
Appendix A

The Structure of Finite Abelian
Groups

A.1 The Structure Theorem

Theorem A.1. Every finite abelian group A can be expressed as a direct
sum of cyclic groups of prime-power order:

A = Z/(pe1
1 )⊕ · · · ⊕ Z/(per

r ).

Moreover the powers pe1
1 , . . . , per

r are uniquely determined by A.

Note that the primes p1, . . . , pr are not necessarily distinct.
We prove the result in two parts. First we divide A into its primary

components Ap. Then we show that each of these components is expressible
as a direct sum of cyclic groups of prime-power order.

A.2 Primary decomposition

Proposition A.1. Suppose A is a finite abelian group. For each prime p,
the elements of order pn in A for some n ∈ N form a subgroup

Ap = {a ∈ A : pna = 0 for some n ∈ N}.

Proof. Suppose a, b ∈ Ap. Then

pma = 0, pnb = 0,

for some m, n. Hence
pm+n(a + b) = 0,

and so a + b ∈ Ap.
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Definition A.1. We call the Ap the primary components or p-component
of A.

Proposition A.2. A finite abelian group A is the direct sum of its primary
components Ap:

F = ⊕pAp.

Proof. Suppose a ∈ A By Lagrange’s Theorem, na = 0 for some n > 0 Let

n = pe1
1 · · · per

r ;

and set
mi = n/epi

i .

Then gcd(m1, . . . ,mr) = 1, and so we can find n1, . . . , nr such that

m1n1 + · · ·+ mrnr = 1.

Thus
a = a1 + · · ·+ ar,

where
ai = minia.

But
pei

i ai = (pei
i mi)nia = nnia = 0

(since na = 0). Hence
ai ∈ Api

.

Thus A is the sum of the subgroups Ap.
To see that this sum is direct, suppose

a1 + · · ·+ ar = 0,

where ai ∈ Api
, with distinct primes p1, . . . , pr. Suppose

pei
i ai = 0.

Let
mi = pe1

1 · · · p
ei−1

i−1 p
ei+1

i+1 · · · per
r .

Then
miaj = 0 if i 6= j.

Thus (multiplying the given relation by mi),

miai = 0.

But gcd(mi, p
ei
i ) = 1. Hence we can find m, n such that

mmi + npei
i = 1.

But then
ai = m(miai) + n(pei

i ai) = 0.

We conclude that A is the direct sum of its p-components Ap.

Proposition A.3. If A is a finite abelian group then Ap = 0 for almost all
p, ie for all but a finite number of p.

Proof. If A has order n then by Lagrange’s Theorem the order of each element
a ∈ A divides n. Thus Ap = 0 if p - n.
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A.3 Decomposition of the primary compo-

nents

We suppose in this Section that A is a finite abelian p-group (ie each element
is of order pe for some e).

Proposition A.4. A can be expressed as a direct sum of cyclic p-groups:

A = Z/(pe1)⊕ · · · ⊕ Z/(per).

Proof. We argue by induction on #(A) = pn. We may assume therefore that
the result holds for the subgroup

pA = {pa : a ∈ A}.

For pA is stricty smaller than A, since

pA = A =⇒ pnA = A,

while we know from Lagrange’s Theorem that pnA = 0.
Suppose

pA = 〈pa1〉 ⊕ · · · ⊕ 〈par〉.
Then the sum

〈a1〉+ · · ·+ 〈ar〉 = B,

say, is direct. For suppose

n1a1 + · · ·+ nrar = 0.

If p | n1, . . . , nr, say ni = pmi, then we can write the relation in the form

m1(pa1) + · · ·+ mr(par) = 0,

whence mipai = niai = 0 for all i.
On the other hand, if p does not divide all the ni then

n1(pa1) + · · ·+ nr(par) = 0,

and so pniai = 0 for all i. But if p - ni this implies that pai = 0. (For the
order of ai is a power of p, say pe; while pe | nip implies that e ≤ 1.) But
this contradicts our choice of pai as a generator of a direct summand of pA.
Thus the subgroup B ⊂ A is expressed as a direct sum

B = 〈a1〉 ⊕ · · · ⊕ 〈ar〉.

Let
K = {a ∈ A : pa = 0}.

Then
A = B + K.

For suppose a ∈ A. Then pa ∈ pA, and so

pa = n1(pa1) + · · ·+ nr(par)

for some n1, . . . , nr ∈ Z. Thus

p(a− n1a1 − · · · − nrar) = 0,
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and so
a− n1a1 − · · · − nrar = k ∈ K.

Hence
a = (n1a1 + · · ·+ nrar) + k ∈ B + K.

If B = A then all is done. If not, then K 6⊂ B, and so we can find
k1 ∈ K, k1 /∈ B. Now the sum

B1 = B + 〈k1〉

is direct. For 〈k1〉 is a cyclic group of order p, and so has no proper subgroups.
Thus

B ∩ 〈k1〉 = {0},
and so

B1 = B ⊕ 〈k1〉
If now B1 = A we are done. If not we can repeat the construction, by

choosing k2 ∈ K, k2 /∈ B1. As before, this gives us a direct sum

B2 = B1 ⊕ 〈k2〉 = B ⊕ 〈k1〉 ⊕ 〈k2〉.

Continuing in this way, the construction must end after a finite number
of steps (since A is finite):

A = Bs = B ⊕ 〈k1〉 ⊕ · · · ⊕ 〈ks〉
= 〈a1〉 ⊕ · · · ⊕ 〈ar〉 ⊕ 〈k1〉 ⊕ · · · ⊕ 〈ks〉.

A.4 Uniqueness

Proposition A.5. The powers pe1 , . . . , per in the above decomposition are
uniquely determined by A.

Proof. This follows by induction on #(A). For if A has the form given in the
theorem then

pA = Z/(pe1−1)⊕ · · · ⊕ Z/(per−1).

Thus if e > 1 then Z/(pe) occurs as often in A as Z/(pe−1) does in pA. It
only remains to deal with the factors Z/(p). But the number of these is now
determined by the order ‖A‖ of the group.

A.5 Note

Note that while the Structure Theorem states that A can be expressed as
a direct sum of cyclic subgroups of prime-power order, these subgroups will
not in general be unique, although their orders will be.

The only case in which the expression will be unique is if A is cyclic, ie if
A = Z/(n). For in this case each p-component Ap is also cyclic, since every
subgroup of a cyclic abelian group is cyclic. Thus the expression for A as a
direct sum in the Theorem is just the splitting of A into its p-components
Ap; and we know that this is unique.

Conversely, if A is not cyclic, then some component Ap is not cyclic, and
we have seen that in this case the splitting is not unique.
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