
Chapter 15

Q(
√

5) and the golden ratio

15.1 The field Q(
√

5

Recall that the quadratic field

Q(
√

5) = {x+ y
√

5 : x, y ∈ Q}.

Recall too that the conjugate and norm of

z = x+ y
√

5

are
z̄ = x− y

√
5, N (z) = zz̄ = x2 − 5y2.

We will be particularly interested in one element of this field.

Definition 15.1. The golden ratio is the number

φ =
1 +
√

5

2
.

The Greek letter φ (phi) is used for this number after the ancient Greek
sculptor Phidias, who is said to have used the ratio in his work.

Leonardo da Vinci explicitly used φ in analysing the human figure.
Evidently

Q(
√

5) = Q(φ),

ie each element of the field can be written

z = x+ yφ (x, y ∈ Q).

The following results are immediate:
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Proposition 15.1. 1. φ̄ = 1−
√

5
2

;

2. φ+ φ̄ = 1, φφ̄ = −1;

3. N (x+ yφ) = x2 + xy − y2;

4. φ, φ̄ are the roots of the equation

x2 − x− 1 = 0.

15.2 The number ring Z[φ]

As we saw in the last Chapter, since 5 ≡ 1 mod 4 the associated number ring

Z(Q(
√

5)) = Q(
√

5) ∩ Z̄

consists of the numbers
m+ n

√
5

2
,

where m ≡ n mod 2, ie m,n are both even or both odd. And we saw that
this is equivalent to

Proposition 15.2. The number ring associated to the quadratic field Q(
√

5)
is

Z[φ] = {m+ nφ : m,n ∈ Z}.

15.3 Unique Factorisation

Theorem 15.1. The ring Z[φ] is a Unique Factorisation Domain.

Proof. We prove this in exactly the same way that we proved the correspond-
ing result for the gaussian integers Γ.

The only slight difference is that the norm can now be negative, so we
must work with |N (z)|.

Lemma 15.1. Given z, w ∈ Z[φ] with w 6= 0 we can find q, r ∈ Z[φ] such
that

z = qw + r,

with
|N (r)| < |N (w)|.
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Proof. Let
z

w
= x+ yφ,

where x, y ∈ Q. Let m,n be the nearest integers to x, y, so that

|x−m| ≤ 1

2
, |y − n| ≤ 1

2
.

Set
q = m+ nφ.

Then
z

w
− q = (x−m) + (y − n)φ.

Hence
N (

z

w
− q) = (x−m)2 + (x−m)(y − n)− (y − n)2.

It follows that

−1

2
< N (

z

w
− q) < 1

2
,

and so

|N (
z

w
− q)| ≤ 1

2
< 1,

ie

|N (z − qw)| < |N (w)|.

This allows us to apply the euclidean algorithm in Z[φ], and establish

Lemma 15.2. Any two numbers z, w ∈ Z[φ] have a greatest common divisor
δ such that

δ | z, w
and

δ′ | z, w =⇒ δ′ | δ.
Also, δ is uniquely defined up to multiplication by a unit.

Moreover, there exists u, v ∈ Z[φ] such that

uz + vw = δ.

From this we deduce that irreducibles in Z[φ] are primes.

Lemma 15.3. If π ∈ Z[φ] is irreducible and z, w ∈ Z[phi] then

π | zw =⇒ π | z or π | w.

Now Euclid’s Lemma , and Unique Prime Factorisation, follow in the
familiar way.
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15.4 The units in Z[φ]

Theorem 15.2. The units in Z[φ] are the numbers

±φn (n ∈ Z).

Proof. We saw in the last Chapter that any real quadratic field contains units
6= ±1, and that the units form the group

{±εn : n ∈ Z},

where ε is the smallest unit > 1.
Thus the theorem will follow if we establish that φ is the smallest unit

> 1 in Z[φ].
Suppose η ∈ Z[φ] is a unit with

1 < η = m+ nφ ≤ φ.

Then

N (η) = ηη̄ = ±1,

and so

η̄ = ±η−1.

Hence
−φ−1 ≤ η̄ = m+ nφ̄ ≤ φ−1.

Subtracting,

1− φ−1 < η − η̄ = n(φ− φ̄) ≤ φ+ φ−1,

ie

1−
√

5− 1

2
<
√

5n <
1 +
√

5

2
+

√
5− 1

2

ie

3−
√

5

2
<
√

5n ≤
√

5.

So the only possibility is
n = 1.
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Thus
η = m+ φ.

But
−1 + φ < 1.

Hence

m ≥ 0,

and so

η ≥ ε.

15.5 The primes in Z[φ]

Theorem 15.3. Suppose p ∈ N is a rational prime.

1. If p ≡ ±1 mod 5 then p splits into conjugate primes in Z[φ]:

p = ±ππ̄.

2. If p ≡ ±2 mod 5 then p remains prime in Z[φ].

Proof. Suppose p splits, say
p = ππ′.

Then
N (p) = p2 = N (π)N (π′).

Hence
N (π) = N (π′) = ±p.

Suppose
π = m+ nφ.

Then
N (π) = m2 −mn− n2 = ±p,

and in either case
m2 −mn− n2 ≡ 0 mod p.
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If p = 2 then m and n must both be even. (For if one or both of m,n are
odd then so is m2 −mn− n2.) Thus

2 | π,

which is impossible.
Now suppose p is odd, Multiplying by 4,

(2m− n)2 − 5n2 ≡ 0 mod p.

But
n ≡ 0 mod p =⇒ m ≡ 0 mod p =⇒ p | π,

which is impossible. Hence n 6≡ 0 mod p, and so

r2 ≡ 5 mod p,

where
r ≡ (2m− n)/n mod p.

Thus (
5

p

)
= 1.

It follows by Gauss’ Reciprocity Law, since 5 ≡ 1 mod 4, that(
p

5

)
= 1,

ie

p ≡ ±1 mod 5.

So if p ≡ ±2 mod 5 then p remains prime in Z[φ].
Now suppose p ≡ ±1 mod 5. Then(

5

p

)
= 1,

and so we can find n such that

n2 ≡ 5 mod p,

ie

p | n2 − 5 = (n−
√

5)(n+
√

5).
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If p remains prime in Z[φ] then

p | n−
√

5 or p | n+
√

5,

both of which imply that p | 1, which is absurd.
We conclude that

p ≡ ±1 mod 5 =⇒ p splits in Z[φ].

Finally we have seen in this case that if π | p then

N (π) = ±p =⇒ p = ±ππ̄.

15.6 Fibonacci numbers

Recall that the Fibonacci sequence consists of the numbers

0, 1, 1, 2, 3, 5, 8, 13, . . .

defined by the linear recurrence relation

Fn+1 = Fn + Fn−1,

with initial values
F0 = 0, F1 = 1.

There is a standard way of solving a general linear recurrence relation

xn = a1xn−1 + a2xn−2 + · · ·+ adxn−d.

Let the roots of the associated polynomial

p(t) = td − c1td−1 − c2td−2 + · · ·+ cd.

be λ1, . . . , λd.
If these roots are distinct then the general solution of the recurrence

relation is
xn = C1λ

n
1 + C2λ

n
2 + · · ·+ Cdλ

n
d .

The coefficients C1, . . . , Cd are determined by d ‘initial conditions’, eg by
specifying x0, . . . , xd−1.

If there are multiple roots, eg if λ occurs e times then the term Cλn must
be replaced by λnp(λ), where p is a polynomial of degree e.

94



But these details need not concern us, since we are only interested in the
Fibonacci sequence, with associated polynomial

t2 − t− 1.

This has roots φ, φ̄. Accordingly,

Fn = Aφn +Bφ̄n.

Substituting for F0 = 0, F1 = 1, we get

A+B = 0, Aφ+Bφ̄ = 1.

Thus
B = −A, A(φ− φ̄) = 1.

Since

φ− φ̄ =
1 +
√

5

2
− 1−

√
5

2
=
√

5,

this gives
A = 1/

√
5, B = −1

√
5.

Our conclusion is summarised in

Proposition 15.3. The Fibonacci numbers are given by

Fn =
(1 +

√
5)n − (1−

√
5)

2n
√

5
.

15.7 The weak Lucas-Lehmer test for Mersenne

primality

Recall that the Mersenne number

Mp = 2p − 1,

where p is a prime.
We give a version of the Lucas-Lehmer test for primality which only works

when p ≡ 3 mod 4. In the next Chapter we shall give a stronger version which
works for all primes.

Proposition 15.4. Suppose the prime p ≡ 3 mod 4. Then

P = 2p − 1

is prime if and only if
φ2p ≡ −1 mod P.
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Proof. Suppose first that P is a prime.
Since p ≡ 3 mod 4 and 24 ≡ 1 mod 5,

2p ≡ 23 mod 5

≡ 3 mod 5.

Hence
P = 2p − 1 ≡ 2 mod 5.

Now

φP =

(
1 +
√

5

2

)P

≡ 1P + (
√

5)P

2P
mod P,

since P divides all the binomial coefficients except the first and last. Thus

φP ≡ 1 + 5(P−1)/2
√

5

2
mod P,

since 2P ≡ 2 mod P by Fermat’s Little Theorem.
But

5(P−1)/2 ≡
(

5

P

)
,

by Euler’s criterion. Hence by Gauss’ Quadratic Reciprocity Law,(
5

P

)
=

(
P

5

)
= −1,

since P ≡ 2 mod 5. Thus

5(P−1)/2 ≡ −1 mod P,

and so

φP ≡ 1−
√

5

2
mod P.

But

1−
√

5

2
= φ̄

= −φ−1.
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It follows that

φP+1 ≡ −1 mod P,

ie

φ2p ≡ −1 mod P.

Conversely, suppose
φ2p ≡ −1 mod P.

We must show that P is prime.
The order of φ is exactly 2p+1. For

φ2p+1

=
(
φ2p)2 ≡ 1 mod P,

so the order divides 2p+1. On the other hand,

φ2p 6≡ 1 mod P,

so the order does not divide 2p.
Suppose now P is not prime. Since

P ≡ 2 mod 5,

it must have a prime factor

Q ≡ ±2 mod 5.

(If all the prime factors of P were ≡ ±1 mod 5 then so would their product
be.) Hence Q does not split in Z[φ].

Since Q | P , it follows that

φ2p 6≡ 1 mod Q;

and so, by the argument above, the order of φ mod Q is 2p+1.
We want to apply Fermat’s Little Theorem, but we need to be careful

since we are working in Z[φ] rather than Z.

Lemma 15.4 (Fermat’s Little Theorem, extended). If the rational prime Q
does not split in Z[φ] then

zQ2−1 ≡ 1 mod Q

for all z ∈ Z[φ] with z 6≡ 0 mod Q.
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Proof. The quotient-ring A = Z[φ] mod Q is a field, by exactly the same
argument that Z mod p is a field if p is a prime. For if z ∈ A, z 6= 0 then
the map

w 7→ zw : A→ A

is injective, and so surjective (since A is finite). Hence there is an element z′

such that zz′ = 1, ie z is invertible in A.
Also, A contains just Q2 elements, represented by

m+ n
√

5 (0 ≤ m,n < Q).

Thus the group
A× = A \ 0

has order Q2 − 1, and the result follows from Lagrange’s Theorem.

In particular, it follows from this Lemma that

φQ2−1 ≡ 1 mod Q,

ie the order of φ mod Q divides Q2 − 1. But we know that the order of
φ mod Q is 2p+1. Hence

2p+1 | Q2 − 1 = (Q− 1)(Q+ 1).

But
gcd(Q− 1, Q+ 1) = 2.

It follows that either

2 ‖ Q− 1, 2p | Q+ 1 or 2 ‖ Q+ 1, 2p | Q− 1.

Since Q ≤ P = 2p − 1, the only possibility is

2p | Q+ 1,

ie Q = P , and so P is prime.

This result can be expressed in a different form, more suitable for com-
putation.

Note that
φ2p ≡ −1 mod P

can be re-written as

φ2p−1

+ φ2−(p−1) ≡ 0 mod P.
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Let
ti = φ2i

+ φ2−i

Then

t2i = φ2i+1

+ 2 + φ2−(i+1)

= ti+1 + 2,

ie
ti+1 = t2i − 2.

Since
t0 = 2

it follows that ti ∈ N for all i.
Now we can re-state our result.

Corollary 15.1. Let the integer sequence ti be defined recursively by

ti+1 = t2i − 2, t0 = 2.

Then
P = 2p − 1 is prime ⇐⇒ P | tp−1.
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