Exercise 17

In exercises 1-10, determine the continued fraction of the given number.
** 1. $\frac{17}{5}$
** 2. $\frac{5}{17}$
** 3. $-\frac{7}{8}$
** 4. $\frac{1001}{10001}$
** 5. $\frac{2317}{2009}$
*** 6 . $\sqrt{3}$
*** 7 . $\sqrt{7}$
*** 8. $\sqrt{11}$
*** 9. $\frac{\sqrt{3}+1}{2}$
*** 10. $7 \sqrt{3}$
*** 11. Suppose the quadratic surd

$$
\alpha=\left[a_{0}, a_{1}, \ldots\right]
$$

satisfies the equation

$$
A x^{2}+2 B x+c=0
$$

where $A, B, C \in \mathbb{Z}$ with $\operatorname{gcd}(A, B, C)=1$. If the corresponding equation for

$$
\alpha_{n}=\left[a_{n}, a_{n+1}, \ldots\right]
$$

is

$$
A_{n} x^{2}+2 B_{n} x+c_{n}=0
$$

show that

$$
B^{2}-A C=B_{n}^{2}-A_{n} C_{n}
$$

*** 12. Find the first 5 convergents to π.
***** 13. Show that

$$
e=[2,1,2,1,1,4,1,1,6, \ldots] .
$$

