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Exercise 16

Determine which rational primes p split in the real number ring Z[\/g]

In exercises 2-5, determine the prime factorisation of the given number
in the ring Z[v/3].
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Show that the real number ring Z[v/2] is a Unique Factorisation Do-

main, and determine the primes in this ring.

In exercises 7-10, determine the prime factorisation of the given num-
ber in the ring Z[v/2].
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Show that the ring Z[v/5] is not a Unique Factorisation Domain.
[Note: this is not the number ring associated to the field Q(v/5).]
Show that the imaginary number ring Z[w] (where w® = 1, w # 1)
is a Unique Factorisation Domain, and determine the primes in this
ring.

In exercises 13-15, determine the prime factorisation of the given num-
ber in the ring Z[w].
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Show that the imaginary number ring Z[v/—5| is not a Unique Fac-
torisation Domain, by considering the factorisations of the number 6
in this ring, or in any other way.

. Determine if the imaginary number ring Z[/—6] is a Unique Factori-

sation Domain.

Determine if the imaginary number ring Z[/—7| is a Unique Factori-
sation Domain.

Show that the real number ring Z[v/6] is a Unique Factorisation Do-
main.

Show that the real number ring Z[v/7] is a Unique Factorisation Do-
main.
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