Exercise 1

In exercises 1-3 determine the gcd d of the given numbers m, n and find integers x, y such that $d=m x+m y$.

* 1. 23, 39
* 2. $87,-144$
* 3. 2317, 2009.
** 4. Given integers $m, n>0$ with $\operatorname{gcd}(m, n)=1$ show that all integers $N \geq m n$ are expressible in the form

$$
N=m x+n y
$$

with $x, y \geq 0$.
** 5. Find the greatest integer n not expressible in the form

$$
n=17 x+23 y
$$

with $x, y \geq 0$.
${ }^{* * *} 6$. Which integers n are not expressible in the form

$$
n=17 x-23 y
$$

with $x, y \geq 0$?
** 7. Define the gcd

$$
d=\operatorname{gcd}\left(n_{1}, n_{2}, \ldots, n_{r}\right)
$$

of a finite set of integers $n_{1}, n_{2}, \ldots, n_{r} \in \mathbb{Z}$; and show that there exist integers $x_{1}, x_{2}, \ldots, x_{r} \in \mathbb{Z}$ such that

$$
n_{1} x_{1}+n_{2} x_{2}+\cdots+n_{r} x_{r}=d .
$$

* 8. Find $x, y, z \in \mathbb{Z}$ such that

$$
24 x+30 y+45 z=1 .
$$

*** 9. How many ways are there of paying $€ 10$ in 1,2 and 5 cent pieces?
** 10. Show that if $m, n>0$ then

$$
\operatorname{gcd}(m, n) \times \operatorname{lcm}(m, n)=m n .
$$

*** 11. Show that if $m, n>0$ then

$$
\operatorname{gcd}(m+n, m n)=\operatorname{gcd}(m, n) .
$$

** 12. Show that if $n \geq 9$ and both $n-2$ and $n+2$ are prime then $3 \mid n$.
*** 13. Suppose

$$
f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}
$$

where $a_{0}, a_{1}, \ldots, a_{n} \in \mathbb{Z}$. Show that $f(n)$ cannot be a prime for all n unless $f(x)$ is constant.
*** 14. Find all integers $m, n>1$ such that

$$
m^{n}=n^{m} .
$$

${ }^{* * *} 15$. If $p^{e} \| n$! show that

$$
e=[n / p]+\left[n / p^{2}\right]+\left[n / p^{3}\right]+\cdots .
$$

[Note: if p is a prime we say that p^{e} exactly divides N, and we write $p \| N$ if $p^{e} \mid N$ but $\left.p^{e+1} \nmid N.\right]$
*** 16. How many zeros does 1000 ! end with?
*** 17. Prove that n ! divides the product of any n successive integers.
*** 18. If F_{n} is the nth Fibonacci number, show that

$$
\operatorname{gcd}\left(F_{n}, F_{n+1}\right)=1
$$

and

$$
\operatorname{gcd}\left(F_{n}, F_{n+2}\right)=1
$$

[Note: $F_{0}=1, F_{1}=2$ and $F_{n+2}=F_{n}+F_{n+1}$.]
** 19. Use the program /usr/games/primes on the mathematics computer system to find the next 10 primes after 1 million. [You can find how to use this program by giving the command man primes.]
** 20. Use the program /usr/games/factor on the mathematics computer system to factorise 123456789. [You can find how to use this program by giving the command man factor.]
** 21. Show that the product of two successive integers cannot be a perfect square.
*** 22. Can the product of three successive integers be a perfect square?
$* * * * * 23$. Show that there are an infinity of integers $x, y, z>1$ such that

$$
x^{x} y^{y}=z^{z} .
$$

