Exercise 16

- *** 1. Determine which rational primes p split in the real number ring $\mathbb{Z}[\sqrt{3}]$. In exercises 2-5, determine the prime factorisation of the given number in the ring $\mathbb{Z}[\sqrt{3}]$.
- *** 2. -2
- ** 3. 3
- *** 4. 7
- *** 5. $1 + \sqrt{3}$
- *** 6. Show that the real number ring $\mathbb{Z}[\sqrt{2}]$ is a Unique Factorisation Domain, and determine the primes in this ring.

In exercises 7-10, determine the prime factorisation of the given number in the ring $\mathbb{Z}[\sqrt{2}]$.

- *** 7. 2
- *** 8. 7
- *** 9. $2 + \sqrt{2}$
- *** 10. $3 + \sqrt{3}$
- *** 11. Show that the ring $\mathbb{Z}[\sqrt{5}]$ is not a Unique Factorisation Domain. [Note: this is not the number ring associated to the field $\mathbb{Q}(\sqrt{5})$.]
- *** 12. Show that the imaginary number ring $\mathbb{Z}[\omega]$ (where $\omega^3 = 1, \ \omega \neq 1$) is a Unique Factorisation Domain, and determine the primes in this ring.

In exercises 13-15, determine the prime factorisation of the given number in the ring $\mathbb{Z}[\omega]$.

- *** 13. 1ω
- *** 14. $2 + \omega$
- *** 15. 2ω
- *** 16. Show that the imaginary number ring $\mathbb{Z}[\sqrt{-5}]$ is not a Unique Factorisation Domain, by considering the factorisations of the number 6 in this ring, or in any other way.
- **** 17. Determine if the imaginary number ring $\mathbb{Z}[\sqrt{-6}]$ is a Unique Factorisation Domain.
- **** 18. Determine if the imaginary number ring $\mathbb{Z}[\sqrt{-7}]$ is a Unique Factorisation Domain.
- **** 19. Show that the real number ring $\mathbb{Z}[\sqrt{6}]$ is a Unique Factorisation Domain.
- **** 20. Show that the real number ring $\mathbb{Z}[\sqrt{7}]$ is a Unique Factorisation Domain.