
Appendix C

Quadratic Reciprocity: an
alternative proof

Hundreds of different proofs of this theorem have been published. Gauss,
who first proved the result in 1801, gave eight different proofs. We gave a
group-theoretic proof in chapter 10. Here is a shorter combinatorial proof.

Theorem C.1. (The Law of Quadratic Reciprocity) Suppose p, q ∈ N are
odd primes. Then(

p

q

)(
q

p

)
= (−1)

p−1
2

q−1
2 =

{
−1 if p ≡ q ≡ 3 mod 4

1 otherwise.

Proof. Let

S = {1, 2, . . . , p− 1

2
}, T = {1, 2, . . . , q − 1

2
}.

We shall choose remainders modp from the set

{−p
2
< i <

p

2
} = −S ∪ {0} ∪ S,

and remainders modq from the set

{−q
2
< i <

q

2
} = −T ∪ {0} ∪ T.

By Gauss’ Lemma, (
q

p

)
= (−1)µ,

(
p

q

)
= (−1)ν .

Writing #X for the number of elements in the set X,

µ = #{i ∈ S : qi mod p ∈ −S}, ν = #{i ∈ T : pi mod q ∈ −T}.

By ‘qi mod p ∈ −S’ we mean that there exists a j (necessarily unique)
such that

qi− pj ∈ −S.
But now we observe that, in this last formula,

0 < i <
p

2
=⇒ 0 < j <

q

2
.
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Figure C.1: p = 11, q = 7

The basic idea of the proof is to associate to each such contribution to µ
the ‘point’ (i, j) ∈ S × T . Thus

µ = #{(i, j) ∈ S × T : −p
2
< qi− pj < 0};

and similarly
ν = #{(i, j) ∈ S × T : 0 < qi− pj < q

2
},

where we have reversed the order of the inequality on the right so that both
formulae are expressed in terms of (qi− pj).

Let us write [R] for the number of integer points in the region R ⊂ R2.
Then

µ = [R1], ν = [R2],

where

R1 = {(x, y) ∈ R : −p
2
< qx−py < 0}, R2 = {(x, y) ∈ R : 0 < qx−py < q

2
},

and R denotes the rectangle

R = {(x, y) : 0 < x <
p

2
, 0 < y <

p

2
}.

The line
qx− py = 0

is a diagonal of the rectangle R, and R1, R2 are strips above and below the
diagonal (Fig C).

This leaves two triangular regions in R,

R3 = {(x, y) ∈ R : qx− py < −p
2
}, R4 = {(x, y) ∈ R : qx− py > q

2
}.
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We shall show that, surprisingly perhaps, reflection in a central point
sends the integer points in these two regions into each other, so that

[R3] = [R4].

Since
R = R1 ∪R2 ∪R3 ∪R4,

it will follow that

[R1] + [R2] + [R3] + [R4] = [R] =
p− 1

2

q − 1

2
,

ie

µ+ ν + [R3] + [R4] =
p− 1

2

q − 1

2
.

But if now [R3] = [R4] then it will follow that

µ+ ν ≡ p− 1

2

q − 1

2
mod 2,

which is exactly what we have to prove.
It remains to define our central reflection. Note that reflection in the

centre (p
4
, q
4
) of the rectangle R will not serve, since this does not send in-

teger points into integer points. For that, we must reflect in a point whose
coordinates are integers or half-integers.

We choose this point by “shrinking” the rectangleR to a rectangle bounded
by integer points, ie the rectangle

R′ = {1 ≤ x ≤ p− 1

2
, 1 ≤ y ≤ q − 1

2
}.

Now we take P to be the centre of this rectangle, ie

P = (
p+ 1

2
,
q + 1

2
).

The reflection is then given by

(x, y) 7→ (X, Y ) = (p+ 1− x, q + 1− y).

It is clear that reflection in P will send the integer points of R into
themselves. But it is not clear that it will send the integer points in R3 into
those in R4, and vice versa. To see that, let us shrink these triangles as we
shrank the rectangle. If x, y ∈ Z then

qx− py < −p
2

=⇒ qx− py ≤ −p+ 1

2
;

and similarly

qx− py > q

2
=⇒ qx− py ≥ q + 1

2
.
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Now reflection in P does send the two lines

qx− py = −p+ 1

2
, qx− py =

q + 1

2

into each other; for

qX − pY = q(p+ 1− x)− p(q + 1− y) = (q − p)− (qx− py),

and so

qx− py = −p+ 1

2
⇐⇒ qX − pY = (q − p) + p+ 1

2
=
q + 1

2
.

We conclude that
[R3] = [R4].

Hence
[R] = [R1] + [R2] + [R3] + [R4] ≡ µ+ ν mod 2,

and so
µ+ ν ≡ [R] =

p− 1

2

q − 1

2
.

Example: Take p = 37, q = 47. Then(
37

47

)
=

(
47

37

)
since 37 ≡ 1 mod 4

=

(
10

37

)
=

(
2

37

)(
5

37

)
= −

(
5

37

)
since 37 ≡ −3 mod 8

= −
(
37

5

)
since 5 ≡ 1 mod 4

= −
(
2

5

)
= −(−1) = 1.

Thus 37 is a quadratic residue mod47.

We could have avoided using the result for
(
2

p

)
:(

10

37

)
=

(
−27
37

)
=

(
−1
37

)(
3

37

)3

= (−1)18
(
37

3

)
=

(
1

3

)
= 1.
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