Appendix C

Quadratic Reciprocity: an alternative proof

Hundreds of different proofs of this theorem have been published. Gauss, who first proved the result in 1801, gave eight different proofs. We gave a group-theoretic proof in chapter 10. Here is a shorter combinatorial proof.

Theorem C.1. (The Law of Quadratic Reciprocity) Suppose $p, q \in \mathbb{N}$ are odd primes. Then

$$
\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=(-1)^{\frac{p-1}{2} \frac{q-1}{2}}= \begin{cases}-1 & \text { if } p \equiv q \equiv 3 \bmod 4 \\ 1 & \text { otherwise } .\end{cases}
$$

Proof. Let

$$
S=\left\{1,2, \ldots, \frac{p-1}{2}\right\}, T=\left\{1,2, \ldots, \frac{q-1}{2}\right\}
$$

We shall choose remainders $\bmod p$ from the set

$$
\left\{-\frac{p}{2}<i<\frac{p}{2}\right\}=-S \cup\{0\} \cup S
$$

and remainders $\bmod q$ from the set

$$
\left\{-\frac{q}{2}<i<\frac{q}{2}\right\}=-T \cup\{0\} \cup T .
$$

By Gauss' Lemma,

$$
\left(\frac{q}{p}\right)=(-1)^{\mu},\left(\frac{p}{q}\right)=(-1)^{\nu}
$$

Writing $\# X$ for the number of elements in the set X,

$$
\mu=\#\{i \in S: q i \bmod p \in-S\}, \nu=\#\{i \in T: p i \bmod q \in-T\} .
$$

By ' $q i \bmod p \in-S$ ' we mean that there exists a j (necessarily unique) such that

$$
q i-p j \in-S .
$$

But now we observe that, in this last formula,

$$
0<i<\frac{p}{2} \Longrightarrow 0<j<\frac{q}{2} .
$$

Figure C.1: $p=11, q=7$

The basic idea of the proof is to associate to each such contribution to μ the 'point' $(i, j) \in S \times T$. Thus

$$
\mu=\#\left\{(i, j) \in S \times T:-\frac{p}{2}<q i-p j<0\right\}
$$

and similarly

$$
\nu=\#\left\{(i, j) \in S \times T: 0<q i-p j<\frac{q}{2}\right\}
$$

where we have reversed the order of the inequality on the right so that both formulae are expressed in terms of $(q i-p j)$.

Let us write $[R]$ for the number of integer points in the region $R \subset \mathbb{R}^{2}$. Then

$$
\mu=\left[R_{1}\right], \nu=\left[R_{2}\right],
$$

where
$R_{1}=\left\{(x, y) \in R:-\frac{p}{2}<q x-p y<0\right\}, R_{2}=\left\{(x, y) \in R: 0<q x-p y<\frac{q}{2}\right\}$,
and R denotes the rectangle

$$
R=\left\{(x, y): 0<x<\frac{p}{2}, 0<y<\frac{p}{2}\right\} .
$$

The line

$$
q x-p y=0
$$

is a diagonal of the rectangle R, and R_{1}, R_{2} are strips above and below the diagonal (Fig C).

This leaves two triangular regions in R,

$$
R_{3}=\left\{(x, y) \in R: q x-p y<-\frac{p}{2}\right\}, R_{4}=\left\{(x, y) \in R: q x-p y>\frac{q}{2}\right\} .
$$

We shall show that, surprisingly perhaps, reflection in a central point sends the integer points in these two regions into each other, so that

$$
\left[R_{3}\right]=\left[R_{4}\right] .
$$

Since

$$
R=R_{1} \cup R_{2} \cup R_{3} \cup R_{4},
$$

it will follow that

$$
\left[R_{1}\right]+\left[R_{2}\right]+\left[R_{3}\right]+\left[R_{4}\right]=[R]=\frac{p-1}{2} \frac{q-1}{2},
$$

ie

$$
\mu+\nu+\left[R_{3}\right]+\left[R_{4}\right]=\frac{p-1}{2} \frac{q-1}{2} .
$$

But if now $\left[R_{3}\right]=\left[R_{4}\right]$ then it will follow that

$$
\mu+\nu \equiv \frac{p-1}{2} \frac{q-1}{2} \bmod 2,
$$

which is exactly what we have to prove.
It remains to define our central reflection. Note that reflection in the centre $\left(\frac{p}{4}, \frac{q}{4}\right)$ of the rectangle R will not serve, since this does not send integer points into integer points. For that, we must reflect in a point whose coordinates are integers or half-integers.

We choose this point by "shrinking" the rectangle R to a rectangle bounded by integer points, ie the rectangle

$$
R^{\prime}=\left\{1 \leq x \leq \frac{p-1}{2}, 1 \leq y \leq \frac{q-1}{2}\right\} .
$$

Now we take P to be the centre of this rectangle, ie

$$
P=\left(\frac{p+1}{2}, \frac{q+1}{2}\right) .
$$

The reflection is then given by

$$
(x, y) \mapsto(X, Y)=(p+1-x, q+1-y)
$$

It is clear that reflection in P will send the integer points of R into themselves. But it is not clear that it will send the integer points in R_{3} into those in R_{4}, and vice versa. To see that, let us shrink these triangles as we shrank the rectangle. If $x, y \in \mathbb{Z}$ then

$$
q x-p y<-\frac{p}{2} \Longrightarrow q x-p y \leq-\frac{p+1}{2}
$$

and similarly

$$
q x-p y>\frac{q}{2} \Longrightarrow q x-p y \geq \frac{q+1}{2} .
$$

Now reflection in P does send the two lines

$$
q x-p y=-\frac{p+1}{2}, q x-p y=\frac{q+1}{2}
$$

into each other; for

$$
q X-p Y=q(p+1-x)-p(q+1-y)=(q-p)-(q x-p y),
$$

and so

$$
q x-p y=-\frac{p+1}{2} \Longleftrightarrow q X-p Y=(q-p)+\frac{p+1}{2}=\frac{q+1}{2}
$$

We conclude that

$$
\left[R_{3}\right]=\left[R_{4}\right] .
$$

Hence

$$
[R]=\left[R_{1}\right]+\left[R_{2}\right]+\left[R_{3}\right]+\left[R_{4}\right] \equiv \mu+\nu \bmod 2,
$$

and so

$$
\mu+\nu \equiv[R]=\frac{p-1}{2} \frac{q-1}{2} .
$$

Example: Take $p=37, q=47$. Then

$$
\begin{aligned}
\left(\frac{37}{47}\right) & =\left(\frac{47}{37}\right) \text { since } 37 \equiv 1 \bmod 4 \\
& =\left(\frac{10}{37}\right) \\
& =\left(\frac{2}{37}\right)\left(\frac{5}{37}\right) \\
& =-\left(\frac{5}{37}\right) \text { since } 37 \equiv-3 \bmod 8 \\
& =-\left(\frac{37}{5}\right) \text { since } 5 \equiv 1 \bmod 4 \\
& =-\left(\frac{2}{5}\right) \\
& =-(-1)=1 .
\end{aligned}
$$

Thus 37 is a quadratic residue $\bmod 47$.
We could have avoided using the result for $\left(\frac{2}{p}\right)$:

$$
\begin{aligned}
\left(\frac{10}{37}\right) & =\left(\frac{-27}{37}\right) \\
& =\left(\frac{-1}{37}\right)\left(\frac{3}{37}\right)^{3} \\
& =(-1)^{18}\left(\frac{37}{3}\right) \\
& =\left(\frac{1}{3}\right)=1
\end{aligned}
$$

