Exercise 12

In exercises 1-5, determine the gcd of the given gaussian integers
** 1. $\operatorname{gcd}(3+2 i, 2+3 i)$
** 2. $\operatorname{gcd}(12,9-3 i)$
** 3. $\operatorname{gcd}(5-5 i, 3+i)$
** 4. $\operatorname{gcd}(99,17)$
** 5. $\operatorname{gcd}(13+2 i, 7-11 i)$
In exercises 6-10, factorise the given gaussian integer into (gaussian) primes.
** 6. $3+5 i$
** 7. $5+3 i$
*** 8. $23+17 i$
** 9. $11+2 i$
** 10. $29-i$
In exercises 11-15, either express the given number as a sum of two squares, or else show that this is not possibles.
** 11. 233
** 12. 317
** 13. 613
** 14. 1009
** 15. 2010
*** 16. Find a formula expressing

$$
\left(x^{2}+y^{2}+z^{2}+t^{2}\right)\left(X^{2}+Y^{2}+Z^{2}+T^{2}\right)
$$

as a sum of 4 squares.
*** 17. Show that every prime p can be expressed as a sum of 4 squares.
** 18. Deduce from the last 2 exercises that every $n \in \mathbb{N}$ can be expressed as a sum of 4 squares.
** 19. Show that if $n \equiv 7 \bmod 8$ then n cannot be expressed as a sum of 3 squares.
*** 20. Show that if $n=4^{e}(8 m+7)$ then n cannot be expressed as a sum of 3 squares.
*** 21. Suppose $p \equiv 1 \bmod 4$ is prime. If $p=m^{2}+n^{2}$, find $u, v \in \mathbb{N}$ such that

$$
2 p=u^{2}+v^{2}
$$

and show that this representation of $2 p$ as a sum of 2 squares is unique.
**** 22. Show that if p is a prime such that

$$
2 p=n^{2}+1
$$

then p is the sum of the squares of two consecutive integers.
${ }^{* * *} 23$. Show that if the prime $p=m^{2}+n^{2}$ and $p \equiv \pm 1 \bmod 10$ then

$$
5 \mid x y .
$$

*** 24. Find the smallest $n \in \mathbb{N}$ such that $n, n+1, n+2$ are each a sum of 2 squares, but none is a perfect square.
**** 25 . Show that there are arbitrarily long gaps between successive integers expressible as a sum of 2 squares.

