Exercise 5

In Exercises 1-16 determine all solutions of the given congruence.

* 1. $3 x \equiv 1 \bmod 23$
* 2. $7 x \equiv 1 \bmod 47$
** 3. $5 x \equiv 2 \bmod 210$
** 4. $6 x \equiv 7 \bmod 25$
** 5. $8 x \equiv 5 \bmod 31$
** $6.8 x \equiv 12 \bmod 32$
** 7. $12 x \equiv 6 \bmod 21$
** $8.2 x \equiv 2 \bmod 16$
** 9. $20 x \equiv 8 \bmod 24$
*** 10. $7 x \equiv-3 \bmod 2009$
** $11 . x^{2} \equiv 1 \bmod 12$
** 12. $x^{2} \equiv-1 \bmod 15$
** 13. $x^{2}+x+1 \equiv 0 \bmod 3$
** 14. $x^{2}-2 x+3 \equiv 0 \bmod 5$
** 15. $x^{2}-2 \equiv 0 \bmod 7$
*** 16. $x^{4}+2 x^{2}+x-2 \equiv 0 \bmod 7$
$* 17$. What is the order of 10 in the additive group $\mathbb{Z} /(24)$?
** 18. Determine the orders of the elements $7,11,21$ in the multiplicative group $(\mathbb{Z} / 36)^{\times}$.
** 19. What is the order of the group $(\mathbb{Z} / 36)^{\times}$?
*** 20 . Is the group $(\mathbb{Z} / 36)^{\times}$cyclic?
${ }^{* * *}$ 21. Is Christmas equally likely to take place on any day of the week?
**** 22. Given integers $x_{1}, x_{2}, \ldots, x_{11}$, show that there exists a finite sequence a_{1}, \ldots, a_{11} of numbers from $\{-1,0,1\}$ such that the sum

$$
a_{1} x_{1}+\ldots+a_{11} x_{11}
$$

is divisible by 2009 .
${ }^{* * *} 23$. Construct the field containing 4 elements.
**** 24. Show that there is no field containing 6 elements.
$* * * 25$. Determine the orders of all the elements in \mathbb{F}_{11}^{\times}?
${ }^{* *} 26$. What is the order of the multiplicative group \mathbb{F}_{q}^{\times}?
*** 27. How many elements are there of order 4 in \mathbb{F}_{17}^{\times}?
*** 28. Prove that there is a multiple of 2009 which ends with the digits 000001.

