

It is readily verified that this set is closed under addition and multiplication; and the map

$$r \mod p \mapsto r \cdot 1 : \mathbb{Z}/(p) \to \langle 1 \rangle$$

is an isomorphism.

This field is called the *prime subfield* of F.

Corollary 5.2. There is just one field containing p elements, up to isomorphism, namely $\mathbb{Z}/(p)$.

Theorem 5.2. A finite field F of characteristic p contains p^n elements for some $n \ge 1$

Proof. We can consider F as a vector space over its prime subfield P. Suppose this vector space is of dimension n. Let e_1, \ldots, e_n be a basis for the space. Then each element of F is uniquely expressible in the form

$$a_1e_1 + \cdots + a_ne_n$$

where $a_1, \ldots, a_n \in P$. There are just p choices for each a_i . Hence the total number of choices, ie the number of elements in F, is p^n .

Theorem 5.3. There is just one field F containing $q = p^n$ elements for each $n \geq 1$, up to isomorphism.

Thus there are fields containing 2,3,4 and 5 elements, but not field containing 6 elements.

We are not going to prove this theorem until later.

Definition 5.6. We denote the field containing $q = p^n$ elements by \mathbb{F}_q .

The finite fields are often called *Galois fields*, after Evariste Galois who discovered them.