Appendix A

The Structure of Finite Abelian Groups

A. 1 The Structure Theorem

Theorem A.1. Every finite abelian group A can be expressed as a direct sum of cyclic groups of prime-power order:

$$
A=\mathbb{Z} /\left(p_{1}^{e_{1}}\right) \oplus \cdots \oplus \mathbb{Z} /\left(p_{r}^{e_{r}}\right)
$$

Moreover the powers $p_{1}^{e_{1}}, \ldots, p_{r}^{e_{r}}$ are uniquely determined by A.
Note that the primes p_{1}, \ldots, p_{r} are not necessarily distinct.
We prove the result in two parts. First we divide A into its primary components A_{p}. Then we show that each of these components is expressible as a direct sum of cyclic groups of prime-power order.

A. 2 Primary decomposition

Proposition A.1. Suppose A is a finite abelian group. For each prime p, the elements of order p^{n} in A for some $n \in N$ form a subgroup

$$
A_{p}=\left\{a \in A: p^{n} a=0 \text { for some } n \in \mathbb{N}\right\} .
$$

Proof. Suppose $a, b \in A_{p}$. Then

$$
p^{m} a=0, p^{n} b=0,
$$

for some m, n. Hence

$$
p^{m+n}(a+b)=0
$$

and so $a+b \in A_{p}$.

Definition A.1. We call the A_{p} the primary components or p-component of A.
Proposition A.2. A finite abelian group A is the direct sum of its primary components A_{p} :

$$
F=\oplus_{p} A_{p}
$$

Proof. Suppose $a \in A$ By Lagrange's Theorem, $n a=0$ for some $n>0$ Let

$$
n=p_{1}^{e_{1}} \cdots p_{r}^{e_{r}}
$$

and set

$$
m_{i}=n / e_{i}^{p_{i}}
$$

Then $\operatorname{gcd}\left(m_{1}, \ldots, m_{r}\right)=1$, and so we can find n_{1}, \ldots, n_{r} such that

$$
m_{1} n_{1}+\cdots+m_{r} n_{r}=1
$$

Thus

$$
a=a_{1}+\cdots+a_{r},
$$

where

$$
a_{i}=m_{i} n_{i} a .
$$

But

$$
p_{i}^{e_{i}} a_{i}=\left(p_{i}^{e_{i}} m_{i}\right) n_{i} a=n n_{i} a=0
$$

(since $n a=0$). Hence

$$
a_{i} \in A_{p_{i}} .
$$

Thus A is the sum of the subgroups A_{p}.
To see that this sum is direct, suppose

$$
a_{1}+\cdots+a_{r}=0
$$

where $a_{i} \in A_{p_{i}}$, with distinct primes p_{1}, \ldots, p_{r}. Suppose

$$
p_{i}^{e_{i}} a_{i}=0
$$

Let

$$
m_{i}=p_{1}^{e_{1}} \cdots p_{i-1}^{e_{i-1}} p_{i+1}^{e_{i+1}} \cdots p_{r}^{e_{r}} .
$$

Then

$$
m_{i} a_{j}=0 \text { if } i \neq j .
$$

Thus (multiplying the given relation by m_{i}),

$$
m_{i} a_{i}=0 .
$$

But $\operatorname{gcd}\left(m_{i}, p_{i}^{e_{i}}\right)=1$. Hence we can find m, n such that

$$
m m_{i}+n p_{i}^{e_{i}}=1 .
$$

But then

$$
a_{i}=m\left(m_{i} a_{i}\right)+n\left(p_{i}^{e_{i}} a_{i}\right)=0 .
$$

We conclude that A is the direct sum of its p-components A_{p}.
Proposition A.3. If A is a finite abelian group then $A_{p}=0$ for almost all p, ie for all but a finite number of p.
Proof. If A has order n then by Lagrange's Theorem the order of each element $a \in A$ divides n. Thus $A_{p}=0$ if $p \nmid n$.

A. 3 Decomposition of the primary components

We suppose in this Section that A is a finite abelian p-group (ie each element is of order p^{e} for some e).

Proposition A.4. A can be expressed as a direct sum of cyclic p-groups:

$$
A=\mathbb{Z} /\left(p^{e_{1}}\right) \oplus \cdots \oplus \mathbb{Z} /\left(p^{e_{r}}\right) .
$$

Proof. We argue by induction on $\#(A)=p^{n}$. We may assume therefore that the result holds for the subgroup

$$
p A=\{p a: a \in A\} .
$$

For $p A$ is stricty smaller than A, since

$$
p A=A \Longrightarrow p^{n} A=A
$$

while we know from Lagrange's Theorem that $p^{n} A=0$.
Suppose

$$
p A=\left\langle p a_{1}\right\rangle \oplus \cdots \oplus\left\langle p a_{r}\right\rangle .
$$

Then the sum

$$
\left\langle a_{1}\right\rangle+\cdots+\left\langle a_{r}\right\rangle=B
$$

say, is direct. For suppose

$$
n_{1} a_{1}+\cdots+n_{r} a_{r}=0
$$

If $p \mid n_{1}, \ldots, n_{r}$, say $n_{i}=p m_{i}$, then we can write the relation in the form

$$
m_{1}\left(p a_{1}\right)+\cdots+m_{r}\left(p a_{r}\right)=0,
$$

whence $m_{i} p a_{i}=n_{i} a_{i}=0$ for all i.
On the other hand, if p does not divide all the n_{i} then

$$
n_{1}\left(p a_{1}\right)+\cdots+n_{r}\left(p a_{r}\right)=0,
$$

and so $p n_{i} a_{i}=0$ for all i. But if $p \nmid n_{i}$ this implies that $p a_{i}=0$. (For the order of a_{i} is a power of p, say p^{e}; while $p^{e} \mid n_{i} p$ implies that $e \leq 1$.) But this contradicts our choice of $p a_{i}$ as a generator of a direct summand of $p A$. Thus the subgroup $B \subset A$ is expressed as a direct sum

$$
B=\left\langle a_{1}\right\rangle \oplus \cdots \oplus\left\langle a_{r}\right\rangle
$$

Let

$$
K=\{a \in A: p a=0\} .
$$

Then

$$
A=B+K
$$

For suppose $a \in A$. Then $p a \in p A$, and so

$$
p a=n_{1}\left(p a_{1}\right)+\cdots+n_{r}\left(p a_{r}\right)
$$

for some $n_{1}, \ldots, n_{r} \in \mathbb{Z}$. Thus

$$
p\left(a-n_{1} a_{1}-\cdots-n_{r} a_{r}\right)=0
$$

and so

$$
a-n_{1} a_{1}-\cdots-n_{r} a_{r}=k \in K .
$$

Hence

$$
a=\left(n_{1} a_{1}+\cdots+n_{r} a_{r}\right)+k \in B+K .
$$

If $B=A$ then all is done. If not, then $K \not \subset B$, and so we can find $k_{1} \in K, k_{1} \notin B$. Now the sum

$$
B_{1}=B+\left\langle k_{1}\right\rangle
$$

is direct. For $\left\langle k_{1}\right\rangle$ is a cyclic group of order p, and so has no proper subgroups. Thus

$$
B \cap\left\langle k_{1}\right\rangle=\{0\},
$$

and so

$$
B_{1}=B \oplus\left\langle k_{1}\right\rangle
$$

If now $B_{1}=A$ we are done. If not we can repeat the construction, by choosing $k_{2} \in K, k_{2} \notin B_{1}$. As before, this gives us a direct sum

$$
B_{2}=B_{1} \oplus\left\langle k_{2}\right\rangle=B \oplus\left\langle k_{1}\right\rangle \oplus\left\langle k_{2}\right\rangle .
$$

Continuing in this way, the construction must end after a finite number of steps (since A is finite):

$$
\begin{aligned}
A=B_{s} & =B \oplus\left\langle k_{1}\right\rangle \oplus \cdots \oplus\left\langle k_{s}\right\rangle \\
& =\left\langle a_{1}\right\rangle \oplus \cdots \oplus\left\langle a_{r}\right\rangle \oplus\left\langle k_{1}\right\rangle \oplus \cdots \oplus\left\langle k_{s}\right\rangle .
\end{aligned}
$$

A. 4 Uniqueness

Proposition A.5. The powers $p^{e_{1}}, \ldots, p^{e_{r}}$ in the above decomposition are uniquely determined by A.

Proof. This follows by induction on $\#(A)$. For if A has the form given in the theorem then

$$
p A=\mathbb{Z} /\left(p^{e_{1}-1}\right) \oplus \cdots \oplus \mathbb{Z} /\left(p^{e_{r}-1}\right) .
$$

Thus if $e>1$ then $\mathbb{Z} /\left(p^{e}\right)$ occurs as often in A as $\mathbb{Z} /\left(p^{e-1}\right)$ does in $p A$. It only remains to deal with the factors $\mathbb{Z} /(p)$. But the number of these is now determined by the order $\|A\|$ of the group.

A. 5 Note

Note that while the Structure Theorem states that A can be expressed as a direct sum of cyclic subgroups of prime-power order, these subgroups will not in general be unique, although their orders will be.

The only case in which the expression will be unique is if A is cyclic, ie if $A=\mathbb{Z} /(n)$. For in this case each p-component A_{p} is also cyclic, since every subgroup of a cyclic abelian group is cyclic. Thus the expression for A as a direct sum in the Theorem is just the splitting of A into its p-components A_{p}; and we know that this is unique.

Conversely, if A is not cyclic, then some component A_{p} is not cyclic, and we have seen that in this case the splitting is not unique.

