Chapter 1

Linear groups

We begin, as we shall end, with the classical groups—those familiar groups
of matrices encountered in every branch of mathematics. At the outset, they
serve as a library of linear groups, with which to illustrate our theory. Later
we shall find that these same groups also serve as the building-blocks for the
theory.

Definition 1.1 A linear group is a closed subgroup GfL(n, R).

Remarks:

1. We could equally well say thatA linear group is a closed subgroup of
GL(n,C). For as we shall see shortkgL(n, C) has an isomorphic im-
age as a closed subgroup GiL(2n, R); while conversely it is clear that
GL(n,R) can be regarded as a closed subgrougbin, C).

2. By GL(n, k) (wherek = R or C) we mean the group of invertible x n
matrices, ie

GL(n, k) ={T € M(n,k) : det T # 0}

whereM(n, k) denotes the space of all x n real or complex matrices
(according ag = R or C).

3. We define a nornj.X || onM(n, k) by

s v 2 [ B(XX) k=R,
111 —%:IXM _{tr(X*X> if k = C,

where as usuakK’ denotes the transpose aid the conjugate transpose.
This is just the usual Euclidean norm, if we identN§(n, k) with £V, where
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N = n?, by taking as the coordinates of the matkixts n? entriesX;;. The
requirement that a linear group should be close@:in(n, k) refers to this
metric topology. In other words, if'(i) is a sequence of matrices (#
tending towards the matrik € GL(n, k), ie

|T(i) = T| — 0,
thenT must in fact lie inG.

Examples:
1. Thegeneral linear grougGL(n, R)

2. Thespecial linear group

SL(n,R) ={T € GL(n,R) : det(T") = 1}

3. Theorthogonal group

O(n) = {T € GL(n,R) : T'T = I}

In other words
O(n) ={T:Q(Tv) =Q(v) YveR"},

where
Q) =al+...+ 22 (v=(21,...,2,) € R"),

ie O(n) is the subgroup ofxL(n, R) leaving the quadratic form invariant.

4. Thespecial orthogonal group

SO(n) = O(n) N SL(n)

5. Thecomplex general linear grou@L(n, C). This calls for some explana-
tion, sinceGL(n, C) is not a group of real matrices, as required by Defini-
tion 1. However, we can represent each complex matrix M (n, C) by a
real matrixRZ € M(2n, R) in the following way. (Compare the “realifica-
tion” of a representation discussed in Part | Chapter 11.)

If we “forget” scalar multiplication by non-reals, the complex vector space
V' = C" becomes a real vector spdk&” of twice the dimension, with basis
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Moreover each matri¥ € M(n, C), ie each linear map
Z:V =V

defines a linear map
RZ : RV — RV,

ie a matrixRZ € M(2n, R).
Concretely, in passing frof to RZ each entry

Zik = Xjr + 1Yk

is replaced by the x 2 matrix
Xik —Yjk
Yie Xjk

Z — RZ:M(n,C) — M(2n,R)

is injective; and it preserves the algebraic structure, ie

The map

o R(Z+W)=RZ+RW
o R(ZW) = (RZ)(RW)
(aZ) =a(RZ) VaeR
=1
(z

1
)= (RZ).

R
R

=

o R

It follows in particular thalR 7 is invertible if and only ifZ is; SOR restricts

to a map
Z — RZ : GL(n,C) — GL(2n,R).

Whenever we speak d&L(n,C), or more generally of any grou@ of
complex matrices, as a linear group, it is understood that we refer to the

imageRG of G under this injectiorR.

The matrixX € GL(2n,R) belongs toGL(n, C) if is built out of 2 x 2

matrices of the form

(0
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This can be expressed more neatly as follows. Let

ol — J = 0 —1

Since any scalar multiple of the identity commutes with all matrices,
X eM(n,C) = (il)X = X(il).
Applying the operatoR,
X e RM(n,C) = JX = X J.

Converseley, it X = X J then itis readily verified thaX is of the required
form. Thus

RM(n,C) = {X € M(2n,R) : JX = XJ};

and in particular

GL(n,C) = {T € GL(2n,R) : JX = XJ}

. Thecomplex special linear group

SL(n,C) ={T € GL(n,C) : detT =1}

Note that the determinant here must be computéd in, C), notinM(2n, R).
Thus
T=(1i)¢SL(1,0),

although
0 -1
RT_<1 0 >ESL(2,R).

. Theunitary group

U(n) ={T € GL(n,C) : T*T = I}

whereT™* denotes the complex transpose€lofin other words

U(n)={T: H(Tv) = H(v) Yve C"},
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whereH is the Hermitian form
HW) = |z + ...+ |2,)? (v="(21,...,2,) €C").

SinceR(7T™) = (RT')’, a complex matrix is unitary if and only if its real
counterpart is orthogonal:

U(n) = GL(n,C) N O(2n)

. Thespecial unitary group

SU(n) = U(n) N SL(n,C)

. Thequaternionic general linear grouL(n, H). The quaternions
g=t+zityj+zk (t,z,y,2 €R),

with multiplication defined by

P= =k =-1, jk=—kj=i, ki=—ik=j, ij=—ji=k

form adivision algebraor skew field For the product of any quaternion
qg=t+xi+yj+zk

with its conjugate
g=t—xt—yj— zk
gives itsnorm-square
lqll* = qg = £ + 2% + y* + 2%,
so that ifq # 0, ~
¢ l=
lall?

We can equally well regarél as a 2-dimensional algebra ov@ywith each
quaternion taking the form

g=z+wj (z,weC),

and multiplication inH being defined by the rules

jz=7j, j° = -1
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Surprisingly perhaps, the entire apparatus of linear algebra extends almost
unchanged to the case ofr@n-commutativescalar field. Thus we may
speak of am-dimensional vector spad& overH, of a linear mag : W —

W, etc.

A quaternionic vector spacl’ defines a complex vector spa€8V by
“forgetting” scalar multiplication by non-complex quaternions (ie those in-
volving j or k), in just the same way as a complex vector spdagefines

a real vector spacRV. If W has quaternionic dimensiomn, with basis
{e1,€9,...,e,}, thenCW has complex dimensia2n, with basis

{617j617627j627 s >en>jen}-

Moreover each matrig) € M(n, H), ie each linear map
Q- W-—-Ww

defines a linear map
CQ : CW — CW,

ie a matrixCQ) € M(2n, C).
Concretely, in passing from” to CIW each entry

Qr,s = Zr,s + iWr,s

is replaced by the x 2 complex matrix
Zr,s _Wr,s
WT‘,S ZT‘,S

Q — CQ : M(n,H) — M(2n,C)
is injective; and it preserves the algebraic structure, ie
Q+Q)=CQ+Cq

C(
C(RR) = (CQ)(CQ")
C(aQ) = a(CQ) VYaeC

The map

[ ]
/—\
v
/\
\/
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In this last relation)* denotes the quaternionic matrix with entries
(Q*)rs = @

To identify M(n,H) as a subspace a@¥1(2n,C), consider the automor-

phism of H

g q=7jaj"

In terms of its 2 complex components,
q=z4+wj—q=2z+wj.

(Note thatg # ¢; indeed, the map — ¢ is not an automorphism dfl, but
an anti-automorphism.)

Let J denote the diagonal matrix
j 0
J=101J € M(n, H);
and consider the map
Q— Q=JQJ: M(n,H) — M(n, H).

We see from above that

C(Q) =CQ,
whereX denotes (forX € M(n, C)) the matrix with entries
Xr,s = Xr,s-
Now
0 -1
1 0
J— CJ = 0 -1 ,
1 0

which we take the liberty of also denoting by(as we did earlier, when
defining the embedding d&L(n, C) in GL(2n, R), although there we re-
garded/ as a real matrix rather than a complex one).

Thus
M(n,H) C {X € M(2n,C) : JXJ ! = X}
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10.

Conversely, it is readily verified that if X J~! = X, thenX is constructed
from 2 x 2 matrices of the form specified above, and so arises from a quater-
nionic matrix. Hence

M(n, H) = {X € M(2n,C) : JXJ ' = X}

It follows from the properties of the maplisted above that if) is invertible
then so iSCQ; soC restricts to a map

T — CT : GL(n,H) — GL(2n,C).

In fact, our argument above gives the concrete embedding

GL(n,H) = {T € GL(2n,C) : JTJ ' =T}

Thesymplectic group

Sp(n) ={T € GL(n,H) : T*T = I}

Since(CT)* = C(T™) it follows that
T € Sp(n) = (CT)*(CT) =1,

and so

Sp(n) = GL(n,H) N U(2n)

Thus
Sp(n) = {T € GL(2n,C) : JTJ ' =T & TT* = I}.
SinceT ! = T’ from the second relation, the first relation can be re-written
TJT = J.

This gives an alternative description of the symplectic group:

Sp(n) ={U e U(2n) : U'JU = J}

In other words,Sp(n) consists of those unitary matrices leaving invariant
the skew-symmetric form

J(,y) = 1Yo — Toy1 + T3Ys — Tays + . . . + Ton_1Y2n — TanYon—1.
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11. ThelLorentz group

0(1,3) = {T € GL(4,R) : G(Tv) = G(v) Vv e€R*}

whereG is the space-time metric

Gv) =t —a2% —y* — 2

In matrix terms
O(1,3) ={T : T'GT = G},

where
1 0 0 0
0 -1 0 0
G= 0O 0 -1 0
0O 0 0 -1



424-111 1-10

Exercises

1.

N o &

Prove that every linear group liscally compact (Hint: Show that every
open subset, and every closed subset, of a locally compact space is locally
compact.)

Show that
SO(2) 2 U(1), Sp(l)=SU(2).

Show that ifG and H are linear groups the@@ x H is linearisableg ie there
is a linear group isomorphic 6 x H.

Show that there is a discrete linear group isomorphic to any finite group
Show that there is a discrete linear group isomorphi£to
Show thaR is linearisable.
Show thalR* is linearisable. Show also that
R* =R x Cy
(whereC, denotes the cyclic group of order 2).
Show thatC is linearisable.
Show thatC* is linearisable. Show also that
C2Cx@G

for any topological groug-.



Chapter 2
The Exponential Map

Napier introduced logarithms to convert difficult multiplication into easy
addition. Our motivation is much the same, though we are dealing with
matrices rather than numbers. As in the numerical case, it is simpler to
start with the exponential function—defined by an everywhere convergent
matrix power-series—and derive the logarithmic function as the inverse in a
suitable restricted zone.

Proposition 2.1 For each matrixX € M(n, k) (wherek = R or C) the exponen-

tial sequence
Xz X3
[+ X+ 5r+ 5+

converges.

Proof » In Chapter 1 we defined the nonjX'|| on M(n, k) by
X112 = D111,
2

In other words,
X2 = tr(X'X) ifk=R
| tr(X*X) ifk=C
Lemmaz2.1 1. || X+Y]| <|X]|+]|Y]
2. || XY < [IXTH[Y
3. [[aX|| = lal[| X][(a € k)
Proof of Lemma- We suppose thdt = C; the real case is identical, witk’ in

place of X*.

42411 2-1
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1. We know that
tr 2*7 = || Z||* > 0

forall Z € M(n, k). SettingZ = X + \Y (where\ € R),
tr XX + A (tr XY +trY*X) + A2 tr Y'Y >0
forall A € R. Hence
|tr X*Y +tr Y X2 < 4] X2 Y7

and so
| tr XY + tr Y X| <2/ X||||Y]].

We note for future reference th#dt X and Y are hermitian ie X* =
X, Y*=Y, thentr X*Y =tr XY =trYX =trY*X; and so

X, Y hermitian—= tr XY < || X||||Y |l

But now (taking\ = 1),

IX+Y[* = |IX|?+te(X*Y +Y*X) + ||V
< X+ 20XV + 1Y%
whence
X + Y| <[ X[+ [[Y]].
2. We have
\|XY||2 = tr(XY)' XY
= trY*X*'XY
= tr X*XYY*
= tr PQ,
where

P=X'X, Q=YY"

These 2 matrices are hermitian and positive-definite; and
IX[P=te P, V] =tr@.
Thus it is sufficient to show that for any 2 such matrices

tr PQ < tr PtrQ.
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But as we noted in the first part of the proof,

tr PQ < || P||Q].
It is sufficient therefore to show that

|P|| < trP.
for any positive hermition matrix'. Since
| P||? = tr P*P = tr(P?),

this is equivalent to proving that

tr(P?) < (tr P)*.
But if the eigenvalues of are )y, . .., \,, then those of*? are)?, ... \2,
and

tr(P?) =M+ 4+ X< (M + -+ \)2 = (tr P)2

since)\; > 0 for all <.
For a ‘tensorial’ proof of this result, Ief denote the ‘skew-symmetrizer’

St = ; (di6f — oi0%)

under which .
Su®wv) = §(u®v—v®u);
and let
Z=5X"®Y).
Then

7 = (X ®Y™)S,
and so, sincé? = S,
tr 77 = tr(X®Y)S(X*®Y)
= rIX*RY)X®Y")
= 058X X QYY)

1

= (X" XYY —tr X" XYY")
1

= 5 (X" X Y'Y —(XY)'XY)
1

= 3 (X112 = X2

Sincetr Z*Z > 0, we conclude that
[ XY < I X[[[]Y]].
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3. We have
laX|?* = trX*aaX
= aatr XX
|a?[ X%,
<

To show that the exponential series converges for any matyiwe compare
its partial sums with those in the scalar case. By the lemma above,

IXPfit .+ X5 < atfil e

wherez = || X]||.
It follows that . ‘
I Xt/ + ...+ X7 /5! — 0

asi,j — oo. Since every Cauchy sequence convergeR’in this proves the
proposition. <«

Definition 2.1 For each matrixX € M(n, k) (wherek = R or C) we set

2 XS
X _ R - e
et =I+X+ o + al +
Examples:
1. e0=1
2. If X is diagonal, say
A1
X =
An

theneX is also diagonal:

Proposition 2.2 If X, Y € M(n, k) commute, ie
XY =YX,

then
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Proof » SinceXY =Y X, (X +Y)™ can be expanded by the binomial theorem:
(X4+Y)"=X"4+mX™ 'Y +... +Y™
The result follows on summation as in the ordinary (scalar) case
etV = e%eY,
all convergences being absolute «

Corollary 2.1 Forall X € M(n, k),

e € GL(n, k),

ie eX is invertible, with

(eX)—l — G_X.

Thus the exponential establishes a map
M(n, k) — GL(n, k) : X — e~.

Proposition 2.3 For 7' € GL(n, k), X € M(n, k),

_ 1
TeXT 1 =X

Proof » For eachn,
(TXT Hm™ =TX"T1,

The result follows on summation. «
Proposition 2.4 If the eigenvalues ok are
Ayeeoy An

then the eigenvalues of are

Proof » As we saw in Chapter 1, each mattkk € M(n,C) defines a matrix
RX € M(2n,R). Conversely, each matriX € M(n,R) defines a matrixCX €
M(n,C), namely the matrix with the same entries (now regarded as complex
numbers).

Lemma2.2 1. C(eX)=¢"X  forall X € M(n,R)
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2. R(e®) =R forall X € M(n,C)

Proof of Lemma-

1. This is immediate, since the matrices arising on each side are identical, the
only difference being that in one case they are regarded as real and in the
other as complex.

2. This follows from
(RX)™ =R(X™),

on summation.

<
Proof of Proposition 4, continued: SinceX andCX have the same eigenvalues,

we can suppos& complex, by Part 1 of the Lemma.

e Although a complex matrix cannot in general be diagonalised, it can always
be brought to triangular form:

)\1 a1g ... QAip
TXT_l vy 0 )\2 ... Qop
0 0 ... A\

(This can be proved by induction en Taking an eigenvector of as first
element of a new basis,

A by ... bip

SXS1 =
Ty

0
The result follows on applying the inductive hypothesis to the- 1) x
(n — 1) matrix77.)

e Butthen
)\T Ci2 ... Cin

0 /\gn e Cop
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and so on summation

€1 Wiz Win

0 e%‘ Way,
¥ =

0 0 e

The result now follows, since
eV =TeXT!
by Proposition 3; se* ande’ have the same eigenvalues.
<«

Corollary 2.2 ForeachX € M(n, k),

‘det eX =N,

Proof » If the eigenvalues ok are), ..., \, then

det X = A1... A\,
trX = M+...+ A\

Hence
deteX = M ...t = gl — g X

|
Proposition 2.5 1. X' = (&¥)  forall X € M(n,R)
2. " = (eX)r  forall X € M(n,C)

Proof » For eachmn,
(X)m = (X",
(X" = (X"
The result follows on summation. «

We turn to the analytic properties of the exponential map.

Proposition 2.6 There exists an open neighbourhod> 0 in M(n,R) which
is mapped homeomorphically by the m&p— e* onto an open neighbourhood
V =€V 3 I'in GL(n, R).
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Lemma 2.3 SupposeX € M(n, R) satisfies

| X]|| < 1.
Then
1. T =1+ X € GL(n,R).
2. The series vz o
logT:X—T—i-?—...

is convergent.

3. el =T,

Proof of Lemma-

1. Explicitly,
IT+X)'=T-X+X*—- X3+ ...

2. Convergence follows as in the scalar case, but with the matrix far|nn
place of the absolute value|.

3. We know that ifiz| < 1 then
1+o =80 =1 4 (x— 2?24 .. )+ (v —2?/2+.. )32 + ...

Moreover the convergence on the right is absolute; and the identity therefore
holds for any matrixX satisfying|| X || < 1.

<

Proof of Proposition- Let
V ={T € GL(n,R) : [T —I|| < 1};

and let
U=logV ={logT:T €V}

Then it follows from Part 3 of the Lemma that the maps
T—logT:V-sUandX —ef:U—-V

are mutually inverse. Since® andlogT are continuous (as in the scalar case)
andV is open, it follows that/ is also open. «
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Remark:We shall call the regio® (and also occasionally its imagdé) the loga-
rithmic zone, since forl" € U the exponential has the well-defined invekseT™

gosT — T forall T e U

loge* = X forall X eV

Proposition 2.7 For eachX € M(n,R) the map
t e : R — GL(n,R)

is a continuous homomorphism; and every continuous homomorghisnGL(n, R)
is of this form.

Proof » SincesX andtX commute, it follows from Proposition 3 that

sX tX:

e Xe s+t) X

el .

Hence the map — ¢! is a homomorphism, which is clearly continuous.
Conversely, suppose
T:R — GL(n,R)

is a continuous homomorphism. For sufficiently smaday
teJ=]—cd,

T'(t) must lie in the logarithmic zone; and we can therefore set
X(t) =logT(t)

fort e J.
SinceT : R — GL(n,R) is a homomorphism,

T(s)T(t) =T(s+1).
We want to convert this to the additive form
X(s)+ X(t) = X(s+1)
by taking logarithms. To this end, note first thiats) and7’(¢) commute:

T(s)T(t) = T(s +t) = T()T(s)  foralls,t.
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It follows that X (s) and X (¢), as power-series ifV(s) and7'(t), also commute:
X(s)X(t) = X(t)X(s) forall s,t € J.
So by Proposition 2, i§, ¢t ands + ¢ all lie in J,
eXOTXW) — XX — T()T(t) = T(s +t) = X0,
Now if s andt are small enough, say
s,teJ =[],

then not onlyX (s), X (t) and X (s + t), but alsoX (s) + X (¢), will lie in the
logarithmic zond/. In that case, on taking logarithms in the last relation,

X(s)+ X(t) = X(s+1) forall s,t € J'.
We want to deduce from this that
X(t)=tX

for someX. Note first that, on replacing by ¢+ (and X by ¢ 'X), we can
suppose that = 1, ie that the last relation holds for

s,tel=[-1,1].
We have to show that
X(t) =tX(1) forallt e I.

Suppose first that is a positive integer. By repeated application of the basic
identity,

sX(é) :X(é)—i— +X(g) :X(%jt.. +é) = X (1),
ie | .
X(1)=-X(1)
Now suppos® < r < s. Then
X(E)=X() 4.+ X() =rX() = "X(1).

We have thus established the result for rationais r/s € [0, 1]. Since the
rationals lie densely among the reals, it follows by continuity that

X(t) =tX(1) forall ¢ € [0, 1].
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The extension to the negative interval [-1,0] is immediate, since
X(0)+ X(0)=X(0) = X(0) =0,

and so
X(t)+ X(—t) = X(0) = X(—t) = —=X(t).

Returning to the given homomorphism,
T(t)=eX® =X forallt e .J.
We can extend the range by taking powers:
T(nt) = T(t)" = ()" = "X foralln e N,t e J'.

Hence
T(t) =€  forallt € R.

Finally, the uniqueness ak follows on taking logarithms for sufficiently

smallt. <«

Summary: The exponential map sets up a 1-1 correspondence—more pre-

cisely, a homeomorphism—between a neighbourhoof 0 in M(n, R)

and a neighbourhootl’ of I in GL(n,R). The inverse logarithmic func-
tion projects this ‘polar regiont” back intoM (n, R)—which we can iden-
tify with the tangent-space t&GL(n,R) at I. The picture is reminiscent of
Mercator’s projection of the globe onto the pages of an atlas, or Riemann'’s

projection of the sphere onto a plane.
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Exercises

In Exercises 01-15 calculat€ for the given matrixX :

w(p) e (00) = (B0) e (5 2) s (20

In Exercises 16-25 determine whether or not the given matrix is of the 40rm
for someX € M(2,R).



Chapter 3

The Lie Algebra of a Linear Group
I: The Underlying Space

SupposeG C GL(n,R) is a linear group. The rays iM(n,R) corre-
sponding to 1-parameter subgroups trapped in§idi#l a vector subspace
LG. This correspondence between closed subgrougslgfn, R) and cer-
tain subspaces &1 (n, R) is the foundation of Lie theory.

Definition 3.1 Supposé&: C GL(n,R) is a linear group. Then we set

LG ={X € M(n,R): e cG foralltecR}.

Remark:In the case of the classical grovgd.(n, R), SO(n, R), etc, considered
in Chapter 1, itis customary to denote the corresponding space by the same letters
in lower case, eg

o(n) = LO(n),
sl(n,R) = LSL(n,R),
sp(n) = LSp(n).

Proposition 3.1 If G € GL(n,R) is alinear group therCG is a vector subspace
of M(n, R).

Proof » We have to show that
1. X e LG, aeR= aX € LG,
2. XY e LG= X+Y € LG.

424111 3-1
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The first result follows at once from the definition 6f7. The second is a
consequence of the following result.

Lemma 3.1 Supposé'(t) € G for 0 < t < d; and suppose
T(t)=1+tX +o(t)
for someX € M(n,R), ie
(T'(t)—I)/t — X ast — 0.

Then
X e LG.

Proof of Lemma- We must show that

X e G forallt.

The argument can be divided into 5 steps.

1. Recall the formula for the scalar exponential as a limit:
(1+ £)m — e asm — oo.
m
This is most simply proved by taking the logarithm of each side. On the left

T T
1 1+—)") = log(1 + —
og ((1+2)") = mlog(L+ )
x 1
= m(a +O(E))
= x+o(l).
In other words
log ((1 + £)m> — T asm — oo.
m

The result follows on taking the exponentials of both sides.

2. Itis evident from this proof that we can replace- =/m by any function
a(m) satisfying
T 1
a(m) =1+~ 4 o(_);
for any such function
a(m)™ — e”.
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3. Both this last result and its proof carry over to the matrix case. If
X 1
A=1 +—+ 0(7>7
m m
with X € M(n,R), then
A(m)™ — ¥

4. Applying this with
we deduce that

5. SinceT'(t/m) € G for sufficiently largem, and since is a group,

T(i)m €eqG.

m
Hence, since G is closed,
e e G,
<

Remark:In geometric language this result shows tligt can be regarded dke
tangent-space tér at 7" = I.

Proof of Proposition 1 (completionBupposeX,Y € LG. Then
X ¢ G forallt.
But

eV = (I +tX)(I+tY) +o(t)
= T+tX+Y)+o(t).

Hence by the Lemma
X+Y e LG.

<

Examples:

1. The General Linear Group: Sincee’* € GL(n,R) forall X € M(n,R),
by Proposition 2.1,

gl(n,R) = M(n,R).
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2. The Special Linear Group: sl(n, R) consists of altrace-free matricese

sl(n,R) = {X € M(n,R) : tr X = 0}.

By definition

X esl(n,R) = e € SL(n,R) forallt
— det(e*) =1 forallt.

To the first order in,
e =T +tX +o(t).

Hence

det(e'™) = det(I +tX) +o(t)
1+ttr X 4 o(t);

for on expanding the determinant the off-diagonal termgXnwill only
appear in second or higher order terms. Hence

X esl(n,R) =tr X =0.
Conversely,

trX =0 = dete™ =¢!"¥ =1
= ¥ € SL(n,R).

Remarks:

(&) A linear group is said to bealgebraicif it can be defined by poly-
nomial conditionsF,(7") on the matrix entrie§;;, say

G ={T €GL(n,R): F,(T) =0, k=1,...,N}.

Not every linear group is algebraic; but all the ones we meet will be.

The technique above—working to the first ordert+ris the recom-
mended way of determining the Lie algehé&' of an ‘unknown’ lin-
ear groupz. From above,

XelG = Xeqd
— F(I+tX+-)=0
= F(I+tX)=0()
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Thus
LG C{X : F(I+X)=0()}.

In theory it only gives us a necesssary condition Xoto lie in LG;
and it is easy to think of artificial cases where the condition is not in
fact sufficient. For example the equation

tr(I —TY(I-T)=0

defines the trivial groug}; but it is satisfied by'X to the first order
int forall X.

In practice the condition is usually sufficient. However it must be
verified—having determined G (as we hope) in this way, we must
then show that* does in fact lie inG. (Since the condition oX is
linear this will automatically ensure theltX € G for all t € R.)

(b) An alternative way of describing the technique is to say that since each
defining condition is satisfied by~ identically int, the differential of
this condition must vanish at= 0, eg

sl(n,R) ={X : %det e* =0att = 0}.

(c) To summarise: Given a linear groafy

I. Find all X for which I + ¢t X satisfies the equations féf to the
first order int; and then

ii. Verify thateX € G for theseX.

3. The Orthogonal Group: o(n) consists of alskew-symmetric matrice

o(n)={X: X'+ X =0}.

For
(I+tX)(I+tX)=T+t(X"+X)+o(t).
Hence
Xeon) = X'+X=0.
Conversely,
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4. The Special Orthogonal Group:

This follows from the trivial

Lemma 3.2 If GG is an intersection of linear groups, say
G - ﬂGl,
then
LG =NLG;.
Applying this to
SO(n) = O(n) N SL(n, R)

we deduce that
so(n) = o(n) Nsl(n,R).

But
X+X=0=trX =0,
ie
o(n) C sl(n,R).
Hence

so(n) = o(n) Nsl(n,R) = o(n).

The reasorwhy SO(n) and O(n) have the same Lie algebra is that they
coincide in the neighbourhood dt In effect, O(n) has an extra ‘piece’

far from I, wheredetT = —1. Since Lie theory only deals with what
happens in the neighbourhood of I, it cannot distinguish between groups
that coincide there.

Technically, as we shall see in Chapter 4, 2 linear groups having the same
connected component &6f(like SO(n) andO(n)) will have the same Lie
algebra.

5. The Complex General Linear Group:

gl(n,C) = M(n,C).
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For from Example 1.5,

X € M(n,C)

while conversely

e* € GL(n,C)

on equating coefficients of

XJ=JX
X" =JXxm
X J = JetX
e'* € GL(n,R)
X € gl(n,R);

vl

forallt = X J=Je¥
— XJ=JX
= X € M(n,C),

6. The Complex Special Linear Group:

sl(n,C) = {X € M(n,C) : tr X = 0}.

Note thattr X here denotes the trace &f as a complex matrix. The result
follows exactly as in Example 2.

7. The Unitary Group: u(n) consists of alskew-hermitian matricese

u(n) ={X € M(n,C): X"+ X =0}.

For

(I4+tX)"(I+1X) =T +t(X*+ X) +o(t).

Hence

Xeuhn) = X"+X=0.

Conversely,

X"+X=0

L

8. The Special Unitary Group:

— eftX — <€tX>fl
et eU(n) forallt

X € u(n).

su(n) ={X e M(n,C) : X"+ X =0,tr X = 0}.
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This follows at once from the Lemma above:

SU(n) = U(n) NSL(n,C) = su(n) = u(n) Nsl(n, C).

Notice thatsu(n) is notthe same as(n); a skew-hermitian matrix is not
necessarily trace-free.

9. The Symplectic Group:

sp(n) ={X eM(2n,C): X"+ X =0,XJ =JX}.

For
Sp(n) = Sp(n,C) N U(2n),
where
Sp(n,C) ={T € GL(n,C) : XJ = JX}.
Hence

sp(n) = sp(n,C) Nu(2n),

by the Lemma above. The result follows, since
sp(n,C) ={X e M(2n,C) : XJ = JX}
just as in Example 5.

Definition 3.2 The dimension of a linear grou@ is the dimension of the real
vector spaceCG:

|dim G = dimg LG |

Examples:
1. dim GL(2,R) = 4.
2. dim SL(2,R) = 3. For the general matrix isl(2, R) is of the form

a b
c —a
giving a vector space of dimension 3.

3. dim O(n) = 3. For the general matrix in(3) is of the form

0 —a b
a 0 —c
-b ¢ 0
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4. dim SO(3) = 3. Forso(3) = o(3).

5. dim U(2) = 4. For the general matrix in(2) is of the form

ia —b+ic
b+ic id

6. dim SU(2) = 3. For the general matrix isu(2) is of the form

1a —b+ic
b+ic —1ia

7. dim Sp(1) = 3. For the generatomplex matrix insp(1,C) is

(o)

If this is also inu(2) thenz must be pure imaginary, say

ia -b—1c
b—1ic ia

In Chapter 2 we defined tHegarithmic zonein GL(n,R): an open neigh-
bourhood off mapped homeomorphically onto an open sé¥itw:, R). Our next
result shows thatvery linear group has a logarithmic zone

Proposition 3.2 Suppos&- is a linear group. Then there exists an open neigh-
bourhoodW > 0 in LG which is mapped homeomorphically by onto an open
neighbourhood" > 7'in G.

Proof » This result is rather remarkable. It asserts that there exists & such
that
|X|| <6, ¥ e G = X € LG.

Suppose this is not so. Then we can find a sequéhce M(n, R) such that
X, —0,e% e, X; ¢ LG.

Let us resolve each; into components along and perpendiculafte (where
perpendicularity is taken with respect to the inner product associated to the quadratic
form || X]|?):

Xi=Y, + Z (Y; € LG, Z; L LG).
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Notice that| Vi||, | Zi]| < [[X;].
Consider the set of matrices
1Zi]
on the unit ball inM (7, R). Since this ball is compact, we can find a convergent
subsequence. Taking this subsequence in place of the original sequence, we may

assume that
Z;

— 7
1Zi
SinceZ; L LG itfollowsthatZ | LG.
Now consider the sequence
T, = e Vi
Y7 . Y + Z;)?
= (I—Yi+2ﬂ—---> <I+(E~+Z+z)+<2|)+--->

= I+ Z;+O(|Xi|ll| Z]]),

since each remaining term will contalfy and will be of degreé> 2inY;, Z;. Let

whereE; — 0. Thus

From the Lemma to Proposition 1 above, this implies that
Z € LG.

But Z L LG. So our original hypothesis is untenable; sanfind aé > 0 such
that if || X|| < ¢ then
X eG = XecLG.

<

Corollary 3.1 If G is a linear group then

| LG = 0 < G is discrete|

Proposition 3.3 The connected component/oin a linear groupG is a normal
open subgrour,, generated by the exponentials(X € LG):

Go={eMe®2 . e® X, Xy,..., X, € LG}.
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Proof » The set of all such matrices is clearly closed under multiplication and
inversion, and so forms a subgroGg.

The path
ts et e (0<t <)

connectd to

Henced,, is connected.
By Proposition 2% is a neighbourhood df € G. Hencege“® is a neigh-
bourhood ofy for eachg € . But

ger% c Gy if g € Gy,

HenceG is open. Recall that this impligs, is also closed. (For each coset&f
is open. Hence any union of cosets is open. Hence the complem@pt which
is the union of all cosets apart froé, itself, is open, ig5 is closed.)
SinceGy is also connected, it must be the connected componehirot-.
Finally, if g € G thengG,g~! is also connected. Hence

9Gog™"' C Gy,

ie Gpisnormal inG. <

Remarks:

1. Note that by this Proposition,  is a linear group then

(G connected= (G arcwise connected

2. This Proposition is usually applied in reverse, ie we first determine (by some
other means) the connected compor@nof I in G. The Proposition then
shows that each element 6f, is expressible as a product of exponentials
of elements ofLG.

The following result—which really belongs to homotopy theory—is often
useful in determining-.

Lemma 3.3 Suppose the compact linear groGpacts transitively on the compact
spaceX; and suppose € X. LetS = S(x) denote the stabiliser subgroup of
ie

s={TeG: Tz =z}

Then
S and X connected= ( connected
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Remark: Those familiar with homotopy will recognise in this the O-dimensional
part of the infinite exact homotopy sequence

0 — m(S) — m(G) — m(X) = m(S) — ...,

wherer; denotes théth homotopy group) of the fibre spag€, X, S) with total
space(s, base spacd, fibre S and projection

g—gr:G— X.

Although we shall assume no knowledge of homotopy theory, it is interesting to
note that the 1-dimensional part of this sequence will play a similar role in Chapter
7, in showing that

S and X simply connected—> G simply connected

Proof of Lemma> Supposey € Gy. ThengS is connected; and s@S C G.

Hence
Go = G()S

SinceGy is closed (and so compact), so is

9Goxr C X.
On the other hand singg&, is open,G — G, is closed, and so therefore is

(G — Gp)r = X — Gy

ThusGyzx is both open and closed; and so

Gor = X,
sinceX is connected. But sinag, = G S this implies that

Go =G,

ie G is connected. <«
Examples:

1. SO(n) is connected for alh. For consider the action
(T,v) — Tv
of SO(n) on the(n — 1)-sphere
Sl ={veR": jv| =1}
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This action is transitive; and the stabiliser subgroup of
en = (0,0,...,1)
can be identified witt8O(n — 1). Applying the Lemma,
SO(n — 1) andS™ ! connected=> SO(n) connected

Thus by induction, starting fror8O(1) and S*, we deduce thaO(n) is
connected for alh.

2. SO(n) is the connected componentioin O(n). For
TcOn) =TT=1= (detT)*=1=>detT = +1.

Thus no path iM(n) can enter or leav8O(n), since this would entail a
sudden jump inlet 7" from +1 to —1, or vice versa.

3. U(n) is connected for alk. For consider the action dff(n) on
St =ty e O™ |v] =1}
The stabiliser subgroup of
en = (0,0,...,1)

can be identified withU(n — 1); and so we deduce by induction, as in
Example 1, thalU(n) is connected for alh.

4. SU(n) is connected for alh. Again this follows from the action U (n)
on S#~ 1,

5. Sp(n) is connected for alk. This follows in the same way from the action
of Sp(n) on
St =ly e H": |v] = 1}.

6. SL(n,R) is connected for alh. For supposé’ € SL(n,R). ThenT'T" is a
positive-definite matrix, and so has a positive-definite square-tbsay:

T'T = Q>

(To constructy, diagonalise the quadratic formi7T'v and take the square-
root of each diagonal element.) Now set

0=TQ™"



THE LIE ALGEBRA I: THE UNDERLYING SPACE 424-111 3-14

Then
00 =1,

ie O € O(n). In fact, sincelet I' = 1 anddet ) > 0,
O € SO(n).
Thus
T =0q,
whereO € SO(n) and@ € P, the space of positive-definite matrices. Thus

SL(n,R) = SO(n)P.
Now P is connected; in fact it is convex:
A BeP=tA+(1—-t)Be P forallte]0,1].
SinceSO(n) is also connected, so too is

SL(n,R) = SO(n)P.

Summary: To each linear grodp C GL(n,R) there corresponds a vector
subspaceLG € M(n,R). Two linear groupss and H correspond to the
same subspace if and only if they have the same connected component of
the identity: LG = LH <= Go = Hjp. In other words, there is a 1-1
correspondence betweeannectedinear groups~ and the subspaceX-.

The exponential map and the inverse logarithmic map define a homeo-
morphism (buthot a homomorphism) between a neighbourhddaf I in
G and a neighbourhood of 0 in £LG. With a little artistic licence we may
say that the logarithmic projection turns subgroups into subspaces.
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Exercises

In Exercises 01-10 determine the dimension of the given group
1. GL(n,R) 2. SL(n,R) 3. O(n) 4. SO(n) 5. GL(n,C)
6. SL(n,C) 7. U(n) 8. SU() 9. Sp(n) 10. 0O(1,3)

In Exercises 11-15 determine the connected componehtarfd the number
of components, in each of the following groups.

11. GL(n,R) 12. GL(n,C) 13. SL(n,C) 14. O(1,1) 15. O(1,3)



Chapter 4

The Lie Algebra of a Linear Group
lI: The Lie Product

The subspacgG corresponding to a linear grodpis closed under the Lie
product[X,Y] = XY — Y X, and thus consitutes a Lie algebra. Alge-
braically, the Lie product reflects the non-commutativitydf-an abelian
group has trivial Lie algebra. Geometrically, the Lie product measures the
curvature ofG.

Definition 4.1 For X,Y € M(n,R) we set

[X,Y]= XY - VX,

The matrix|.X, Y] is called the Lie product ok andY .

Proposition 4.1 If G is a linear group then

X, Y e LG = [X,Y] € LG.

Proof » Our argument is very similar to that used in the proof of Proposition 3.1
to show that
X, Yel(G= X+Y € LG.

Suppose
X,Y € LG.

Thene!X,e’Y € G forallt € R; and so

etXetYe—tXe—tY c G

424111 4-1
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But
61;X613Y6—13X€—15Y

2 X2 t?Y? 2 X2 t?y?
= ([+tX+ V(I +tY + )(I —tX + )(I —tY +

= T +£[X,Y] +o(t?)
= I+ s[X,Y]+o(s),

)+ o(t?)

with s = t2. Hence by the Lemma to Proposition 3.1,
(X,Y] € LG.
|

Proposition 4.2 The Lie product{X, Y] defines a skew-symmetric bilinear map
LG x LG — LG, e

1. [aX,Y] = a[X,Y]
2. [Xq1+ X0, Y] =[X1,Y]+ [ Xy, Y]
3. [X,Y1 +Yo] = [X, V3] + [X, Y5
4. [V, X] = —[X,Y]

In addition it satisfies Jacobi’s identity

XY 2+ Y [2, X[+ [2,[X, Y] =0

Proof » All is clear except for (J), and that is a matter for straightforward verifi-
cation:

(X [Y, 2] + [V, [Z, X]] + [Z,[X, Y]]
= X(YZ-2Y)-(YZ-2Y)X +Y(ZX — XZ)
—(ZX - XZ)Y + Z(XY - YX) = (XY - YX)Z
= 0,

the 12 terms cancelling in pairs. «

Definition 4.2 A Lie algebral overk (wherek = R or C) is a finite-dimensional
vector spaceC overk, together with a skew-symmetric bilinear map< £ — L,
which we denote byX, Y], satisfying Jacobi’s identity (J).

If G is a linear group then the real Lie algebra defined 66 by the Lie
product is called the Lie algebra @f.
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Remarks:

1. HenceforthCG (and similarlygl(n, R), etc) will denote the Lie algebra of
G, ie the spac&G together with the Lie product on this space.

2. Note that the Lie algebra of a linear group is always, even ifG is com-
plex, ieG C GL(n,C). The point of introducing complex Lie algebras
will only become apparent in Chapter7, when we consider complex repre-
sentations of linear groups.

3. It follows at once from the skew-symmetry of the Lie product that

[X,X]=0 VX €L

4. In defining the Lie product in a Lie algebfawith basisey, . . ., e, itis only
necessary to give the m(m-1)/2 products

leie] (i< j)

since these determine the general producty’] by skew-symmetry and
linearity.

5. With the same notation, we can express each Lie prodyet] of basis
elements as a linear combination of these elements:

i, e;] = Z cfjek.
k

Them? scalars

cfj (1<i,j5,k<m)
are called thestructure constantsf the Lie algebra. In theory we could
define a Lie algebra by giving its structure constants; in practice this is

rarely a sensible approach.

Examples:

1. The spaceo(3) consists of all skew-symmetricx 3 matrices. As basis we
might choose

00 O 0 01 0 -1 0
U=(00 -1, V= 0 00|, W=11 0 0
01 O -1 0 0 0 0 O
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It is readily verified that
U,V =U0V-VU =W, [UW]|=UW-WU=-V, [V,W]=VW-WV =U.
Thus we can write

so(3) = (U, V,W: [UV] =W, [V,W] =U, [W,U] = V).

2. The spaceu(2) consists of all skew-hermitiahx 2 complex matrices with
trace 0. As basis we might choose

(o h) ee(he) e ()

It is readily verified that
[A, B] =2C, [A,C] = —2B, [B,C] = 2A.

Thus

su(2) = (A, B,C : [A,B] =2C, [B,C] =2A, |[C, A] = 2B).
Notice that the Lie algebra®(3) andsu(2) are isomorphic,

so(3) =su(2),

under the correspondence

2U «— A, 2V «— B, 2W «—— (.

Intuitively, we can see how this isomorphism arises. The covering homo-
morphism® : SU(2) — SO(3) establishes #ocal isomorphisnbetween
SU(2) andSO(3). If one remains close tbthese 2 groups look exactly the
same. But Lie theory is bbcal theory—the Lie algebr&G depends only

on the structure ofy near to/. (In particular, it depends only on the con-
nected component dfin GG, whenceso(3) = o(3).) Thuscovering groups
have the same Lie algehr&e shall return—more rigorously—to this very
important point in Chapter 8.

But we note now that the groufO(3) andSU(2) are certainly not iso-
morphic, since one has trivial, and the other non-trivial, centre:

Z80(3) = {I,—1}, ZSU(2) = {I}.
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3. The spacel(2,R) consists of all reak x 2 matrices with trace 0. As basis
we might choose

1 0 01 00
(o h) e=(oa) o= (0)
It is readily verified that
[H,E| =2FE, [H,F] = —2F, [E,F] = H.
Thus
sI(2,R) = (H,E,F :[H,E] = 2E, [H,F| = —2F, |[E, F] = H).
This Lie algebra is not isomorphic t®(3) = su(2). For the subspace
(U, V) is closed under the Lie product. (It corresponds, as we shall see in
Chapter 6, to the subgroup of lower triangular matrices.) But it is readily

verified that no 2-dimensional subspacesof3) is closed under the Lie
product.

4. As an exercise, let us determine all the Lie algebras of dimenrsi®nThis
will allow us to introduce informally some concepts which we shall define
formally later.

(a) The Lie algebra& G is said to beabelianif the Lie product is trivial:
(X, Y] =0 forall X,Y € L.

We shall look at abelian Lie algebras in the next Chapter. Evidently
there is just 1 such algebra in each dimension.

(b) Thederived algebral’ of a Lie algebral is the subspace spanned by
all Lie products:

L' ={X,Y]: X,Y €L}
This is anideal in £:
Xel Yel = [X,Y]eLl.

Evidently £’ = 0 if and only if £ is abelian.
(c) Thecentreof the Lie algebreC,

ZL={ZeL: [X,Z]=0foral X € L},

is also an ideal irC. Evidently £ is abelian if and only itZ £ = L.
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(d) SupposeX € L. We denote byd X : £ — L the linear map defined

by
ad X : Y — [X,Y].

Jacobi’s identity can be re-stated in the form
ad[X,Y] =ad X adY —ad Y ad X.
To see this, apply both sides #b On the left we have
ad[X,Y](2) = [[X, Y], Z] = =[Z,[X,Y]].
On the right we have
ad X adY (Z)—adY ad X (Z) = [X, [V, Z]]-1Y, [X, Z]] = [X, [Y, Z]]+[Y, [ Z, X]].
The two are equal by Jacobi’s identity.

Dimension 1 Since[X, X] = 0, if dim £ = 1 then. is abelian.
Dimension 2 Either £ is abelian, odim £’ = 1, since

[aX +bY,eX +dY] = (ad — be)[X,Y].

Supposelim £ = 1, sayL’ = (X). Then we can find & such that
[X,Y] = X. Thus

L=(X,Y:[X,Y]=X).

So there are just 2 Lie algebras of dimension 2.

Dimension 3 We havedim £ =0, 1,2 or 3.
If dim £ = 0 then. is abelian.

If dim £’ = 1, sayL’ = (X), thenitis not hard to show that the centre
Z L must also be of dimension 1; and

L=L®ZL,

where £, is a 2-dimensional Lie algebra. Thus there is just 1 Lie
algebra in this category:

L=(XY,Z:[X,Y]=X, [X,Z]=]Y,Z] =0).

If dim £ = 2, sayL’' = (X, Y), thenL’ must be abelian. For suppose
not. Then we can find, Y € £’ such tha{ X, Y] = X. Suppose

Y, Z] =aX +0bY, [Z,X] =cX +dY.
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Then Jacobi’s identity gives
(X, [V, Z]|+ [V, [Z, X]] + [Z,[ X, Y]] = bX — X + cX + dY.

Thusb = d = 0. Butthenl’ = (X)), contrary to hypothesis.

Thusl' = (X, Y) is abelian. Take any € £\ L. Sincead Z(L) C
L', ad Z defines a map

AZ . ﬁl — El.
If we takeZ’ = a X + bY + ¢Z in place ofZ then
AZ’ = CAz.

Thus the mapd ; is defined up to a scalar multiple &3, Conversely,
it is readily verified that any linear map, : £ — L' defines a Lie
algebra, since all 3 terms in Jacobi’s identity forY, Z vanish.

There are 2 families of solutions, according as the eigenvaluds; of
are real, or complex conjugates. Note thit is surjective, since
adz(L) = L. Hence the eigenvalues of; are not both O (ied,
is not idempotent).

If the eigenvalues are complex conjugate’ then we can make = 1
by taking%Z in place ofZ. This gives the family of Lie algebras

LO)=(X,Y,Z:[X,Y]=0, [Z,X] =cos0X—sinbY, [Z,Y] =sinfX+cos0Y).

Similary if the eigenvalues are real we can take therh, as and we
obtain the family

Lp)=(X,Y,Z:[X,Y]=0, [Z,X]=X, [Z,Y]=pY).
We come now to the case of greatest interest to us, where
L =L.

A Lie algebra with this property is said to s2misimple (We shall

give a different definition of semisimplicity later, but we shall find in
the end that it is equivalent to the above.) Perhaps the most important
Theorem in this Part is thavery representation of a semisimple Lie
algebra is semisimpleBut that is a long way ahead.

Since
ad[X,Y]=ad XadY —adY ad X,



THE LIE ALGEBRA 1I: THE LIE PRODUCT 424-111 4-8

it follows that
tr ad[X,Y] = 0.
Thus
Xe/l —=tradX =0.

In particular if £/ = £ thentr ad X = 0 for all X € £. Hence the
eigenvectors ofid X are0,+\. On the other hand, the characteristic
equation is real. So the eigenvectors are either of the forfyp or

0, £pi with p real.

Before going further, let us dispose of one possibility: that the eigen-
values ofad X might always be), 0,0. Recall that this is the case if
and only ifad X is nilpotent. (This follows from the Cayley-Hamilton
Theorem, that a linear transformation—or square matrix—satisfies its
own characteristic equation.)

A Lie algebral is said to banilpotentif ad X is nilpotent for all.X e

L. As we shall see later (Engel's Theorem) a nilpotent Lie algébra
cannot havel’ = L, ie £ cannot be both nilpotent and semisimple.
This is very easy to establish in the present case, wilieneC = 3.
Note first that

L=(X,Y,Z)= L' = (Y, Z], [Z,X], [X,Y]).
It follows that if £’ = L then
[X,Y] =0<«= X,Y linearly dependent

Now supposend X is nilpotent for someX # 0. Thenad X # 0,
since otherwiséX,Y] = 0 forall Y € £. Thus we can find” € £
such that

Z=adX(Y)#0butad X(Z) = [X, Z] = 0.
This implies, as we have seen, that pX. Thus
adY (X) = [Y,X] = —[X,Y] = pX.

SoadY has eigenvalue-p # 0, and is not nilpotent.

Thus there exists aN € £ with ad X not nilpotent, with the 2 possi-
bilites outlined above.

(@) For someX € L, ad X has eigenvalue8, +p wherep > 0.
Taking %X in place of X', we may suppose that= 1. Taking the
eigenvectors o as a basis for, we get

X,Y]=Y, [X,Z] = —Z.
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Suppose
Y, Z] = aX +bY + cZ.

Jacobi’s identity yields
(X, Y, Z||+]Y, [Z, X]||+[Z, [ X, Y]] = bY —cZ+]Y, Z|+[Z,Y] = 0.

Thusb =c =0, ie
Y, Z] = aX.

Dividing Y by a, we get
Y, Z] = X.
So we have just 1 Lie algebra,
L=(X,Y,Z:[X,Y]=Y, [X,Z]=—-2Z, [V, Z] = X).

In fact
L =sl(2,R)

under the correspondenge — %H, E—Y Fw— Z.

(b) Alternatively,ad X has eigenvalue8, +pi with somep > 0 for
everyX € L. (For otherwise we fall into the first case.) Choose
one suchX. As before, on replacing by % we may suppose that
p = 1, iead X has eigenvalue$, +i. Taking thei-eigenvector of
ad X tobeZ + 1Y,

(X, Z +iY]| =i(Z+iY) = Y +iZ.

Thus
(X,Z]=-Y, [X,Y]=Z.

Suppose
Y, Z] = aX +bY + cZ.

Jacobi’s identity yields
(X, Y, Z||+]Y, [Z, X]||+[Z, [ X, Y]] = bZ—cY+]Y,Y|+[Z, Z] = 0.

Thusb = c =0, ie
Y, Z] = aX.

Dividing Y, Z by \/|Z, we may suppose that

Y, 7] = £X.
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If [[Y,Z] = —X then

0 0 -1
adY = 0 0 0
-1 0 O

This has eigenvalugs +1, and so falls into the first case. Hence
L=(X.Y,Z:[X,Y]|=2, [2.X]=Y, [\.Z] = X).

In other words,
L =so(3).

It remains to show thafo(3) = su(2) andsl(2,R) are not isomor-
phic. We shall see later that this follows from the fact that3) and
su(2) are compact, whilel(2,R) is not; for we shall show that the
compactness of a groug is reflected in its Lie algebrdG. But we
can reach the same result by a cruder argument. From our argument
above, it is sufficient to show thatl X has eigenvalue8, +pi for
everyX € so(3). Butitis readily seen that

00 O 0 -1
adU=| 0 0 —1 |,adV = 0
0 1

0
0
0 -1 0

0 1 0
00 |,adW=]1 0
0 0 0 0
Thus, with respect to this basig] X is always represented by a skew-
symmetric matrix. The result follows since the eigenvalues of such a
matrix are either purely imaginary or 0.

Summary: To each linear group there corresponds a Lie algebf4-.

Most of the information aboutr is ‘encoded’ in£LG; and sincelG is far
easier to analyse—using standard techniques of linear algebra—it provides
a powerful tool in the study of linear groups.



THE LIE ALGEBRA 1I: THE LIE PRODUCT 424-111 4-11

Exercises

In Exercises 01-10 determine the Lie algebra of the given group
1. GL(2,R) 2. SL(3,R) 3. 0O(2) 4. 0O(3) 5. SO(2)
6. SO(4) 7. GL(2,C) 8. SL(2,C) 9. U(2) 10. SU(3)
11. Sp(1) 12. Sp(2) 13. O(1,1) 14. O(1,3) 15. 0O(2,2)



Chapter 5

Abelian Linear Groups

As a happy by-product, Lie theory gives us the structure of connected abelian
linear groups.

Definition 5.1 The Lie algebral is said to be abelian if the Lie product is trivial,
ie
[X,Y]=0 forall X,Y € L.

Proposition 5.1 If G is a linear group then
G abelian= LG abelian
If in addition GG is connected then

LG abelian<= G abelian

Proof » Suppose? is abelian; and suppose
X,Y € LG.

Thene!™ | Y commute for allt. If ¢ is sufficiently smalltX andtY will lie in
the logarithmic zoné/, so that

tX =loge™, tY = loge™

by Propositior??. In particulart X, tY are expressible as power-seriegif, e'¥’
respectively. HenceX, tY commute; and s, Y commute, ieLG is abelian.
Conversely, supposg is connected andG is abelian, ie

(X,Y]=XY -YX=0 VXY € LG.
Thene”, e¥ commute, by Propositiod?. and so therefore do any 2 products
X1 et eM et (X1,..., X, Y1,..., Y € LG).

HenceG = G is abelian, by PropositioR?. <

42411 5-1
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Proposition 5.2 If G is a connected abelian linear group théhis isomorphic to
a cylinder group, ie

G =T xR’

whereT is the torus
T =R/Z.

In particular, the only compact connected abelian linear groups are theltori
Lemma 5.1 If G is a connected abelian linear group then the map
X—ef: LG -G

is a surjective homomorphism (of abelian groups) with discrete kernel.

Proof of Lemma> The exponential map is a homomorphism in this case, by
Proposition??. It is surjective, by Propositiof?, since

X1

Xt et = K1t X (X1,..., X, € LG).

Its kernel is discrete, by Propositi@?; for the exponential map is one-one in the
logarithmic zone. <«
Proof » By the Lemma,

Rn

G=—

K )

whereK is a discrete subgroup &".
We shall show by induction om that such a subgroup ha%ebasis consisting

of m < n linearly independent vectors

U1y . e, Uy € R
ie K consists of all linear combinations
a1vy + ...+ vy (a1,.. . 0, € Z).

Let v; be the closest point ok to O (apart from O itself). We may suppose, on
choosing a new basis f@®", that

v1:(1,0,...,0).

Now let
p:R" — R 1
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be the projection onto the last— 1 coordinates, ie

p(x1, 29, ..., xy) = (T2, ..., Tp).
Then the subgroup
pK C R*!
is discrete. For each point
(x9,...,1,) € pK
arises from a point
v=(21,%2,...,2T,) € K;
and we may suppose, on adding a suitable integral multiple tf v, that
1 < g < 1
—— <z —.
2 "1 =2
But thenv would clearly be closer to 0 than (contrary to hypothesis) i, . . . , z,
were all very small.

Applying the inductive hypothesis we can find.abasis forp K consisting of
linearly independent vectors

Ug, ..., Uy € R
Choose
Vg, ..., Uy €R®
such that
pPU; = U;.

Then it is easy to see that, vs, ..., v,, are linearly independent, and forn¥a
basis fork.
Again, on choosing a new basis f@f we may suppose that

v1 = (1,0,...,0),05 = (0,1,...,0),...,0m = (0,...,1,...,0),

ie
K ={(ay,...,an,0,...,0): a; € Z}.
Then
G = R"/K
= R/Z+...+R/Z+R+...+R
= T™ x R* ™.
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Remark:We shall find this result extremely useful later, in studying the structure
of a general compact linear grodp. For if we take any element € G then

the smallestlosed subgroupf G containingg is abelian; and so the connected
component of in this group must be a torus.

Summary: IfG is abelian then so i£G; and the exponential map in this
case is a homomorphism, mapping onto the connected compGleritG.
We deduce that every connected abelian linear group is of the T6rmR™.



Chapter 6

The Lie Functor

To each linear grougs we have associated a Lie algehté/. But that is
only half the story—to complete it we must show that each homomorphism
G — H of linear groups gives rise to a homomorphigl@ — LH of the
associated Lie algebras.

Definition 6.1 A homomorphism
f:L—M
of Lie algebras ovek is a linear map which preserves the Lie product, ie
1 f(aX) = a(fX)
2. f(X+Y)=fX+[Y
3. fIX,Y] =[fX, fY]

Proposition 6.1 Suppose
F.-G—H

is a continuous homomorphism of linear groups. Then there exists a unique ho-
momorphism
f=LF:LG— LH

of the corresponding Lie algebras such that

efX = F(eX)

forall X € L@G.

424111 6-1
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Proof » SupposeX € LG. Then the composition
tis ™ = FEe™):R— H

is a continuous homomorphism. Hence, by Proposition 2.5, there exists a unique
elementf X € L£LH such that

eUX) = F(etX) Wt eR.
We must show that the 3 conditions of Definition 1 are satisfied.
1. This follows at once from the definition of f.
2. We saw in the proof of Proposition 3.1 that
(etX/metY/mym _ HX+Y)
Applying the homomorphism F to each side,

(F(eXIm)F(e/m)m — F(eXH),

(eth/meth/m)m N etf(X-l-Y)‘

But by the same Lemma,

(eth/meth/m)m N et(fX—ﬁ—fY)‘

Hence
T (X+Y) — (S X+fY) Vi:

and so, by Proposition 2.5,
FX+Y)=fX + fY.
3. We saw in the proof of Proposition 4.1 that
(etXetYe’tXe’ty)m2 — "XV,
The result follows from this as in (2).

<

Proposition 6.2 The assignmer@ — LG is functorial, ie
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EF:G—H, F:H—-K

are 2 continuous homomorphisms of linear groups then

L(FE) = (CF)(LE).

2. The identity ori induces the identity on LG,

,ClG = 1gg.

Corollary 6.1 If the linear groups& and H are isomorphic then so are their Lie
algebras:

G~ H—=— LG=LH]

Remark: This is a most important result, since it allows us to extend Lie theory
from linear tolinearisablegroups. Thus we can speak of the Lie algebra of a
topological group, providedG is isomorphic to some linear groupwe need

not specify this linear group or the isomorphism, so long as we have established
that they exist. We shall return to this point later.

Proposition 6.3 Suppose
F:G— H

is a continuous homomorphism of linear groups; and supg@se connected.
ThenF' is completely determined hfy= LF'. More precisely, if

Fl,FQZGHH

are 2 such homomorphisms then

EFl = ;CFQ - F1 = FQ.

Proof » Supposd’ € GG. By Proposition 3.4,
T =", %

Hence
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ThusF(T) is completely determined once f is known.«

Remark: This result shows that if7 is connected (and if it is not we can always
replace it by its connected componény) then there is at most one group homo-
morphism

F.G—H

corresponding to a given Lie algebra homomorphism
f: LG — LH.

One might say thamnothing is lost in passing from group homomorphism to Lie
algebra homomorphism

Whether in factf can be ‘lifted’ to a group homomorphisiiin this way is a
much more difficult question, which we shall consider in Chapter 7.

Proposition 6.4 Suppose

F.-G—H
is a continuous homomorphism of linear groups. Then
K =ker F
is a linear group; and
LK = ker(LF).

Proof » Supposé&~ is a linear group, ie a closed subgroup®L(n,R). Since
K is closed inG, itis also closed ilGL(n,R). ThusK C GL(n,R) is a linear

group.
Moreover
XelK = X eK VteR
— F™)=e* =1 VteR
= fX =0
— X €kerf.
<

Corollary 6.2 Suppose
F.G—-H

is a continuous homomorphism of linear groups. Then
LF injective<= ker F' discrete

In particular

F injective=— LF injective
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Proposition 6.5 Suppose
F.-G—H

is a continuous homomorphism of linear groups; and suppéss connected.
Then

| LF surjective<=> Fsurjective|

Proof » Suppose first that = LF' is surjective; and suppose € H. Then by
Proposition 3.4,
T=e".. . e,

whereYi, ..., Y, € LH. Sincef is surjective we can fin, ..., X, € LG such
that
Yi=f(Xi) (i=1,...,r)

Then
T = X X
F(e™)...F(e*)

F(e* .. .en).

ThusT € im F'; and SoF’ is surjective.
Now suppose conversely thatis surjective; and supposé € LH. We must
show that there exists aXi € LG such that

fX =Y.

This is much more difficult.
Sincef is linear, we can supposé so small that the line-segment

0,1y = {tY :0<t <1}

lies inside the logarithmic zone i6H. For the same reason it suffices to fikd
such that
fX =ty

for some non-zere.
Our proof falls into 2 parts.

1: An enumerability argument. Let

C=F Yy ={TecG: FT =Y, 0<t <1}
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We shall show thaf is not isolated inC'. If it were then every point of”
would be isolated. For supposeT € C were close to one another; and
suppose

with s < ¢t. Then
R=2S57'T

would be close td; and it is inC sinceF (R) = e(t~*)Y,

Thus if I were isolated irC' we could find disjoint open subsets®f(n, R)
surrounding each element 6f But C' is non-enumerable, since it contains

at least one point corresponding to eacl /. Thus—always supposing

I isolated inC—we would have a non-enumerable family of disjoint open
sets inM(n,R) = RY (whereN = n?). But that leads to a contradiction.
For each subset will contain a rational point (ie a point with rational coordi-
nates); and the number of rational points is enumerable. We conclude that
I cannot be isolated i6v'.

2: A logarithmic argument. Sinckis not isolated, we can finfl € C' arbitrarily
close tol. In particular we can choo<E so that

1. T lies in the logarithmic zone af, with say
X =logT;

2. fX lies in the logarithmic zone of H.

But then
FT = F(e¥) = e,

while on the other hand
FT =Y

for somet € [0, 1]. Thus

Sincef X andtY both lie in the logarithmic zone, it follows that
[X =1tY,

as required.

<
The Corollary to Proposition 4 and Proposition 5 together give
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Proposition 6.6 Suppose
F.-G—H

is a continuous homomorphism of linear groups; and suppéss connected.
Then

LFbijective<=- ker(F')discrete andF'surjective

Suppose, H, K are 3 linear groups; and suppose we are given homomor-
phisms
a:G—H, p:H— K.

Recall that the sequence
G—H—-K

is said to beexactif
ima = ker 3.

Proposition 6.7 An exact sequence
G—H—K
of linear groups yields a corresponding exact sequence
LG — LH — LK

of Lie algebras.

Proof » This follows at once from Propositions 6.4 and 6.5 above« Remark:

To summarise our last 3 results:Af is connected, then
1. LF injective <= ker F discrete;
2. LF surjective<= im F' open;

3. LF bijective <= ker F’ discrete and-surjective.

Examples:

1. As we noted above, the functorial property of the Lie operator allows the
theory to be extended from linearlinearisablegroups.

Consider for example the real projective group

PGL(n,R) = GL(n + 1,R)/R*,
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ie the group of projective transformations
P(T): PR" — PR"

of n-dimensional real projective spaPR"—that is, the space of 1-dimensional
subspaces (or rays) in tiie+1)-dimensional vector spa@*™!. Each non-
singular linear map

TR — R

defines a projective transformation
P(T): PR" — PR":

two linear maps defining the same projective transformation if and only if
each is a scalar multiple of the other, ie

P(T) = P(T") <= T' = aT.

As it standsPGL(n, R) is not a linear group. However, we can ‘linearise’
it in the following way. Supposé € GL(n,R). Consider the linear map

X—=TXT ' :M(n+1,R) — M(n+ 1,R).

It is evident that any scalar multipk€l” will define the same linear map.
Conversely, supposE, U € GL(n + 1,R) define the same map, ie

TXT'=UXU"" forall X € M(n+ 1,R).

Let
vV =T"1U.
Then
VXV =X,
ie
VX=XV VX.

It follows that

V =ual,
ie

U=aT.

Thus we have defined an injective homomorphism

© : PGL(n,R) — GL(N,R),
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whereN = (n + 1), identifying the projective group with a linear group
G C GL(NV,R).

This identifiesPGL(n, R) with a subgroup ofGL(N,R). But that is not
quite sufficient for our purposes; we must show that the subgrocipssd

(The image of an injective homomorphism certainly need not be closed.
Consider for example the homomorphism

R — T?: ¢+ (amod 1,b mod 1)

from the reals to the 2-dimensional torus. The image is a path going round
the torus like a billiard ball round a billiard table. There are 2 possibilities.

If the ratioa : b is rational, the path runs repeatedly over the same closed
subgroup of the torus. In particular, the homomorphism is not injective,

On the other hand, if the rati@ : b is irrational, then the path will never
return to the origin. The homomorphism is injective, and its image passes
arbitrarily close to every point of the torus. Thus the closure of the image is
the whole of the torus. However, it does not pass through every point of the
torus, since eg it will only cut the ‘circle(0, y mod 1) enumerably often.

So the image group in this case is not closed.)

There are several ways of showing that© is closed. For example, we
shall see later that sin&d.(n + 1, R) is semisimpléts image is necessarily
closed.

But perhaps the simplest approach isdentifythe subgroupm ©. To this
end, observe that for each € GL(n + 1,R), the map

ar: X — T 'XT :M(n+1,R) — M(n + a,R)
is anautomorphisnof the algebrd(n+1, R), ie it preserves mutliplication

as well as addition and scalar multiplication. It also preserves the trace.
We shall show that every such automorphism is of this form, ie

im® = AutM(n + 1,R).

Since the property of being a trace-preserving automorphisiiof +

1,R) can be defined by algebraic equations (albeit an infinity of them) the
automorphism group is closed RL( N, R), so if we can prove that it is in
factim © we shall have achieved our objective.

Again, there are several ways of proving this. One approach, which might
appeal to the geometrically-minded but which we shall not pursue, starts
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by noting that we can represent subspaces of the projective Siatdy
projections (idempotents) M (n+1, R). An automorphism oM (n+1, R)
then defines a transformation

PR" — PR"

which sends subspaces to subspaces of the same dimension, in such a way
that all incidence relations are preserved. Now it is a well-known proposi-
tion of projective geometry that such a transformation is necessarily projec-
tive, ie it can be defined by a linear transformatibre GL(n + 1, R). But

one could say that this approach is somewhat masochistic, since we have
thrown away a good deal of information in passing from an automorphism

of M(n+1, R) to the corresponding tranformation of projective spB&¥".

The following proof may not be the simplest, but it has the advantage of
being based on ideas from the representation theory of finite groups, studied
in Part 1.

Let F' be any finite or compact group having an absolutely simple 1-
dimensional representation; that is, one that remains simple under complex-
ification.
For example, we saw in Part 1 that the symmetric grSp, has such a
representation—its natural representatioim R"*2 splitting into 2 abso-
lutely simple parts

=140

whereo is the representation in th{@ + 1)-dimensional subspace

J]1+"’+l’n+2:0.

We can turn this on its head and say that we have a finite subgrooip
GL(n + 1, R) whose natural representationn R is simple.

Now suppose
a:Mn+1,R) - M((n+ 1,R)

is a trace-preserving automorphism of the algeldk@: + 1, R). (Actually
every automorphism @¥I(n + 1, R) is trace-preserving. But it is easier for
our purposes to add this condition than to prove it.) We want to shownthat
is aninner automorphism, ie of the form

o = Qr

for someT’ € GL(n + 1,R).
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To this end, note that the composition
av: F — GL(n + 1,R)

yields a second representationfofn R™*!,

The 2 representationsg o haves the same character (sincgreserves
trace). Hence they are equivalent, ie there existseaGL(n + 1,R) such
that

av(g) = arv(g)
forallg € F.
It follows that

a(X) = ar(X)

forall X € M(n + 1,R) in the matrix algebra generated by the matrices of
F, ie all X expressible as linear combinations of the elements:of

X=aF1+ - +a,F,.

But we saw in Part 1 that every matkk € M(n + 1, R) is of this form, ie

the matrices in an absolutely simple representation span the matrix space.
(For a simple proof of this, consider the representatior of the product-
group F' x G in the space of matriceBI(n + 1,R). We know that this
representation is simple. Hence the matrices

v(f) T v(fe) = f o
span the representation spadgn + 1,R).) Thus
a(X) = ar(X)

forall X € M(n+ 1,R), iea = ar.

So we have identifie® GL(n, R) with the group of trace-preserving auto-
morphisms ofM(n + 1, R). Since the property of being an automorphism,
and of preserving the trace, can be defined by polynomial equations (al-
beit an infinity of them), this automorphism group islasedsubgroup of
GL(N,R), as required.

HencePGL(n,R) is linearisable and we can speak of its Lie algebra
pgl(n,R).
By definition,

pgl(n,R) = LG,
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where (G is the linear group above. However, we need not compldte
explicitly; there is a much simpler way of determinipgl(n, R).

Consider the homomorphism
T~ P(T): SL(n+ 1,R) - PGL(n,R).
If nis even therP is in fact an isomorphism. For on the one hand

TekerP — T =ual
e an =1
= a=1
sincea € R andn + 1 is odd; while on the other hand # = P(T) is a

projective transformation we can suppose that SL(n + 1,R), since we
can always find a scalarsuch that

detaTl = a" detT = 1.
Thus ifn is even,
PGL(n,R) = SL(n + 1, R).
So it is evident in this case thRGL(n, R) is linearisable—we don’t need
the long-winded argument above—and that
pgl(n,R) = (n + 1,R).

In fact this last result still holds ik is odd. For in that case the homomor-
phism

©:SL(n+ 1,R) — PGL(n,R)
is not bijective. However, it has kerngl/; and its image is the subgroup of
PGL(n,R) of index 2, consisting of those projective transformatiég’)
defined by’ € GL(n + 1,R) with det 7" > 0. We can summarise this in
the exact sequence

1—Cy — SL(n+1,R) - PGL(n,R) — Cy — 1.

But now Proposition 6.7 above tells us that the corresponding Lie algebra
homomorphism
LO :sl(n+ 1,R) — pgl(n,R)

is in fact an isomorphism.

So we find that in all cases

pgl(n,R) =sl(n + 1, R).



424-111 6-13

2. Now consider the Euclidean grouf2), ie the isometry group of the Eu-
clidean planeE?. As it stands,F(2) is not a linear group. However, on
choosing coordinates, we can identi# with R?; and £(2) can then be
identified with the group of transformations

E: (z,y) — (ax 4+ cy+ e, br +dy + f)

(5 4)<ow

We can extend this transformatidnto a projective transformation

where

P(T) : PR* — PR?

namely that defined by the matrix

This defines an injective homomorphism
F:E(2) - PGL(2,R),

allowing us to identify£(2) with a closed subgroup of the 2-dimensional
projective group. Since we have already established that the projective
group can be linearised, it follows that2) can be also.

Explicitly, we have identifiedE(2) with the groupG of 3 x 3 matrices
described above. By definition,

e(2) = LG.

To determineCG, we adopt our usual technique. Suppose

X( )em.

1+tp tu tx
I +tX = tq 1+tv  ty

tr tw 14tz

S Q3
SRS
[SEENSIE

Then
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satisfies the conditions ai to the first order. Hence

p=r=v=w=z=0,g+u=0,

xr
X=1 —¢ (0
0 00

Conversely, it is readily verified that X is of this form then

o
o

eX e G.

The space&CG has basis

0 -1 0 0 01 000
L=|1 0 0 M=1]10200 N=|001
0 0 0 0 00 0 00

By computation,
[L,M] =N, [L,N]=-M, [M,N]=0.
Thus

e(2) = (L, M,N : [L,M] = N,[L,N] = —M, [M, N] = 0).



Chapter 7

Representations

Since a representation is—from one point of view—just a particular kind of
homomorphism, Lie theory certainly applies. But there is one small prob-
lem: the Lie algebra of a linear grouprisal, while we are interested almost
exclusively incomplexrepresentations. Overcoming this problem brings an
unexpected reward, by disclosing a surprising relation between apparently
unrelated groups. This allows us to extend the representation theory of com-
pact groups to a much wider class of linear groups.

Definition 7.1 A representation of a Lie algebr overk (wherek = R or C) in
the vector spac& overk is defined by a bilinear map

LXV =V,

which we denote biX, v) — Xwv, satisfying

(X, Y]v=X(Yv) = Y(Xv).

Remark: Notice that we only consideeal representations akal Lie algebras,
or complexrepresentations afomplexalgebras—we do not mix our scalars. This
might seem puzzling, since:

1. we are primarily interested (as alwaysciwmplexrepresentations of linear
groups; but

2. the Lie algebra of a linear group is alwagal.

The explanation is found in the following Definition and Proposition.

Definition 7.2 SupposeL is a real Lie algebra. We denote I&yL the complex
Lie algebra derived front by extension of the scalars (fraknto C).

42411 7-1
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Remark:SupposeC has structure constartt% with respect to the basis, ..., e,,

ie
lei,e;] = Zcfjek.
k
Then we can take the same basis and structure constadig€ for

Proposition 7.1 1. Each real representation of the linear groupG in U
gives rise to a representatiofic of the corresponding Lie algebrdG in
U, uniquely characterised by the fact that

aleX) =Y VX € LG,

2. Each complex representationof G in V' gives rise to a representatiof
of the complexified Lie algebr@LG in V, uniquely characterised by the
fact that

ale®) =X VX e LG.

In either caseif G is connectedhenc is uniquely determined b§«, ie

(o =8 = La=L]E]

Proof » The real and complex representations(ofare defined by homomor-
phisms
G — GL(n,R), G — GL(n,C).

These in turn give rise to Lie algebra homomorphisms
LG — gl(n,R), LG — gl(n,C).
The first of these defines the required representatiaitoby
(X, u) — Xu.

The second needs a little more care.
Note first thatgl(n, C) = M(n,C) has a natural structure as a complex Lie
algebra. If we us®I(n, C) to denote this algebra then

gl(n,C) = RM(n,C),

where the “realificationRL of a complex Lie algebr# is defined in the usual

forgetful way.
Recall the following simple (if confusing) result from linear algebral/lis a
real vector space and a complex vector space then each real linear map

F:U—=RV



424-111 7-3

extends—uniquely—to a complex linear map
F:CU—-YV.

Applying this withU = LG andV = M(n, C), thereal Lie algebra homo-
morphism
LG — gl(n,C)

yields acomplex_ie algebra homomorphism
CLG — M(n,C).
This defines the required representatiolCdiG by
(X,v) = Xv.

Finally, if G is connected then eaghe G is expressible as a product

But from the equation defining the relation betweeand L« the action o~ on
U orV is defined by the action of . Hence the action of G or CLG completely
determines the action of eaghe G. <

Remark: By “abuse of notation” we shall call a representationCaf (where £
is a real Lie algebra) a complex representationCof With this understanding
Proposition 1 can be summarised as follows:

Each representation of £ defines a corresponding representationof LG
in the same space. Moreoveldfis connected theBa uniquely determines, ie

a=p0= La=LJ.

Corollary 7.1 SupposeC and £’ are 2 real Lie algebras. Then an isomorphism
between their complexifications

CL—— CL

sets up a — 1 correspondence between the complex representatiofisnti £'.

Example:We shall show that, for each the Lie algebras

sl(n,R) = (X € M(n,R) : tr X = 0)
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and
su(n) =(X e M(n,C): X* = X, tr X =0)

have the same complexification:

Csl(n,R) = Csu(n).

Certainly these 2 algebras have the same dimension:
dimsl(2,R) = dimsu(n) = n? — 1.

Moreover, we can regard bo#i(n, R) andsu(n) as real subalgebras of the
complexLie algebraM (n, C); and the injections

sl(n,R) — M(n,C),su(n) — M(n,C)
define complex Lie algebra homomorphisms
® : Csl(n,R) — M(n,C), ¥ : Csu(n) — M(n,C).

It is not obvious a priori tha® and ¥ are injections. However, that will follow if
we can establish that

e im® =imV,

o dimcim® = n? — 1.

Indeed, this will also prove the desired result
Csl(n,R) = im ® = Csu(n).

Butim & is just the complex linear hull al(n, R) in M(n, C), ie the subspace
formed by the linear combinations, with complex coefficients, of the elements of
sl(n, R); and similarlyim B is the complex hull oku(n).

But it is easy to see that these hulls are both equal to the complex subspace

V={X e€M(n,C):trX =0}.

Forsl(n,R) this is a consequence of the elementary proposition that the com-
plex solutions of a real linear equation are just the linear combinations, with com-
plex coefficients, of real solutions.

Forsu(n), the result follows on noting that any elementc V' can be written
as

X=Y+iZ,
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with

both insu(n).
In conclusion, since
dimcV =n? -1

we have established that
Csl(n,R) = Csu(n).

As a concrete illustration, consider the case 2. We have seen that

sl(n,R) = {X € M(2,R) : tr X = 0} = (H, B, F),

with

(o) e=(0n) (i)
while

su(n) ={X e M(2,C): X* =X tr X =0} = (A, B,C),
with

i 0 0 —1 0 i
=) () e=(0)
The isomorphism between the complexifications is defined by
A«—iH, B«—— (E—-F), C —i(E+F).

All the basic notions of group representation theory have Lie algebra ana-
logues. These are summarised in

Definition 7.3 1. The representation of £ in V' is said to be simple if there
are no non-trivial stable subspaces, idjifis a subspace df such that

XelLiuelU = XuelU

thenU =0orV.

2. The sumy + ( of 2 representations and 5 of £ in U and V' is the repre-
sentation in the direct suii @ V' defined by

X(u+v) = Xu+ Xv.
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3. The product5 of « andj is the representation in the tensor proddt® V'

defined by
Xu®v)=Xu®v+u® Xv.

4. The duak* of « is the representation iiv* defined by
(X,p) = —X'p.
5. A representation is said to be semisimple if it is expressible as a sum of

simple representations.

Proposition 7.2 Supposey, [ are representations of the connected linear group
G. Then

1. a simple <= La simple
2. Lo+ B) = La+ LB

3. L(af) = (La)(LP)

4. L(a*) = (La)*

5. a semisimple<=- L« semisimple



Chapter 8

Simply Connected Linear Groups

To each homomorphismi' : G — H of linear groups the Lie functor as-
sociates a homomorphisin= £LF : LG — LH of the corresponding Lie
algebras. But which Lie algebra homomorphisms arise in this way? Which
can bdifted to group homomorphisms? This question is of a rather different
nature to those we have been considering. For while Lie theorptaéthe-

ory, this is aglobal question. Indeed, every Lie algebra homomorphism can
be liftedlocally. The question is: do these local bits fit together? That de-
pends, as we shall see, on fe@damental grougor first homotopy group)
m1(G) of the linear groups. If this homotopy group is trivial—that i7

is simply-connectethen every Lie algebra homomorphisin LG — LH
canbe lifted.

Proposition 8.1 Suppose&= and H are linear groups; and supposg is simply
connected. Then every Lie algebra homomorphism

f:LG— LH
can be lifted to a unique group homomorphism
F.-G—H

such that
LF = f.

Remark:Recall that a topological space is said to besimply connected it is
arcwise connected and if in addition every loopXincan be shrunk to a point, ie
every continuous map

w:St— X

424111 8-1
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from the circumferences! of the 2-ball B? (the circle with its interior) can be
extended to a continuous map

u: B> — X

from the whole ball.
This is equivalent to saying that the first homotopy group (or fundamental

group) of X is trivial:
m(X) = {e}.

Proof » SinceG is connected, each € G is expressible in the form
T =X ... X,
by Proposition 3.4. I exists,F'(7') must be given by

F(T) = F(e*)...F(eX)
/X et

In particular, the existence d@f requires that

‘eXT...eXl =] = /¥ N :I.‘

Conversely, if this condition is satisfied, théi{T") is defined unambiguously by
(*); and the mapF' : G — H defined in this way is clearly a homomorphism with
LF = f.

It is sufficient therefore to show that condition (**) is always satisfied. This
we do in 2 stages.

1. First we show that condition (**) is always satisfiextally, ie for suffi-
ciently smallX, ..., X,. This does not require thét be simply-connected,
or even connected. We may say thfaalways lifts to alocal homomor-
phism, defined on a neighbourhoodlof G.

2. Then we show that if7 is simply-connected, every local homomorphism
can be extended to the whole Gf

These 2 stages are covered in the 2 lemmas below. But first we see how re-
lations on linear groups, like those in (**) above, can be represented by closed
paths, oloops

Let us call a path o7 of the form

I=10,1 -G :tse¥g
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anexponential patfjoining ¢ to e* g. Then the relation

X e =1

defines arexponential loogstarting at any poing € G, with vertices

X2 X1 X X1

Go=g,p =eg g =eeNlg, . g = Mg =g,

each successive pajr_i, g; of vertices being joined by the exponential path
GtXigi_l (0 S t S ]_)

(If we chose a different starting-point, we would get a “congruent” loop, ie a
transformPg of the first loopP by a group elemeng. In effect, we are only
concerned with paths or loops “up to congruence”.)
Each exponential path
eth
in G defines an exponential path #, once we have settled on a starting pdint
eth —s ethh.

More generally, each path i@ made up of exponential segments—Iet us call it
a “piecewise-exponential” path—maps onto a piecewise-exponential pafh in
starting from any given point.

In this context, condition (**) becomes: Every loop & maps into a loop in
H. Or: if a path inG closes on itself, then so does its imagéin

Similarly, the local version reads: Every sufficiently small loog-imaps into
aloop inH. Itis sufficient in this case to consider exponentiielngles made of
3 exponential paths. For the loop

P.P._1...F
can be split into the triangles
POPTPT—17POP7'—1PT—27 s 7P0P2P1-

In algebraic terms, given a relation

we set

with
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the given relation then splits into the triangular relations

Y; X; Y1

et =e et

e Yielighi-t = T

If each of these relations is preservedBythen the product of their images i
gives the required relation:

efXr L efXo = (e_fY’eXTeY[’”_l) . (e_fYIeXleYO) = 1.
Lemma 8.1 Supposé&r and H are linear groups; and suppose
f: LG — LH
is a Lie algebra homomorphism. Then the map

6X N 6fX

is a local homomorphism, ie there is a constaht- 0 such that iff X |, |Y], | Z] <
C' then

eXe¥ = = /el = efZ.‘

Proof of Lemma- This falls into 2 parts:

1. 1. If the triangle is small of size (or sid€)then the ‘discrepancy’ in its
image, ie the extent to which it fails to close, is of ordér

. 2. Areasonably small triangle, eg one lying within the logarithmic zone, can
be divided inton? triangles, each of1/n)th the size. Each of these maps
into a 'near-triangle’ with discrepancy of ordéfn*. These sum to give a
total discrepancy of ordei?/n® = 1/n. Sincen can be taken arbitrarily
large the discrepancy must in fact be O.

f

X[V, 1Z] <d
then
eXe¥ =e? = Z = log(eXe).
But

eXe¥ = (T+X+X22)I+Y +Y?/2)+O(d*)
= I+ X4+Y+XY+X?/2+Y%/240(d).
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Hence

Z = log(e*e)
= X+Y+XY+X?/2+Y?/2— (X +Y)?*/2+O(d*)
X +Y +[X,Y]/2+0(d?).

Since by hypothesig preserves the Lie product it follows that
fZ =fX+fY +[fX, fY]/2 +O(d%).
Hence (working backwards)

el *elV = el? + O(d®).

. We have not yet said exactly what we mean by the discreparé}) of a
relation R on G. It is convenient to defin®(R) to be the sup-norm of the
gap inH:

D(R) = [F(R)|o,

where Ta
xr

To = sup —.

20 ||

This has the advantage, for our present purpose, that
|P~YTPlo = |T)o.

This means that if we take a different vertex on a loop as starting-point, or
equivalently, take a conjugate form

X, Xi1

ete N

Xt =1

of the given relation, the discrepancy remains the same.

It is clear that any triangle within the logarithmic zone can be shrunk to a

point within that zone. In fact, such a deformation can be brought about by a
sequence of ‘elementary deformations’, each consisting either of replacing
the path round 2 sides of a small exponential triangle by the 3rd side, or
conversely replacing 1 side by the other 2.

More precisely, if we start with a triangle of side d then this can be
divided inton? exponential triangles of side d/n; and so the original
triangle can be shrunk to a point by at maestelementary deformations,
each involving an exponential triangle of siged/n.
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Actually, we really need the converse constuction. Starting from the trivial
relation/ = I, we can re-construct the original triangle by a sequence of
elementary deformations, each involving a small triangle of sidg/n.

The discrepancy caused by each of these will be of ordet by (1). This
perhaps calls for clarification. We can assume that each of these deforma-
tions involves the last edge of the loop, since the deformation is unaltered if
we change our base-vertex. Suppose then the relation

R=¢e%X .. 5 =1

is “deformed” into
where

The new relation can be written
TR = (e"eZe *) (e ...eX) =1
The corresponding gap il is
F(TR) = I = F(R)(F(T) = 1) + (F(R) — I);
and so
D(TR) < |F(R)|oD(T) + D(R).

This shows (by induction) both th&t( R) is bounded, and that the descrep-
ancy changes at each deformation by an amount of drder.

In sum therefore the? deformations will cause a change in the discrepancy
of order1/n, ie an arbitrarily small change. Since the discrepancy was
initially O (with the triangle shrunk to a point), it must be 0 finally, ie

‘eXeY:eZ:>eerfY:efZ.‘

<

Corollary 8.1 There is an open neighbourhoédof I in G such that every expo-
nential loop inU maps into a loop irnf.

Lemma 8.2 Supposé&r and H are linear groups; and supposg is simply con-
nected. Then every local homomorphism

U— H,

whereU is a neighbourhood of in GG, has a unique extension to the whole&bf
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Proof of Lemma- Any exponential path
eth

can be split into arbitrarily small sub-paths, with vertices

2X/m

g, eXmg 2 Xmg L eXg.

It follows that we can always suppose the edges of the various loops we consider
small enough to come within the ambit of Lemma 1.

Any loop can be shrunk to a point, by hypothesis. We can suppose this shrink-
age occurs as a sequence of small shrinks,

P....Py—P .. P

T

say. These steps can in turn be split into a number of sub-steps, each involving a
small rectangular deformation, of the form

P,...Py PP ...P\Py— P.... Py P, P, ... PR,

Since by the Corollary to Lemma 1 each such deformation leaves the discrepancy
unchanged, and since the discrepancy finally vanishes, it must vanish initially, ie

Xt e ==X =

< <

Proposition 8.2 Suppose the linear grou@ is simply connected Then every
representationv of LG can be lifted uniquely to a representation of G such

that

Proof » If o is real then by Proposition 1 the Lie algebra homomorphism
a: LG — gl(n,R)

can be lifted (uniquely) to a group homomorphism
o' G — GL(n,R).

On the other hand, supposas complex, ie a complex Lie algebra homomor-
phism
a:CLG — M(n,C).

SinceLG < CLG, this restricts to a real Lie algebra homomorphism
a: LG — gl(n,C);

and the result again follows by Proposition 1.«
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Corollary 8.2 1. Suppos€ is a complex Lie algebra. If there exists a simply
connected compact Lie grodp such that

L=CLG

then every representation gfis semisimple.

2. Supposé€- is a linear group. If there exists a simply connected compact
linear group H with the same complexification,

CLG =CLH,

then every representation 6fis semisimple.

Proof »

1. Every representation df arises from a representation@f by Proposition
2, which we know from Part B is semisimple.

2. Every representation ¢f arises from a representation6f= CLG, which
by (1) is semisimple.

<

Example: Every representation of the grasih(2, R) is semisimplgsince its Lie
algebrasl(2,R) has the same complexification as the Lie algehté2) of the

simply connected compact linear gro8pJ(2).



Chapter 9

The Representations ot1(2, R)

As we know,SU(2) andSO(3) share the same Lie algebra; and this algebra
has the same complexification, and so the same representation theory, as that
of SL(2,R). So in studying the Lie theory of any one of these groups we are

in effect studying all three; and we can choose whichever is most convenient
for our purpose. This turns out to be the algeidf@, R).

Proposition 9.1 The Lie algebra
sl(2,R) = (H,E,F : [H, E|=2E,[H,F] = —2F,[E,F] = H)
has just 1 simple representation (ov€) of each dimension,2,3,.... If we

denote the representation of dimensigi+ 1 by D; (for j = 0,1/2,1,3/2,...)
then

D; = (ej,ej_1,...,e_j),
with

He, = 2key,

Eer, = (j—k)exs1,

Fe, = (j+k)ex.
fork=yj,7—1,...,—j,settinge;+1 =e_;_1 = 0.

Remark: Note that we have already proved the existence and uniqueness of the
D; in Partl. For

1. The representations 82, R) andsu(2) are in 1-1 correspondence, since
these algebras have the same complexification;

2. The representations efi(2) andSU(2) are in 1-1 correspondence, since
the groupSU(2) is simply-connected,

424111 9-1



424-111 9-2

3. We already saw in Part Il th&U(2) possessed a unique representafign
of dimensior2;j + 1 for each half integef = 0,1/2,1,. . ..

However, we shall re-establish this result by purely algebraic means.

Proof » Suppose is a simple representationf{2, R) in the (finite-dimensional)
complex vector spackg.

To fit in with our subsequent nomenclature, we shall term the eigen-values of
H (or rather, ofa H) the weightsof the representation; and we shall call the
corresponding eigen-vectongight-vectors\We denote theveight-spacéormed
by the weight-vectors of weight by

W(w)={veV:Hv=uwv}
Supposev is a weight ofa; say
He = we.

(Note thata has at least 1 weight, since a linear transformation @vedways
possesses at least 1 eigen-vector.) Since

[H,E] =2F,
we have

(HE — EH)e = 2Fe
— HFEe—-wFEe =2Fe
= H(Fe) = (w+2)Ee.

Thus eitherE'e = 0; or elseFEe is also a weight-vector, but of weight+ 2. In
any case,

e € W(w) = Fee W(w+2).

Similarly,

(HF — FH)e = [H,Fle=—2Fe
— H(Fe) = (w—2)Fe.

Thus eitherF'e = 0; or elseFe is also a weight-vector, but of weight— 2. In
any case,

ec Ww)= Fee W(w—-2).

This is sometimes expressed by saying thia a “raising operator”, which raises
the weight by 2; whileF is a “lowering operator”, which lowers the weight by 2.
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A finite-dimensional representation can only possess a finite number of weights,
since weight-vectors corresponding to distinct weights are necessarily linearly in-
dependent. Let be the maximal weight, and letbe a corresponding weight-
vector. Then

Fe =0,

sincey + 2 is not a weight.
Repeated action onby F' will take us 2 rungs at a time down the “weight-
ladder”, giving us weight vectors

e,Fe, 2, ...
of weights
M?/’l’_27,u_47"'
until finally the vectors must vanish (since there are only a finite number of

weights); say ‘ _
Fe#£0,F%te =0,

for some half-integey. Set

vy =e v, 0 =1Fe, ... v,y = e
and let
v, =0ifw>porw < u—4j.
Then
Hv, = wu,,
Fuv, = v,

forw=p,u—2,...
Since F' takes us 2 rungs down the weight-ladder, whildgakes us 2 rungs
up, £F andF'E both leave us at the same level:

veW(w)= EFv,FEv e W(w).

We shall show that these 2 new weight-vectors are in fact the same, up to scalar
multiples, as the one we started from, ie

EFv, = a(w)v,, FEv, =b(w)v,.
Notice that each of these results implies the other, since

(EF — FE)v, = [E,F|u,
= Hu,

= Wu,.



424-111 94

So eg the second result follows from the first, with
b(w) =a(w) — w.

At the top of the ladder,
FFEuv, = 0.

Thus the result holds there, with
b(p) =0, iea(p) = p.
On the other hand, at the bottom of the ladder,
EFv, 4 = 0.
So the result holds there too, with
a(p —4j) = 0.

We establish the general result by induction, working down the ladder. Sup-
pose it proved for
Ups Up—25 - - -5 V2.

Then

FEv, = FEFv,-
= Fa(w+2)v,42
= a(w+ 2)v,

Thus the result also holds for,, with

bw) = alw+2),
ieaw) = a(w+2)+w.

This establishes the result, and also givés) by recursion:

a(p) = p
a(p—2) = a(p)+p—2
ap—4) = alp—2)+p—4,
alw) = alw+2)+w.

Hence

alw) = m+(m—-2)+... 4w
= (m—w+2)(m+w)/4,
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while
bw) = alw)—w
= (m—w)(m+w+2)/4.
At the bottom of the ladder,

a(p — 45) = Oie (25 + 1)(n — 2j) = 0.
Hence
W= 2j.
Thus the weights run from-2; down to—25; and
alw) = (j —w/2+ 1) +w/2), blw)=(-w/2)(j+w/2+1).
In particular,

Ev, = FEFe,

= a(w+2)e 0

= (J—w/2)(J +w/2+ e
The space

U = <U2j, Uzjfg, e ,U,2j>
spanned by the weight-vectors is stable underE) and F. and is therefore the
whole ofV/, since the representation was supposed simple. On the othet/nand
simple; for any subspace stable ungke, R) must contain a weight-vector. This
must be a scalar multiple of one of thg; and all the others can then be recovered
by the action ofF and F'.

This establishes the result; it only remains to “prettify” the descriptioD of

by

¢ Indexing the basis weight-vectors bBy= w/2 in place ofw;
¢ Renormalising these vectors (now christeagso that
Fe,=(j+K)ex_1.
It then follows that

(j+Kr+1)FEe, = EFe.
= a(k+ 1)ew
=R+ E+ e

(] - 'Li)e/wrla

ie Fe,

as stated.
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<

Remark:Note in particular that all the weights of all the representatios$(af R)
areintegral. The Lie algebra

su(2) = (H,U,V : [H,U] = V,[H,V] = -U,[U, V] = H)

has just 1 simple representation (o@rof each dimensiom, 2, 3, . . . If we denote
the representation of dimensian+ 1 by D; (for 5 = 0,1,1,3,...) then

with

He, = 2ke,,
Ue, (J —K)ews1 + (J + K)ex_1,
Ve, = i(j—K)ewr1 —i(J + K)ew_1.

Proposition 9.2 Every representation (2, R) is semisimple.

Proof » The representations e1(2, R) are in 1-1 correspondence with the rep-
resentations afu(2), since these 2 Lie algebras have the same complexification.
Moreover, the representations ©f(2) are in 1-1 correspondence with the
representations of the gro§lJ(2), sinceSU(2) is simply-connected.
But the representations 8fU(2) are all semisimple, since this group is com-
pact. So therefore are the representationsi9®?), and hence ofl(2,R). <

Proposition 9.3 For all half-integersj, k,

DjDk = Dj+k + Dj—i—k—l +...+ D|j*k\

Remark:We have already proved this result—or rather the corresponding result
for SU(2)—using character theory. But it is instructive to give an algebraic proof.

Proof » We know thatD; D;, is semisimple, and so a sum bf’s.
Lemma 9.1 Supposey, o/ are representations afl(2, R) in V, V’; and suppose

e, e’ are weight-vectors irl/, V' of weightsw,w’ respectively. Then the tensor
producte ® ¢’ is a weight-vector ofva/, with weightw + w'.
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Proof of Lemma> By the definition of the action of a Lie algebra on a tensor
product,
He®e) = (He)®e +e® (He)
(w+w)lexe)
<

Corollary 9.1 If Q2 is the set of weights of the representatiarand(?’ that ofo/,
then the set of weights of the product representatiohis the sum-set

Q4+ ={w+u we e}

Remark:When we speak of “sets” of weights, it is understood that each weight
appears with a certain multiplicity.

Proof of Proposition 3 (resumedl et us denote the weight-ladder joining; to

—2j by

By the Corollary above, the weights 6f; D, form the sum-set
L(j) + L(k).

We must express this set as a union of ladders. (Nb sum-sets must not be confused
with unions.)

A given set of weights (with multiplicities) can be expressed in at most 1 way
as a union of ladders, as may be seen by successively removing ladders of maximal
length.

To express the sum-set above as such a union, note that

L(k) = {2k, -2k} N L(k —1).
We may assume that< j. Then
L(j)+ {2k, =2k} = L(j+ k)N L(j — k).
Hence
L(j)+ L(k) = L(j)+ {2k, =2k} N L(k —1))
= (L(j) + 2k, —2k) N (L(j) + L(k — 1))
= L(j+k)NL(H—k)N(L(Y)+ L(k—1)).
It follows by induction onk that
L(j)+ L(k)=L(j+k)NLHE+k—-1)N...NL(J — k).
But this is the weight-set of
Djik+Djip1+...+Dj_p
The result follows. <
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The Representations otu(3)

The representation theory ef(2, R) (andsu(2)) outlined above provides both

a model, and a starting-point, for the representation theory of the much larger
class of groups considered below. (We cannot at the moment define this class
precisely—but it includes the whole of the “classical repertoire” catalogued in
Chapter 1.)

As an illustration of the techniques involved, we take a quick look at the rep-
resentations ofl(3, R). (This informal account will be properly “proofed” later.)
Recall that sinceu(3) has the same complexification si$3, R), we are at the
same time studying the representations of this algebra.

The only innovation in passing frosi(2, R) to sl(3, R) is that we must now
consider weights with respect, not just to a single elent#éntut to a whole
commuting family.

In general, suppose

H={H,,H,,...,H}

is a family of commuting operators:
|H;,H;]=H;H; — H;H; =0 Vi,j.

Then we say that a vecteris aweight-vector(always with respect to the given
family H) if
He=wefori=1,...,r

Theweightof e is ther-tuple
W = (wlu"'>wr)

We denote the space formed by the weight-vectors of weigkhdgether with the
vector 0) by

W(wi,...,w,)={veV:Hyv=wuvfori=1,... r}

424—-111 10-1
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Note that a commuting family always possesses at least 1 weight-vector. For
certainly H, possesses an eigen-vector, with eigen-valuesay. But then the
eigen-space

U={veV:Huv=uwwv}

is non-trivial; and it is moreover stable und#s, . . ., H,., since

vel = HlHZ’U = H,-Hlv = CUIHZ'U

We may therefore suppose, by inductionronhat Hs, . . . , H,., acting onl, pos-
sess a common eigen-vector; and this will then be a common eigen-vector of
Hy, ..., H,, ie aweight-vector of the family{.

Example: Let us take an informal look at the representation theoryl@(f, R).
Although this algebra is 8-dimensional, it is convenient to work with the following

9-member spanning set rather than a basis, so that we can preserve the symmetry
between the 3 matrix coordinates:

00 O -1 0 0 1 0 O
H=]101 0 J=1]1 0 00 K=]0 —-10
0 0 —1 0 01 0 0 O
000 0 00 010
A=10 0 1 B=|000 C=1000
000 1 00 000
000 0 0 1 000
D=1000 E=1000 F=]1100
010 000 000

Notice that

H+J+K=0;

this being the only linear relation between the 9 elements.
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The Lie products are readily computed:

[H,A] = 24 [H,B] = -B [HC] = —C
Al = —A [JB] = 2B [JC] = —-C
K,A] = A |[K,B] = —-B [K,C] = 2C
[H,D] = —2D [HE| = E [HF] = F
J,D] = D [JE] = 2B [JJF|] = F
K.D| = D |[K,E| = E |K,F] = —2F
A,D] = H [B,D] =0 [C,D] = 0
AEl =0 [BE =J [CE] =0
A,F] =0 [BF =0 [CF = K
B,C] = D [C,A] = E [AB = F
[E,F] = —-A [F,D] = -B |[G,E] = —C.

The 3 element§H, J, K) form a commuting family (since they are diagon#|jL
weights and weight-vectors will be understood to refer to this family.
Notice that if(x, y, z) is such a weight then

H+J+K=0=2+y+2=0.
Thus the weights all lie in the plane section
{(z,y,2) ER*:x+y+2=0}

of 3-dimensional space.
We shall make considerable use of the natural isomorphism between the fol-
lowing 3 sub-algebras ardd(2, R):

Li=(H,A, D), L,=(J,BE), L;=(KCF) — sl(2,R).

In particular, supposér, y, z) is a weight of(H, J, K). Thenx is a weight of
L, = (H, A, D). But we saw above that all the weights«€d{2, R) are integral.
It follows thatx is an integer. And so, similarly, aggandz. Thus all weights
(x,y, z) areinteger triples

Now suppose is a simple representation sif(3, R) in V; and suppose is a
weight-vector of weightz, y, z). Then

(HA— AH)e = [H, Ale = 2Ae

H(Ae) = (z + 2)Ae.
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Similarly
J(Ae) (y — 1)Ae,
K(Ae) = (z2—1)Ae
Thus
eeW(z,y,z) = AecW(@x+2,y—1,z-1),
ee W(x,y,z) = BeeW(x—-1y+2,z-1)
= CeeW(@—-1y—1,2+2)
= DeeW(x—-2,y+1,2+1)
— FeeW(@+1ly—22+1)
= FeeW(@+1ly+1,2-2).

Our argument is merely a more complicated version of thasf@, R). Let us
define amaximalweight to be one maximising. Then ife is a corresponding
weight-vector we must have

Ae=0,Fe=0,Fe=0.

Our aim s to construct a stable subspace by actingwith the operatorst, B,C, D, E, F.
In fact the subspace spanned by the weight-vectors

W(j, k) = BiC*e
is stable undesl(3,R), ie for each operatak € A, B,C, D, E, F
XW (k) =aW(j' k)

for some scalax, and appropriatg’, '
This may readily be shown by induction gn+ k. As an illustration, take
X = A, and supposg > 0. Then

AW (j,k) = ABW(j—1,k)
= BAW(j—1,k)+[A BW( — 1,k),

and the inductive hypothesis may be applied to each term.

We conclude that there is at most 1 simple representation with a given maximal
weight.

A rather different point of view throws an interesting light on theight-
diagram ie the set of weights, of a representation. Consider the restriction of
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the representation tb,. From the representation theory«f2, R), the weights
divide into L,-ladders

(x,y,2),(r—=2,y+ 1,24+ 1),...,(—z,y + x,2 + z).

Sincezx + y + z = 0, this ladder in fact joins
(z,y,2) t0 (—z, —z,—y),
and is sent into itself by the reflection
R:(z,y,2) — (—x,—z,—y).

in the line
r=0,y+2=0.

It follows that the whole weight-diagram is sent into itself By Similarly (taking
L, andLs in place ofL,), the diagram is symmetric under the reflections

S (fl’ava>'—’ <_Z7 —-Y, _‘T)a T: (I7y72) = (_97 —LU,—Z>;
and so under the grodpy formed by the identity 1R, S, 7" and the compositions
ST : (z,y,2) — (z,z,y) andT'S : (z,y, z) — (v, z, x).

We note that, starting from any non-zero weighfust 1 of the 6 transforms
gw (with g € W) of a given non-zero weight lies in the “chamber”

{(z,y,2) ;x4+y+2=0,2>0,y <0,z <0}.

Our argument shows that, starting from any integer tripl@ this chamber, we
can construct a weight-diagram havingas maximal weight, by taking the 6
transforms ofv, and filling in all the ladders that arise.

In this way it may be seen that there is indeed a simple representation of
s1(3,R) having a given integer triplézx,y, z), with x > 0,y < 0,z < 0, as
maximal weight.

In conclusion, we note thavery representation al(3, R) is semisimpleFor
the restrictions td.,, L, and L3 are semisimple, from the representation theory of
sl(2,R). Moreover, from that theory we see thfdf J and K are each diagonalis-
able.

But a commuting family of matrices, each of which is diagonalisable, are si-
multaneously diagonalisable. (That follows by much the same argument—restricting
to the eigenspaces of one of the operators—used earlier to show that such a fam-
ily possesses at least 1 weight-vector.) Thus every representatid(BoR) is
spanned by its weight-vectors. The semisimplicity of the representation follows
easily from this; for we can successively add simple parts, choosing at each stage
the simple representation corresponding to a maximal remaining weight—until
finally the sum must embrace the whole representation.
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The Adjoint Representation

Definition 11.1 The adjoint representatioad of the Lie algebral is the repre-
sentation inL itself defined by

ad X(Y) = [X,Y].

Remark:We should verify that this does indeed define a representatign ibfis
clearly bilinear; so it reduces to verifying that
ad(X,Y] =ad XadY —adY ad X,

ie
[[Xv Y]7Z] = [Xv [Y; ZH - [Yv [Xv Z]]

forall Z € L. But this is just a re-arrangement of Jacobi’s identity.

424-111 11-1



Chapter 12

Compactness and the Killing Form

As we know, every representation of a compact group carries an invariant
positive-definite quadratic form. When we find that the adjoint representa-
tion of a Lie algebra also carries an invariant form, it is natural to ask—at
least in the case of a compact linear group—whether these are in fact the
same. If that is so, then we should be able to determine the compactness of
a linear group from its Lie algebra.

Definition 12.1 Suppose is a representation of the Lie algebyain the vector
spacel’. Then the trace form af is the quadratic form o defined by

T(X) = tr ((aX)?).

In particular, the Killing form ofL is the trace form of the adjoint representa-
tion, ie the quadratic form o defined by

K(X) = tr ((ad X)?).
Theorem 12.1 Supposé is a connected linear group.

1. If G is compact, then the trace form of every representatiof@fis neg-
ative (ie negative-definite or negative-indefinite). In particular the Killing
form of LG is negative:

G compact=— K < 0.

2. If the Killing form onLG is negative-definite, thefd is compact:

K < 0= G compact

424—-111 12-1
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Proof » 1. Suppose€r is compact; and supposeis a representation af in
V. Then we can find a positive-definite forR(v) on V' invariant undexG—and
therefore also undefG. By change of coordinates we may suppose that

P($1,l’2,...,$n) :$%+$g++$i
In other wordso(G) C O(n). Butthen
' (LG) Co(n)={X eM(n,R): X' =—-X},

wherea’ = La. Thus
X?=-X'X,

where “by abuse of notation” we writ& for o/ X'; and so
K(X)=tr(X?) = —tr(X'X) <0.
2. Itis much more difficult to establish the converse. Supgose 0.

Lemma 12.1 If the Killing form K of the Lie algebral is non-singular, then the
Lie algebra homomorphism

ad : L — der(L)

is in fact an isomorphism.

Proof » Firstly, ad is injective For

X €ker(ad) = ad(X)=0
— K(X)=0

I

and by hypothesi&’(X) = 0 only if X = 0.

Secondly,ad is surjective ie every derivation of is of the formad(D), for
someD € L.

For supposé € der(L), ied : L — L is a linear map satisfying

d([X7 Y]) = [d(X),Y] + [X7 d(Y)]

Consider the map
X — tr((ad X)d) .

SinceK is non-singular, we can fin®® € £ such that

tr ((ad X)d) = K(X, D) = tr ((ad X)(ad D)) .
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Settingd’ = d — ad(D),
tr((ad X)d') =
forall X € L.

Now
ad(dY) =d(adY) — (adY)d = [d,ad Y]

for any derivation/ of £, since
(ad(dY)) X = [dY,X]
= d([Y, X]) - [V,dX]
= d((adY)X) — (adY)(dX)
= [d,adY](X).

Hence, substituting’ for d,
K(X,dY) = tr((ad X)ad(d'Y))
= tr(ad X)[d',ad Y])
= tr((ad X)d'(adY)) — tr ((ad X)(ad Y)d')
= tr((adYad X —ad XadY)d)
= —tr(ad[X,Y]d)
= 0.
We conclude that’Y =0 forall Y; andsad’ = 0,ied =ad D. <«

Corollary 12.1 If the linear groupG is connected, and its Killing fornk” < 0,
then the homomorphism
Ad: G — Aut(LG)y

is a covering.

Proof » The Lie algebra homomorphism associated to this group homomorphism
is just
ad : LG — L (Aut(LG)) = der(LG).
<
We may assume, after suitable choice of basis, that

K(zy,...,2,) = —07 — - — 22,

Thus
Aut(LG) C O(n)
is compact. The result will therefore follow if we can show tlat= ker(Ad) is
finite.
First we establish that is finitely-generated.
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Lemma 12.2 Suppose
0:G— Gy

is a covering of a compact groug@; by a connected linear grou@d. Then we can
find a compact neighbourhoad of 7 in G such that

Proof » Set
E={g=¢:Xec LG |X| <1}

Sinced is connected, it is generated by the exponentidlsthus
G=FEUF*UE*U...

Hence
Gi=0(E)UO(E*)U...

SinceG, is compactf(E") = G, for somer. We can therefore sét = E". <«
Corollary 12.2 With the same assumptions,

G=0Z,
whereZ = ker 6.

Lemma 12.3 Suppose
0:G— Gy

is a covering of a compact grou@; by a connected linear grou@. Thenker
is finitely-generated.

Proof » From above(Z = C'Z, whereC is compact and/ = ker §. ThenC? is
compact, and so we can find a finite subsst . . ., 2.} C Z such that

C?=0CznU---UCxz.

It follows that
C"CClz1,y. .y 2p)
for all . Since( is connected, and the unighC” is an open subgroup @,
G=JC" =C(zn,...,2).
Consequently
Z=(CNZ)z1,..., %)

SinceC' N Z is finite (being compact and discrete), we conclude thet finitely-
generated. «
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Lemma 12.4 Suppose
0:G— Gy

is a covering of a compact groug; by a connected linear grouf, with kernel
Z. Then any homomorphism
f:Z—R

can be extended to a homomorphism

f:G—-R

Proof » With the notation above, l&t = C'Z, with C' compact. Let
u:G—R
be a continuous non-negative function with compact support contadrting
u(c) >0 forallce C.

If we define the function : G — R by

then

for eachg € G.
Now set

Note that

t(gz) = > v(gz2)f (&)

Let us define the functioi : G x G — R by

T(g,h) = t(gh) —t(g).
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Then

= t(gh) — f(z) —t(g) + f(2)
= t(gh) —t(9)
= T(g,h).

ThusT'(g, h) depends only 0fi(g) andh; so we have a functiof : G; x G — R
such that
T(g,h) = S(0g,h).

We can now define the sought-for function by integratthgver G :

Flg)= [ S(ar.9)dg.
To verify thatF' has the required properties, we note in the first place that

T(g,2z) = t(gz)—t(g)

Thus

forall g; € GG;, and so

F(z) = f(z)
Secondly,
T(g,hh') = t(ghh') —t(g)
= t(ghh') — t(gh) +t(gh) — t(g)
= T(gh,h")+T(g,h)
Hence

S(g1, hh') = S (g:10(h), h') + S (g1, h) -
for all g; € GG;, and so on integration
F(hh') = F(h)+ F(h').

<

We have almost reached the end of our marathon! We want to show that
Z = ker(Ad) is finite. Suppose not. We know th4tis finitely-generated. Thus
by the structure theory of finitely-generated abelian groups,

Z =17" X F,
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whereF' is finite. So if Z is not finite, it has a factdZ; and the natural injection
7 — R extends to a homomorphism

f:Z—-R
By our last lemma, this in turn extends to a homomorphism
F:.G—R

Sinced is connected, the image of this homomorphism is a connected subgroup
of R containingZ, which must beR itself, ie F' is surjective.
The corresponding Lie algebra homomorphism

LF: LG — LR

is therefore also surjective; so its kernel isran 1-dimensional ideal o£G. We
can use the non-singular Killing form to construct a complementary 1-dimensional
ideal (.J).

LG =ker(LF) @ {J).

Butif X € ker(LF),
[J, X] € ker(LF) N (J) = {0},
since both are ideals. On the other hanil,/] = 0; so
[/, X]=0
forall X € LG; and soad(J) = 0, and in particular
K(J,X)=0
for all X, contradicting the non-singularity df. <

Remark:In view of the length and complexity of the proof above, a brief resum
may be in place.

e \We start with the homomorhism

Ad : G — Aut(LG)y.

e We want to show that this is a covering. In Lie algebra terms, we have to
establish that the homomorphism

ad : LG — L(Aut LG) = der(LG)

is an isomorphism. This is in fact true for any Lie algelfravith non-
singular Killing form.
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¢ Injectivity follows at once from the fact that
ker(ad) = ZL,
since the radical of the Killing form of containsZL:
XeZl= K(X,Y)=0forallY.

e Surjectivity is more difficult. We have to show that every derivatioro$
of the formad(X) for someX € L.

When L = LG, this is equivalent to showing that every automorphism of
LG in the connected component of the identity is of the fotm— g X ¢!

for someg € G. This in turn implies that every automorphism@fin the
connected component of the identity is inner.

However, that is of little help in proving the result. Our proof was somewhat
formal and unmotivated. The result is perhaps best understood in the context
of the cohomology of Lie algebras and their modules (or representations), In
this context, the derivations d@f consititute the 1-cocycles of th&module

L, while the derivations of the formd(X') form the 1-coboundaries:

ZML) = der(£), BY(L) = ad(L).

Thus the result reflects the fact tHat (£) = 0 for a semisimple Lie algebra
L.

e Having established that
Ad: G — Gy = Aut(G),
is a covering, it remains to be shown that-kif< 0—this covering is finite.
e The fact thatK' < 0 implies thatG, is compact. That is not sufficient

in itself—a compact group can have an infinite covering, as the covering
R — T of the torus shows.

e Again, our proof thaker(Ad) is finite was somewhat formal and unmoti-
vated. And again, the result is probably best understood in the context of
cohomology—in this case the cohomology of groups.

For (G is a central extension d@f;; and such extensions correspond to the
second cohomology groui?(G,). Now if K is non-singularH?(G,R) =
0; from which it follows that every essential extension(éfis finite.

Proposition 12.1 Supposé&- is a compact linear group. Then
LG = [LG,LG] & ZLG.
Moreover, the Killing form vanishes 6fiLG, and is positive-definite di G, LG].
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