Exercise 12

In exercises 1-5, determine the gcd of the given gaussian integers

- ** 1. gcd(3+2i,2+3i)
- ** 2. gcd(12, 9 3i)
- ** 3. gcd(5-5i, 3+i)
- ** 4. gcd(99, 17)
- ** 5. gcd(13 + 2i, 7 11i)In exercises 6-10, factorise the given gaussian integer into (gaussian) primes.
- ** $6. \ 3 + 5i$
- ** 7. 5 + 3i
- *** 8. 23 + 17i
- ** 9. 11 + 2i
- ** 10. 29 i

In exercises 11-15, either express the given number as a sum of two squares, or else show that this is not possibles.

- ** 11. 233
- ** 12. 317
- ** 13. 613
- ** 14. 1009
- ** 15. 2010
- *** 16. Find a formula expressing

$$(x^2 + y^2 + z^2 + t^2)(X^2 + Y^2 + Z^2 + T^2)$$

as a sum of 4 squares.

- *** 17. Show that every prime p can be expressed as a sum of 4 squares.
 - ** 18. Deduce from the last 2 exercises that every $n \in \mathbb{N}$ can be expressed as a sum of 4 squares.
 - ** 19. Show that if $n \equiv 7 \mod 8$ then n cannot be expressed as a sum of 3 squares.
- *** 20. Show that if $n = 4^e(8m + 7)$ then n cannot be expressed as a sum of 3 squares.

*** 21. Suppose $p \equiv 1 \mod 4$ is prime. If $p = m^2 + n^2$, find $u, v \in \mathbb{N}$ such that

$$2p = u^2 + v^2,$$

and show that this representation of 2p as a sum of 2 squares is unique.

**** 22. Show that if p is a prime such that

$$2p = n^2 + 1$$

then p is the sum of the squares of two consecutive integers.

*** 23. Show that if the prime $p = m^2 + n^2$ and $p \equiv \pm 1 \mod 10$ then

$$5 \mid xy$$
.

- *** 24. Find the smallest $n \in \mathbb{N}$ such that n, n+1, n+2 are each a sum of 2 squares, but none is a perfect square.
- **** 25. Show that there are arbitrarily long gaps between successive integers expressible as a sum of 2 squares.