## Exercise 16

*** 1 . Determine which rational primes $p$ split in the real number ring $\mathbb{Z}[\sqrt{3}]$. In exercises 2-5, determine the prime factorisation of the given number in the ring $\mathbb{Z}[\sqrt{3}]$.
*** 2. -2
** 3. 3
*** 4. 7
*** 5. $1+\sqrt{3}$
${ }^{* * *} 6$. Show that the real number ring $\mathbb{Z}[\sqrt{2}]$ is a Unique Factorisation Domain, and determine the primes in this ring.
In exercises $7-10$, determine the prime factorisation of the given number in the ring $\mathbb{Z}[\sqrt{2}]$.
*** 7. 2
*** 8.7
*** 9. $2+\sqrt{2}$
*** 10. $3+\sqrt{3}$
*** 11. Show that the ring $\mathbb{Z}[\sqrt{5}]$ is not a Unique Factorisation Domain. [Note: this is not the number ring associated to the field $\mathbb{Q}(\sqrt{5})$.]
*** 12 . Show that the imaginary number ring $\mathbb{Z}[\omega]$ (where $\omega^{3}=1, \omega \neq 1$ ) is a Unique Factorisation Domain, and determine the primes in this ring.
In exercises 13-15, determine the prime factorisation of the given number in the ring $\mathbb{Z}[\omega]$.
*** 13. $1-\omega$
*** 14. $2+\omega$
*** 15. $2-\omega$
*** 16 . Show that the imaginary number ring $\mathbb{Z}[\sqrt{-5}]$ is not a Unique Factorisation Domain, by considering the factorisations of the number 6 in this ring, or in any other way.
$* * * * 17$. Determine if the imaginary number ring $\mathbb{Z}[\sqrt{-6}]$ is a Unique Factorisation Domain.
$* * * *$ 18. Determine if the imaginary number ring $\mathbb{Z}[\sqrt{-7}]$ is a Unique Factorisation Domain.
**** 19. Show that the real number ring $\mathbb{Z}[\sqrt{6}]$ is a Unique Factorisation Domain.
**** 20. Show that the real number ring $\mathbb{Z}[\sqrt{7}]$ is a Unique Factorisation Domain.

