Chapter 1

Compact Groups

Most infinite groups, in practice, come dressed in a natopailogy with re-
spect to which the group operations aoatinuous All the familiar groups—
in particular, all matrix groups—arkcally compact and this marks the
natural boundary of representation theory.

A topological groupG is a topological space with a group structure defined
on it, such that the group operations

(,9) = 2y, @ a!

of multiplication and inversion are both continuous.
Examples:

1. The real number® form a topological group under addition, with the usual
topology defined by the metric

d(z,y) = |z —yl.
2. The non-zeroreaR* = R\ {0} form a topological group under multipli-
cation, under the same metric.

3. The strictly-positive real®" = {x € R : 2 > 0} form a closed subgroup
of R*, and so constitute a topological group in their own right.

Remarks:

(a) Note that in the theory of topological groups, we are only concerned
with closedsubgroups. When we speak of a subgroup of a topological
group, it is understood that we mean a closed subgroup, unless the
contrary is explicitly stated.
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(b) Note too that if a subgroufl C G is openthen it is also closed. For
the cosetg H are all open; and sfél, as the complement of the union
of all other cosets, is closed.

So for example, the subgroli®™ C R* is both open and closed.

Recall that a spacg is said to becompactif it is hausdorff and every open
covering
X=UU
1€e]
has a finite subcovering:
X=U,U---UU,,.

(The spaceX is hausdorff if given any 2 points,y € X there exist open sets
U,V C X such that
relU,yeVUnV =40

All the spaces we meet will be hausdorff; and we will use the term ‘space’ or
‘topological space’ henceforth to mebhausdorff spacé

In fact all the groups and other spaces we meet will be subspaces of euclidean
spaceE™. In such a case it is usually easy to determine compactness, aince
subspaceX C E™is compact if and only if

1. X is closed; and

2. X is bounded

Examples:
1. Theorthogonal group
O(n) ={T € Mat(n,R) : T'T = I}.

HereMat(n, R) denotes the space of allx n real matrices; an@”’ denotes
the transpose df":
Ty = Tji.

We can identifyMat(n, R) with the Euclidean spacg™, by regarding the

n? entriest;; as thecoordinatesof 7.

With this understanding®(n) is aclosedsubspace ofs™’, since it is the
set of ‘points’ satisfying the simultaneous polynomial equations making up
the matrix identity7”T = I. It is boundedoecause each entry

| < 1.
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In fact, for each,
ot 2 = (T'T)y = 1.
Thusthe orthogonal groug(n) is compact.
. Thespecial orthogonal group
SO(n) ={T' € O(n) : detT =1}

is a closed subgroup of the compact grdéf), and so is itself compact.

Note that
T e€0O(n) = detT = +1,

since
TT=1=detT'detT =1= (detT)* =1,

sincedet 7" = det T'. ThusO(n) splits into 2 partsSO(n) wheredet T =
1; and a second part whedet 7' = —1. If det T' = —1 thenitis easy to see
that this second part is just the co§&8O(n) of SO(n) in O(n).

We shall find that the groug®O(n) play a more important part in represen-
tation theory than the full orthogonal grou@gn).

. Theunitary group
U(n) ={T € Mat(n,C) : T*T = I}.

Here Mat(n, C) denotes the space af x n complex matrices; and™
denotes the conjugate transposé’of

T =Ty

We can identifyMat(n, C) with the Euclidean spac&?", by regarding
the real and imaginary parts of thé entriest;; as thecoordinatesof 7.

With this understandindiJ(n) is aclosedsubspace of2"". It is bounded
because each entry has absolute value

|ti;] < 1.
In fact, for each,
t|? 4 tas)® + -+ [t = (T = 1.

Thusthe unitary groupU(n) is compact.
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Whenn =1,
U(l)={zeC:|z|=1}

Thus
U(l) =S'~T' =R/Z.

Note that this group (which we can denote equally welllbj1) or T?) is
abelian(or commutative).

. Thespecial unitary group
SU(n) ={T € U(n) : detT =1}

is a closed subgroup of the compact grduif), and so is itself compact.

Note that
T eU(n) = |detT| = 1.

since
T'T=1=detT*detT =1 = |det T|* = 1,

sincedet T* = det T'.

The map
U(l) x SU(n) — U(n) : (A, T) — AT

is a surjective homomorphism. It is not bijective, since
M € SU(n) <= \"=1.

Thus the homomorphism has kernel

wherew = 27/, |t follows that

U(n) = (U(1) x SU(n)) /C,.

We shall find that the groupSU(n) play a more important part in repre-
sentation theory than the full unitary groupgn).

. Thesymplectic group

Sp(n) = {T € Mat(n,H) : T*T = I}.

HereMat(n, H) denotes the space ofx n matrices withquaternionen-
tries; andl™ denotes the conjugate transposéd of

Ty =Ty
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(Recall that the conjugate of the quaternion
q=t+zi+yj+zk

is the quaternion
g=t—xi—yj— zk.

Note that conjugacy is aanti-automorphismie

q192 = 4241.-

It follows from this that
(AB)* = B*A"

for any 2 matricesd, B whose product is defined. This in turn justifies our
implicit assertion thatp(n) is a group:

S,T € Sp(n) = (ST)"(ST) =T*S*ST =TT =1 = ST € Sp(n).

Note too that while multiplication of quaternions is not in general commu-
tative,q andg do commute:

Gq=qq =1+ 2" +y* +2* =g,
defining the norm, or absolute valye| of a quaternion.)

We can identifyMat (n, H) with the Euclidean spac&*"’, by regarding
the coefficients ot i, j, k in then? entriest;; as thecoordinatesof 7.

With this understandingSp(n) is aclosedsubspace of?*”’. It is bounded
because each entry has absolute value

[tij| < 1.
In fact, for each,
15| + [t2s? + - - + [t = (T°T)is = 1.
Thusthe symplectic groufp(n) is compact.
Whenn = 1,
Sp(l)={qeH:|q=1}={t+wit+yj+zk:t*+2° +y*+ 2> =1}

Thus
Sp(1) = S°.

We leave it to the reader to show that there is in fact an isomorphism

Sp(1) = SU(2).
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Although compactnesss by far the most important topological property that
a group can possess, a second topological property plays a subsidiary but still
important ble—connectivity

Recall that the spac¥ is said to bedisconnectedf it can be partitioned into
2 non-empty open sets:

X=UuUV, UnV=40.

We say thatX is connectedf it is not disconnected.

There is a closely related concept which is more intuitively appealing, but is
usually more difficult to work with. We say tha is pathwise-connecteélgiven
any 2 pointse, y € X we can find a path joining x to y, ie a continuous map

7:[0,1] - X

with
7(0) ==z, n(1) = v.

It is easy to see that
pathwise-connected—- connected

Forif X = U UV is a disconnection ok, and we choose pointsc U,v € V,
then there cannot be a pathoining u to v. If there were, then

I=nUur'v

would be a disconnection of the intervél 1]. But it follows from the basic prop-
erties of real numbers that the interval is connected. (Suppesd/ U V. We
may suppose tha&te U. Let

l=infzx e V.

Then we get a contradiction whether we assumeithatl” orx ¢ V)

Actually, for all the groups we deal with the 2 conceptscohnectedand
pathwise-connectedill coincide. The reason for this is that all our groups will
turn out to bdocally euclideanie each point has a neighbourhood homeomorphic
to the open ball in some euclidean spdce This will become apparent much
later when we consider the Lie algebra of a matrix group.

We certainly will not assume this result. We mention it merely to point out
that you will not go far wrong if you think of a connected space as one in which
you can travel from any point to any other, without ‘taking off’.

The following result provides a useful tool for showing that a compact group
is connected.
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Proposition 1.1 Suppose the compact grodgpacts transitively on the compact
spaceX. Letxy € X; and let

H = S(z9) ={g € G : gro = gxo}
be the corresponding stabiliser subgroup. Then

X connected: H connected= (G connected

Proof » By a familiar argument, the action ¢f on X sets up a 1-1 correspon-
dence between the cosetd of H in G and the elements of . In fact, let

©:G—-X
be the map under which
g = gZo.
Then ifz = g,
0 Y} =gH.

Lemma 1.1 Each coset H is connected.

Proof of Lemma- The map

hw— gh:H — gH

is a continuous bijection.

But H is compact, since it is a closed subgroupfas H = O '{z}).
Now a continuous bijectiow of a compact spac& onto a hausdorff spacg
is necessarily a homeomorphism. Fotif C K is open, therC' = K \ U is
closed and therefore compact. Her¢€') is compact, and therefore closed; and
sop(U) =Y \ ¢(C) is open inY. This shows thap~' is continuous, ie is a
homeomorphism.

ThusH = gH; and so

H connected— ¢gH connected

<
Now suppose (contrary to what we have to prove) thad disconnected, say

G=UUuV, UnV =0.
This split inG will split each coset:

gH = (gHNU)U (gHNV).
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But h( is connected. Hence
gH CcUorgH CV.

ThusU andV are both unions of cosets; and so unéer G — X they define a
splitting of X:
X=0eUuevV, eUunev =nJ.

SinceU andV are closed (as the complements of each other) and therefore com-
pact, it follows tha®U and©V are compact and therefore closed. Hence each is
also open; s is disconnected.

This is contrary to hypothesis. We conclude that connected. «

Corollary 1.1 The special orthogonal groupO(n) is connected for each.

Proof » Consider the action #0O(n) onRR™:

(T,z) — Tx.
This action preserves the norm:

[T = ]
(where||z|* = 2’z = 23 + - - - + 22). For

|Tx||* = (Tx)Te = 2/T'Tx = 2'x.
It follows thatT" sends the sphere
Stl={zeR:|z|| =1}

into itself. ThusSO(n) acts onS™ !,

This action is transitive: we can find an orthogonal transformation of determi-
nant 1 sending any point ¢f*~! into any other. (The proof of this is left to the
reader.)

Moreover the spacg™~! is compact, since it is closed and bounded.

Thus the conditions of our Proposition hold. Let us take

0

o =

Then
H(zo) = S(x9) = SO(n —1).
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For

Trg=20=1T = T

0
0 --- 0 1

whereT; € SO(n —1). (SinceT'zy = z, the last column of " consists of 0’'s and
al. Butthen

o+t l=1=ty =ty ="=0.

since each row of an orthogonal matrix has norm 1.)
Our proposition shows therefore that

SO(n — 1) connected—> SO(n) connected

But

SO(1) = {1}
is certainly connected. We conclude by induction th@X(n) is connected for alll
n. <

Remark: Although we won’'t make use of this, our Proposition could be slightly
extended, to state that X is connected, then the number of componentsé/of
andG are equal.

Applying this to the full orthogonal group®(n), we deduce that for each
O(n) has the same number of component€4s$), namely 2. But of course this
follows from the connectedness 80 (n), since we know tha®(n) splits into 2
parts,SO(n) and a coset 080 (n) (formed by the orthogonal matricds with
det ' = —1) homeomorphic t&O(n).

Corollary 1.2 The special unitary groufU(n) is connected for each.

Proof » This follows in exactly the same wa$U (n) acts onC" by
(T,z) — Tx.

This again preserves the norm

(NI

lzll = (|l + - |zal®)

since
|Tz|? = (Tx)"Tz = 2*T*"Tz = 2*x = ||z|*.
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ThusSU (n) sends the sphere
Sl =JreC": |z|| =1}

into itself. As before, the stabiliser subgroup

and so, again as before,
SU(n — 1) connected—> SU(n) connected
Since
SU(1) = {1}
is connected, we conclude by induction t8af (n) is connected for ath. <«

Remark:The same argument shows that the full unitary grol(p) is connected
for all n, since
Ul)={zecC:|z|=1}=5"

iS connected.
But this also follows from the connectednes$&f(n) through the homomor-
phism
(A\T)— AT :U(1) x SU(n) — U(n)

since the image of a connected set is connected (as is the product of 2 connected
sets).
Note that this homomorphism is not quite an isomorphism, since

M € SU(n) <= \"=1.

It follows that
U(n) = (U(1) x SU(n)) /C,,

whereC,, = (w) is the finite cyclic group generated by= >/,
Corollary 1.3 The symplectic group(n) is connected for each.

Proof » The result follows in the same way from the action

(T,x) — Tx
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of Sp(n) onH". This action sends the sphere
Sl ={r e H": ||z|| = 1}
into itself; and so, as before,
Sp(n — 1) connected=> Sp(n) connected
In this case we have
Sp(l)={qg=t+ait+yj+zkcH:|q> =t*+2> +* +2> =1} = 5>

So again, the induction starts; and we conclude $g4dt:) is connected for alh.
<



Chapter 2

Invariant integration on a compact
group

Every compact group carriesumique invariant measureThis remarkable
and beautiful result allows us to extend representation theory painlessly from
the finite to the compact case.

2.1 Integration on a compact space

There are 2 rival approaches to integration theory.

Firstly, there is what may be called the ‘traditional’ approach, in which the
fundamental notion is the measurgS) of a subses.

Secondly, there is the ‘Bourbaki’ approach, in which the fundamental notion is
the integralf f of a functionf. This approach is much simpler, where applicable,
and is the one that we shall follow.

SupposeX is a compact space. Lét(X, k) (wherek = R or C) denote the
vector space of continuous functions

f: X —k.

Recall that a continuous function on a compact spat®isxdedand always
attains its boundsWe set

|[f] = max|f(z)]

for each functionf € C'(X, k).
This norm defines a metric

d(f1, f2) = | fr = f2

on C(X, k), which in turn defines a topology on the space.

424-11 2-1
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The metric iscompleteie every Cauchy sequence converges. This is easy to
see. If{f;} is a Cauchy sequence (X, k) then{f;(x)} is a Cauchy sequence
in k£ for eachx € X. SinceR andC are complete metric spaces, this sequence
converges, tg (x), say; and it is a simple technical exercise to show that the limit
function f(x) is continuous, and that — f in C(X, k).

ThusC (X, k) is a complete normed vector space-Banach spacen short.

A measure: on X is defined to be continuous linear functional

w:C(X, k) —k (k=RorC).
More fully,
1. pislinear, ie
p(ALfi + Aafo) = Ap(fr) + Aap(f2);
2. pis continuousie givene > 0 there exist9 > 0 such that
[fl <0 = |u(f)] <e

We often write
[ fdwor [ @) dut)
X X

in place ofu(f).
Since a complex measuresplits into real and imaginary parts,

W= pr + tpr,

where the measurgs; andy; are real, we can safely restrict the discussion to
real measures.

Example:Consider the circle (or torus)
S'=T=R/Z.

We parametrisé! by the anglé) mod 27. The usual measui® is a measure in
our sense; in fact L
u(f) =5 [ £(6) do

is the invariant Haar measure on the grailpivhose existence and uniqueness on
every compact group we shall shortly demonstrate.

Another measure—point measure—is defined by taking the valuefoht a
given point, say

pa(f) = f(m).

Measures can evidently be combined linearly, as for exampte 1 + %ul,

ie

polf) = [ 16) 8+ 3 ().
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2.2 Integration on a compact group

Suppose now: is a compact group. It is a measure of¥, andg € G, then we
can define a new measuye by

= (g f) = dg.
(9)(f) = (g™ f) /G flgz) dg
(Since we are dealing with functions on a space of functigis jnverted twice.)

Theorem 2.1 Supposé€= is a compact group. Then there exists a unique real
measureu on G such that

1. pisinvarianton G, ie

/G(gf) dp = /Gf dp
forallg € G, f € C(G,R).

2. pis normalisedso thatG has volume 1, ie

/1@:1.
G

Moreover,

1. this measure istrictly positive ie
f(x) 20forallx:>/fdu20,

with equality only iff = 0, ie f(g) = 0 for all g.

\/Gfdulé/(;!fl;du-

Proof »

The intuitive idea.As the proof is long, and rather technical, it may help to
sketch the argument first. The basic idea is thedraging smoothes

By anaverageF'(z) of a functionf(z) € C'(G) we meara weighted average
of transforms off, ie a function of the form

F(x) = M f(giz) + -+ A\ fgr2),

where
gl,...,gTEG, OS)\l,...,)\Tgl, >\1++>\r:1

These averages have the following properties:
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e An average of an average is an average, i€ i§ an average of, then an
average off’ is also an average gf.

e If thereis an invariant measure of, then averaging leaves the integral
unchanged, ie i¥’ is an average of then

/ng:/fdg.

e Averaging smoothes, in the sense that'its an average of then
min f < min F < max F' < max f.
In particular, if we define theariation of f by
var f = max f — min f

then
var F' < var f.

Now suppose a positive invariant measure exists. Then

minfﬁ/fdgﬁmaxf’

ie the integral off is sandwiched between its bounds.
If fis notcompletely smooth, ie not constant, we can always make it smoother,
ie reduce its variation, by ‘spreading out its valleys’, as follows. Let

m =min f, M = max f;

and letU be the set of points whergis ‘below average’, ie
1
U={zeG: f(z)< §(m+M)}

The transforms ot/ (as of any non-empty set) covéf; for if xq € U then
x € (xxy")U. SinceU is open, andX is compact, a finite number of these
transforms covekX, say
XCcqgUU---Ug.U.

Now consider the average

F=%(91f+~--+grf),
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F(x) =~ (flor'e) + -+ flg,'x)) .

S |

For anyz, atleastone of; 'z, ..., g - 'w liesinU (sincex € ¢;U = g; 'z € U).
Hence

Flz) < % ((7’ M+ %(m + M))
= (1 — %M) + 2—1rm

Thus

1
var F' < (1—2) (M —m) < var f.
T

If we could find an average that was constant, 8dy) = ¢, then (always
assuming the existence of an invariant measure) we would have

/fdg:/ng:c/ldg:c.

An examplelet G = U(1); and letf be the saw-tooth function
fe®) =10] (-7 <0 <m).

Let g = e™, ie rotation through half a revolution. Then
1 T
F(z) =5 (f@) + flg) = 5

for all z € U(1). So in this case, we have found a constant function; and we
deduce that if an invariant integral exists, then

/fdg:/ng:g.

But it is too much in general to hope that we can completely smooth a function
by averaging. However, we can expect to make the variation as small as we wish,
so that

var F' = max F' — min F' < ¢,

say. But then (always assuming there is an invariant meagyfeyill be sand-
wiched between these 2 bounds,

mian/fdggmaxF.
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So we can determing f as a limit in this way.

That's the idea of the proof. Surprisingly, the most troublesome detalil to fill
in is to show that 2 different averaging limits cannot lead to different values for
[ f. For this, we have to introduce the second actiortzobn C(G), by right
multiplication,

(9, f) = flzg).

This leads to a second way of averaging, using right transfgiimg). The com-
mutation of multiplication on the left and right allows us to play off these 2 kinds
of average against one another.

Proof proper: Supposef € C(G,R). By the argument above, we can find a
sequence of averages
= fFi, F, ...

(each an average of its predecessor) such that
var fy > var By > varFy > - --

(or else we reach a constant functibn= c).
However, this does not establish that

var F; — 0

asi — oo. We need a slightly sharper argument to prove this. In effect we must
use the fact thaf is uniformly continuous

Recall that a functiory : R — R is said to be uniformly continuous on the
interval I C R if givene > 0 we can always find > 0 such that

2 -yl <d=|[fz— fy| <e

We can extend this concept to a functibn G — R on a compact group: as
follows: f is said to be uniformly continuous @r if given ¢ > 0 we can find an
open sel/ 5 e (the neutral element @¥) such that

rlye U= |fr— fy| <e

Lemma 2.1 A continuous function on a compact group is necessarily uniformly
continuous.

Proof of Lemma- Supposef € C(G, k). For each poing € G, let

U(g) = { € G+ |(x) ~ F(o)] < 3¢}
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By the triangle inequality,

r,y € U(g) = |f(z) = f(y)] <e

Now each neighbourhodd of g in G is expressible in the form
U=gV

whereV is a neighbourhood afin G.
Furthermore, for each neighbourhoBdf e, we can find a smaller neighbour-
hoodW of e such that
W2 cCV.

(This follows from the continuity of the multiplicatiotw, y) — zy. HereW?
denotes the sdtwws : wy,wy € W}.)
So for eachy € G we can find an open neighbourhodd(g) of e such that

gW(g9)* C U(yg);

and in particular

z,y € gW(9)? = |f(z) — f(y)| <e

The open setglV (g) coverG (sinceg € W(g)). Therefore, sincé& is com-
pact, we can find a finite subcover, say

G = glwl Ug2W2 u..- Ungrv

wherelW; = W (g;).
Let

Suppose:r—ly € WV, ie
y € aW.

Now x lies in some seg; IV;. Hence
x,y € gWiW C g; W,

and so
|f(x) = fly)] <e

<
Now we observe that this open détwill serve not only forf but also for
every averagé’ of f. For if

F:)\lglf++)\rgrf (OS)\l,,)\TSl, )\1+—|—)\7«:1)
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then

|F(x) = F(y)| < Mlf(or'a) = flor o) + -+ Ml flg,2) = Fg ' y)l-
But
(g 'e) g ty) = a7 gigi ly = a7y,
Thus
vy e U= |[f(g;'n) — flg7'y)l <e
= |F(z) - F(y)l <M+ Ne=e
Returning to our construction of an ‘improving averadgé’let us takec =

(M — m)/2; then we can find an open gét> e such that

vty € U= |F(a) ~ F(y)] < 5(M —m)

for every averagé’ of f. In other words, the variation df on any transforngU
is less than half the variation gfon G.
As before, we can find a finite number of transformé/ofoveringG, say

GCcqUU---UgU.

One of these transformg;U say, must contain a point, at which I takes its
minimal value. But then, withim,U,

1
[F(2) = Fao)| < (M — m);
and so
_ 1
F(z) < min F' + Q(M —m).
If now we form the new average
1
F/: ;(91F+"'QTF))7
as before, then

r
max F’ <

1 M —
maXF+(minF+ m).
T

T 2
Sincemin F’ > min F, it follows that

1 1
var F' < <1 — > var F' + — var f.
r 2r
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A little thought shows that this implies that
var ' < var I’
provided
1
var ' > 3 var f.

At first sight, this seems a weaker result than our earlier one, which showed that
var F' < var F' in all cases! The difference is, thathow isindependent of'.
Thus we can find a sequence of averages

F[):faFlaFQa"'

(each an average of its predecessor) suchthat; is decreasing to a limit
satisfying

(< <1—1>€+21rvar(f),

r

1
(< = :
<35 var f
In particular, we can find an averagewith
2
var F' < 3 var f.

Repeating the argument, withi in place of f, we find a second averag€
such that

2 2
var F' < (3) var f;
and further repetition gives a new sequence of averages
F0:f7F17F27"'7

with
var F; — 0,
as required.
This sequence gives us a nest of intervals

(min f, max f) D (min Fy, max F}) D (min Fy, max Fy) - - -
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whose lengths are tending to 0. Thus the intervals converge on a unique real
number/.
We want to set

/fdg:[.

But before we can do this, we must ensure that no other sequence of averages can
lead to a nest of intervals

(min f, max f) D (min F}, max F}) D (min Fy, max Fy) - - -

converging on a different real numbgr=£ 1.
This will follow at once from the following Lemma.

Lemma 2.2 Supposé-, F’ are two averages of. Then
min F' < max F".

In other words, the minimum of any averagedighe maximum of any other
average.

Proof of Lemma- The result would certainly hold if we could find a functiéif
which was an average both 6fand of F”; for then

min F < min F” < max F”’ < mazxF’.

However, it is not at all clear that such a ‘common average’ always exists. We
need a new idea.

So far we have only been considering the actiotvan C'(G) on the left But
G also acts on the right, the 2 actions being independent and combining in the
action of G x G given by

(9, h)f) () = fg~"zh).
Let us temporarily adopt the notatigit for this right action, ie
(fh)(x) = f(zh).
We can use this action to definght averages
> ui(fhy).

The point of introducing this complication is that we can use the right averages to
refinethe left averages, and vice versa.
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Thus suppose we have a left average

F =Y X(gif)
and a right average
Fr=3% p(fhy).
Then we can form thgint average
F" =32 Xini(gifhy).

We can regard?” as arising either fron¥’ by right-averaging, or from¥” by
left averaging. In either case we conclude th4tis ‘smoother’ (ie has smaller
variation) than eithef’ of F’; and

min /' < min F” < max F” < max F".

Thus the minimum of any left average s the maximum of any right average.
Similarly

min I’ < max F’;

the minimum of any right average is the maximum of any left average.
In fact, the second result follows from the first; since we can pass from left
averages to right averages, and vice versa, through the involution

f—f:C(@Q) = C(G),

where

flg)=flg™).

For it is readily verified that

Thus if F is a left average thef is a right average, and vice versa.
Now suppose we have 2 left averadgs F; such that

max F} < min F5.

Let
min F5 — max F] = e.

Let F’ be a right average with

var F/ = max F/ — min F’ < e.
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Then we have a contradiction; for
min F, < max F' < min F' 4+ € < max F} + €.

<
We have shown therefore that there is no ambiguity in setting

u(f) =1,

wherel] is the limit of a sequence of averages = f, F},... with var F; — 0;
for any two such sequences must converge to the same value.
It remains to show that this definegantinuousandlinear function

w:C(G,R) — R.
Let us consider linearity first. It is evident that

p(AS) = Au(f),

since multiplyingf by a scalar will multiply all averages by the same number.

Supposefi, fo € C(G,R). Our argument above showed that the right aver-
ages off converge on the same constant valui¢) = I. So now we can take a
left average off; and a right average of,, and add them to give an average of
f1 + fo. More precisely, givela > 0 we can find a left average

Fi =Y Ngifi
of f; such that
p(fi) —e <min Fy <max Fy < pu(f1) + €
and similarly we can find a right average
Fy =" pjfoh;
of f5 such that
w(fo) — e < min Fy < max Fy < u(fy) + €.

Now let

F = E E ity (9i(f1 + f2)hy) .
i
Then we have

min F; + min Fy < min F' < p(f + ¢g) < max F' < max F} + max Fy;
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from which we deduce that

p(f +g) = u(f) + p(g).

Let's postpone for a moment the proof thais continuous.
It is evident that a non-negative function will have non-negative integral, since
all its averages will be non-negative:

fZO:>/fdu20.

It's perhaps not obvious that the integrakisictly positive. Suppos¢ > 0, and
f(g) > 0. Then we can find an open détcontainingg such that

flx)>d>0
for z € U. Now we can findyy, . .., g, such that
G=qUU---Ug,U.

Let I be the average

1
F(a) =~ (flor'a) + -+ f(g;"x))
Then
megiU:>g{1x€U:>f(gi_lx)>§,
and so 5
F > —,
(2) >
Hence 5
/fdg:/ngZ—>0.
T
Since

minfg/fduémaXﬁ

it follows at once that

[ £ dul <151

Itis now easy to show that is continuous. For a linear function is continuous
if it is continuous at 0; and we have just seen that

fl<e=1| [ fdul <e
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It follows at once from
minfg/fdggmaxf

that
[ 1 agl <111

Finally, sincef andgf (for f € C(G), g € G) have the same transforms,
they have the same (left) averages. Hence

[ordg= [ 1.

ie the integral is left-invariant.

Moreover, it follows from our construction that this is the only left-invariant
integral onG with [ 1 dg = 1; for any such integral must be sandwiched between
min F andmax F' for all averaged” of f, and we have seen that these intervals
converge on a single real number.«

The Haar measure, by definition,left invariant:

[ fa™ ') du(w) = [ f(@) du(a)
It followed from our construction that it is alggyht invariant:
[ fh) du(@) = [ f(@) dufa).

It is worth noting that this can be deduced directly from the existence of the Haar
measure.

Proposition 2.1 The Haar measure on a compact grotips right invariant, ie
| flahydg= [ flg)dg  (he G, feC(GR)).

Proof » Supposé. € GG. The map

pn : f = pu(fh)

defines a left invariant measure 6h By the uniqueness of the Haar measure, and
the fact that

pn(1l) =1
(since the constant function 1 is right as well as left invariant),

Hn = [,
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ie w is right invariant. <

Outline of an alternative prooT hose who are fond of abstraction might prefer
the following formulation of the first part of our proof, set in the real Banach space
C(G) = C(G,R).

Let A(f) C C(G) denote the set of averages of This set isconvexie

FFreAlf)y= A N +(1-NF € A(f) (0<A<1).
Let A C C(G) denote the set of constant functiofig/) = c. Evidently
A=R.

We want to show that

ANA(f) #0,

ie the closure ofd( f) contains a constant function. (In other words, we can find
a sequence of averages converging on a constant function.)

To prove this, we establish that(f) is pre-compagtie its closureA(f) is
compact. For then it will follow that there is a ‘poink € A(f) (ie a function
X (g)) which isclosestto A. But if this point is not inA, we will reach a con-
tradiction; for by the same argument that we used in our proof, we can always
improve on a non-constant average, ie find another average clase(\ie actu-
ally need the stronger version of this using uniform continuity, since the ‘closest
point’ X (g) is not necessarily an average, but only the limit of a sequence of av-
erages. Uniform continuity shows that we can improve all averages by a fixed
amount; so if we take an average sufficiently closetg) we can find another
average closer ta than X (g).)

It remains to show thatl(f) is pre-compact. We note in the first place that
the set of transforms of,

Gf={g9f:9€G}

is a compact subset 6f(G), since it is the image of the compact sétinder the
continuous map
g—g9f:G— C(G).

Also, A(f) is theconvex closuref this setG f, ie the smallest convex set
containingG f (eg the intersection of all convex sets containir)g formed by the
points

{/\1F1++)\TFT0§)\1,7/\T§1,A1+—f-)\r:]_}

Thus A(f) is the convex closure of the compact é&f. But the convex clo-
sure of a compact set in a complete metric space is always pre-compact. That
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follows (not immediately, but by a straightforward argument) from the following
lemma in the theory of metric spacessubsetS C X of a complete metric space
is pre-compact if and only if it can be convered by a finite number of balls of
radiuse,

S C B(zy,e)U---U B(z,€),

for everye > 0.

Accordingly, we have shown thatn A(f) is non-empty. We must then show
that it consists of a single point. This we do as in our proof proper, by introduc-
ing right averages. Finally, we defifef dg to be this point of intersection (or
rather, the corresponding real number); and we show as before that this defines an
invariant integraj( f) with the required properties.

Examples:
1. As we have already noted, the Haar measuré’ois
1
—d#.
2w

In other words,
1 2
u(f) = 5= [ w(6) do.

2. Consider the compact groqiJ(2). We know that
SU(2) = S
since the general matrix iBU(2) takes the form

U:< x4y z+iat

2 2 2 2
A R AN Tt

The usual volume or?, when normalised, gives the Haar measure on
SU(2). To see that, observe that multiplication by SU(2) defines a
distance preserving linear transformation—isometry—of R*, ie if

U r+iy z4it \ [ 2+ S+t
—z+it v—iy )\ =2+t -y

R
forall (z,y,2,t) € R

then

It follows that multiplication by preserves the volume off’. In other
words, this volume provides an invariant measureS&n2), which must
therefore be—after normalisation—the Haar measur8G(2).
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As this example—the simplest non-abelian compact group—demonstrates,
concrete computation of the Haar measure is likely to be complicated. For-

tunately, the merexistencef the Haar measure is usually sufficient for our
purpose.



Chapter 3

From finite to compact groups

Almost all the results established in Part | for finite-dimensional representations
of finite groups extend to finite-dimensional representationsoopactgroups.

For the Haar measure on a compact grougallows us toaverageoverG; and our
main results were—or can be—established by averaging.

In this chapter we run very rapidly over these results, and their extension to
the compact case. This may serve (if nothing else) as a review of the main results
of finite-dimensional representation theory.

The chapter is divided into sections corresponding to the chapters of Part |, eg
section 3.5 covers the results established in chapter 5 of Part I.

We assume, unless the contrary is explicitly stated, that we are dealing with
finite-dimensionatepresentations over (wherek = R or C). This restriction
greatly simplifies the story, for three reasons:

1. Each finite-dimensional vector space ovearries ainiquehausdorff topol-
ogy under which addition and scalar multiplication are continuoug. i§
n-dimensional then

V =k,
and this unique topology oW is just that arising from the product topology
onk™.

2. If U andV are finite-dimensional vector spaces owerthen every linear
map
t:U—-V

is continuousContinuity is automatic in finite dimensions.

3. If Vis afinite-dimensional vector space o¥gthen every subspaéé C V
is closedin V.

424-11 3-1
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3.1 Representations of a Compact Group

We have agreed that a representation of a topological grFang finite-dimensional
vector spac&” overk (wherek = R or C) is defined by @ontinuous linear action

GxV =1V

Recall that a representation of a finite grasijin V' can be defined in 2 equiv-
alent ways:

1. by alinear action
GxV =V,

2. by a homomorphism
G — GL(V),

whereGL(V') denotes the group of invertible linear mapsl” — V.

We again have the same choice. We have chosen (1) as our fundamental defi-
nition in the compact case, where we chose (2) in the finite case, simply because
it is a little easier to discuss the continuity of a linear action.

However, there is a natural topology &L(V"). For we can identifGL(1/)
with a subspace of the spaceatf linear maps : V — V; if dim V' = n then

GL(V) C Mat(n, k) = k™.

This n?-dimensional vector space has a unique hausdorff topology, as we have
seen; and this induces a topology G (V).

We know that there is a one-one correspondence between linear actiéns of
on V' and homomorphism& — GL(V). Itis a straightforward matter to verify
that under this correspondencelinear action is continuous if and only if the
corresponding homomorphism is continuous

3.2 Equivalent Representations

The definition of the equivalence of 2 representationg of a groupG in the
finite-dimensional vector spacésV over k holds forall groups, and so extends
without question to compact groups.

We note that the mag : U — V defining such an equivalence is necessarily
continuous, sinc€& andV are finite-dimensional. In the infinite-dimensional case
(which, we emphasise, we are not considering at the moment) we would have to
addthe requirement that should be continuous.
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3.3 Simple Representations

Recall that the representatiarof a group in the finite-dimensional vector space
V overk is said to besimpleif no proper subspadé C V' is stable unde€'. This
definition extends to all grougs, and in particular to compact groups.

In the infinite-dimensional case we would restrict the requirement to proper
closedsubspaces df’. This is no restriction in our case, since as we have noted,
all subspaces of a finite-dimensional vector space bwe closed.

3.4 The Arithmetic of Representations

Supposey, 5 are representations of the groGpin the finite-dimensional vector
spaced/,V over k. We have defined the representatiens- 3, a3, o* in the
vector space¢/ & V, U ® V, U*, respectively. These definitions hold for all
groupsG.

However, theras something to verify in the topological case, even if it is
entirely straightforward. We must show thatifand/ are continuous then so are
a+ 6, af, anda*. (This is left as an exercise to the student.)

3.5 Semisimple Representations

The definition of the semisimplicity of a representatioof a groupG in a finite-
dimensional vector spadé over £ makes no restriction o&', and so extends to
compact groups (and indeed to all topological groups)s semisimple if and
only if it is expressible as a sum of simple representations:

=01+ -+ 0opn.

Recall that a finite-dimensional representatiorizah V' is semisimple if and
only if each stable subspa¢é C V' has at least one stable complementary sub-
spacelV C V:

V=UsgW.

We shall see later that this provides us with a definition of semisimplicity which
extends easily to infinite-dimensional representations,
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3.6 Every Representation of a Finite Group is Semisim-
ple

This result is the foundation-stone of our theory; and its extension from finite to
compact groups is a triumph for Haar measure.

Let us imitate our first proof of the result in the finite case. Supposea
representation of7 in the finite-dimensional vector spat¢eover k (wherek =
R or C).

Recall that we start by taking any positive-definite inner product (quadratic if
k = R, hermitian ift = C) P(u,v) onV. Next weaverageP over(G, to give a
new inner product

(u,v) = /Vp(gu, gv) dg.
It is a straightforward matter to verify that this new inner product is invariant:
(gu, gv) = (u, v).

It also follows at once from the positivity of the Haar measure that this inner
product is positive, ie
(v,v) > 0.

It's a little more difficult to see that the inner product is positde&finite ie
(v,v) =0=v=0.

However, this follows at once from the fact that the Haar measure on a compact
group is itselfpositive-definitein the sense that if (¢) is a continuous function
on G such thatf(g) > 0 for all g € G then not only is

| #(9) dg = 0

(this is the positivity of the measure) but also

/Gf(g) dg =0= f(g9) =0forallg.

This follows easily enough from the fact thatfifg) = ¢ > 0, thenf(g) >
e¢/2 for all g € U whereU is an open neighbourhood gf. But then (since~ is
compact)G can be covered by a finite number of transformg/of

GCcqUU...qU.

It follows from this that

flgrta) + -+ flg 'w) > €/2
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forallx € G. For
v € glU= g 'x €U = f(g; 'w) > ¢/2.

It follows from this, on integrating, that

r [ () dg = e/2

In particularf f > 0.
Note that our alternative proof of semisimplicity also carries over to the com-
pact case. This proof depended on the fact that if

V-V

is aprojectiononto astablesubspacé/ = = (V) of V then itsaverage

1

M==> grg"
Gl 2%
is also a projection ontt’; and
W = kerIl

is a stable complementary subspace:
V=UaW.

This carries over without difficulty, although a little care is required. First we
must explain how we define the average

1= / grg~tdg.
G
For here we are integrating tioperator-valuedunction

F(g) = grg™"

However, there is little difficulty in extending the concept of measureettior-
valuedfunctionsF on G, ie maps

F.G-YV,

whereV is a finite-dimensional vector space overThis we can do, for exam-
ple, by choosing a basis faf, and integrating each componentBfseparately.
We must show that the result is independent of the choice of basis; but that is
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straightforward, The case of a function with value&im (U, V'), whereU, V" are
finite-dimensional vector spaces overmay be regarded as a particular case of
this, since we can regatdm (U, V') as itself a vector space over
There is one other point that arises: in this proof (and elsewhere) we often
encounter double sums
> flg.h)

geG heG

over G. The easiest way to extend such an argument to compact groups is to
consider the corresponding integral

L. #(g.h) dlg,h)

of the continuous functioti(g, k) over the product grour x G.
In such a case, let us set

F(g) Z/heaf(g,h) dh

for eachg € G. Then it is readily shown thaft'(g) is continuous, so that we can
compute

T=/g€GF(g)dg

But then it is not hard to see that= I(f) defines a second Haar measure on
G x G, so we deduce from the uniqueness of this measure that

Lo fomaam=[ ([ rondm)d

This result allows us to deal with all the manipulations that arise (such as
reversal of the order of integration). For example, in our proof of the result above
that the averaged projectidhis itself a projection, we argue as follows:

m — / grg ' dg / hrh=' dh

geG heG

= / grg~thwh™t d(g, h)
(9,h)eGXG

= / 99 hmh™t d(g, h)
(g,h)EGXG

(using the fact thatgm = g, sincelU = im « is stable unde¢). Thus
m? = / hrh~' d(g, )
(g,h)EGXG

_ / dg [ hah ' dh
geG heG
— L
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3.7 Uniqueness and the Intertwining Number

The definition of the intertwining numbédr(«, ) does not presuppose thatis
finite, and so extends to the compact case, as do all the results of this chapter.

3.8 The Character of a Representation

The definition of the character of a finite-dimensional representation does not de-
pend in any way on the finiteness of the group, and so extends to the compact
case.

There is one result, however, which extends to this case, but whose proof
requires a little more thought.

Proposition 3.1 Suppose is ann-dimensional representation of a compact group
G overR or C; and supposg € G. Let the eigenvalues of(g) be A, ..., \,.
Then

Proof » We know that there exists an invariant inner product)) on the representation-
spacel/. We can choose a basis frso that

(v,0) = |21 + -+ 2,

wherev = (z1,...,x,). Sincea(g) leaves this form invariant for eache G,
it follows that the matrixA(g) of «(g) with respect to this basis is orthogonal if
k =R, or unitary ifk = C.
The result now follows from the fact that the eigenvalues of an orthogonal or
unitary matrix all have absolute value 1:

Uv=XM = v'U*=M*

— U Uv = \\w*v

= v = [M**

= [\ =1
Hence

A=)

for each such eigenvalue. «
Alternative proof» Recall how we proved this in the finite case. By Lagrange’s
Theoremy™ = 1 for somem > 0, for eachg € G. Hence

a(g)™ = I
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and so the eigenvalues afg) all satisfy

A= 1.
In particular

Al =1;
and so

A=

We cannot say that an elemenin acompacigroupé is necessarily of finite
order. However, weanshow that the powerg® of g approach arbitrarily close to
the identitye € G. (In other words, some subsequencd @fg?, ¢°, ... } tends to

e.)

For suppose not. Then we can find an openlseb e such that no power
of g exceptg’ = e liesinU. Let V be an open neighbourhood efsuch that
VV~1 c U. Then the subsetg'V are disjoint. For

reg"VNg'V = x=g"v=g"v
— ¢ =yt
— ¢ "el,

contrary to hypothesis.
It follows [the details are left to the student] that the subgroup

() ={...97eq9%. ..}

1. discrete,
2. infinite, and
3. closed inG.

But this implies thatz has a non-compact closed subgroup, which is impossible.
Thus we can find a subsequence

1<n;<ng <...

such that

9

as: — oo.
It follows that
a(g)" — 1
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asi — oo. Hence if) is any eigenvector af(g) then
At — 1.

This implies in particular that
A = 1.

<

Corollary 3.1 If « is a finite-dimensional representation of a compact group over
R or C then

Xa(97") = Xa(9)
forallg € G

Proof » Suppose the eigenvalues@fg) are;, ..., A,. Then the eigenvalues of
a(g™h) =a(g)tareA !, .., AL Thus

Xalg™! = tra(g™)
= lambda;' + -+ \,!

= A+t A
= M+t A
= tra(y)
= Xal(9)

3.9 The Regular Representation
Suppose&- is a compact group. We denote by
C(G) = C(G,k)
(wherek = R or C) the space of alkontinuousmaps
f:G— k.

If G is discrete (in particular it is finite) then every mayg : G — k is continu-
ous; so our definition in this case coincides with the earlier one.

If G'is not finite then the vector spacé G, k) is infinite-dimensional. [We
leave the proof of this to the student.] So if we wish to extend our results from the
finite case we are forced to considgefinite-dimensionatepresentations. We shall
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do this, rather briefly, in Chapter 7 below, when we consider the Peter-Weyl Theo-
rem. For the moment, however, we are restricting ourselves to finite-dimensional
representations, as we have said; so in this context our results on the regular (and
adjoint) representations dwt extend to the compact case.

As we shall see in Chapter 7, a compact but non-finite g@inas arinfinite
numberof distinct simple finite-dimensional representatienso,,.... So any
argument relying on this number being finite (as for example the proof of the
fundamental result on the representations of product-groups, discussed below)
cannot be relied on in the compact case.

3.10 Induced Representations

The results of this chapter have only a limited application in the topological case,
since they apply only where we have a subgrélg G of finite indexin G; that
is, G is expressible as the union of a finite numberbtosets:

G=gHU---UgH.

In this limited case each finite-dimensional representatiaf A inducesa
similar representation® of G.

For exampleSO(n) is of index 2 inO(n); so each representation 80 (n)
defines a representation Of(n).

3.11 Representations of Product Groups

If a, are finite-dimensional representations of the groGp¢/ in the vector
spaced/, W over k then we have defined the representatiorx 5 of G x H

in U ® W. This extends without difficulty to the topological case; and it is a
straightforward matter to verify that x 3 is continuousin the finite-dimensional
case.

Recall our main result in this context; if = C thena x ( is simple if and
only if o and/ are both simple; and furthermore, every simple representation of
G x H overC arises in this way.

The proof thate x ( is simple if and only if if and only ifo. and 5 are both
simple remains valid. However, our first proof that every simple representation of
G x H is of this form fails, although the result is still true.

Let us recall that proof. We argued thatGf hasm classes, then it has
simple representations,, ..., o,,. Similarly if H hasn classes, then it has
simple representations, . . ., 7,,.
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But nowG x H hasmn classes; and so then simple representations x 7,
provide all the representations Gfx H.

This argument fails in the compact case, sincandn are infinite (unless-
or H is finite).

We must turn therefore to our second proof that a simple representatibn
G x H overC is necessarily of the form x 3. Recall that this alternative proof
was based on the natural equivalence

hom(hom(V,U), W) = hom(V,U @ W).

This proofdoescarry over to the compact case.

Suppose the representation-space ftheG x H-spacel/. ConsiderV as a
G-space (ie forget for the moment the actionfbon V). LetU C V be a simple
G-subspace of/. Then there exists a non-zetémapt : V. — U (since the
G-spacel is semisimple). Thus the vector space

X = hom“(V,U)

formed by all suclG-maps is non-zero.
Now H acts naturally onX:

(ht)(v) = t(hv).

ThusX is an H-space. LetV be a simplef{-subspace oK. Then there exists a
non-zeroH-mapu : X — W (since theH-spaceX is semisimple). Thus

hom™ (X, W) = hom" (homG(V, U), W)
is non-zero. But it is readily verified that
hom (hom®(V,U), W) = hom™*(V,U & W).

Thus there exists a non-zetbx H-mapT : V — U x W. SinceV andU @ W
are both simplé&7 x H-spaces] must be an isomorphism:

V=UxW

In particular
y=axp,
whereq is the representation @f in U, and/ is the representation df in V.
Thus if G andH are compact groups then every simple representatiohafl
overC is of the forma x S.
[Can you see where we have used the fact thaind H are compact in our
argument above?]
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3.12 Real Representations

Everything in this chapter carries over to the compact case, with no especial prob-
lems arising.



Chapter 4

Representations ofU(1)

The groupU(1) goes under many names:
U(1) =S0(2) = S' =T' =R/Z.

Whatever it is calledUU(1) is abelian, connectednd—above all-eompact.
As an abelian group, every simple representatidd @f) (overC) is 1-dimensional.

Proposition 4.1 Supposer : G — C* is a 1-dimensional representation of the
compact groug=. Then

la(g)| =1forall g € G.

Proof » SinceG is compact, so is its continuous imagg&~). In particulara(G)
is bounded.
Supposéa(g)| > 1. Then

|(g")| = la(g)[" — o0

asn — oo, contradicting the boundednessaai).
On the other hand,

1> 1.

()l < 1= la(g™'| = |a(g)]
Hencela(g)| =1. <

Corollary 4.1 Every 1-dimensional representatioanof a compact groug- is a
homomorphism of the form
a:G—U(1).

424—-11 4-1
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In particular, the simple representationddfl1) are just the homomorphisms
U(1) — U@).
But if A is anabeliangroup then for each € Z the map
ar—a’:A— A
is a homomorphism.

Definition 4.1 For eachn € Z, we denote by, the representation

619 — ezne

of U(1).

Proposition 4.2 The representation&,, are the only simple representations of
U(1).

Proof » Supposex is a 1-dimensional representation Uf(1), ie a homomor-
phism
a:U(1) - UQ1).

Let U C U(1) be the open set
U={e": —n/2<0<n/2}).

Note that eacly € U hasa unique square roan U, ie there is one and only one
h € U such that)? = g.
Sincea is continuous at 1, we can fird> 0 such that

<0 <6=a(?) eU.
ChooseN so large thal /N < 6. Letw = e?™/V, Thena(w) € U; while
W =1= a(w)’ =1.
It follows that
a(w) =N =" = E,(w)

for somen € Z in the range-N/2 < n < N/2. We shall deduce from this that
a=F,.
Let

Wy = eﬂZ/N.
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Then

since this is the unique square rootdfin U.
Repeating this argument successively with we deduce that if

27
wj —= @2JN

then

a(w;) = wj = By (w))

forj=2,3,4,....
But it follows from this that

fork =1,2,3,.... Inother words
afe) = E(e)

for all 4 of the form

k
9 = 271'27
But these elements’ are dense iU(1). Therefore, by continuity,
a(g) = Enlg)

forallg e U(l),iea=FE,. <=
Alternative proofs Suppose
a:U(1) - U(1)
is a representation dfi (1) distinct from all theE,,. Then
I(E,,0) =0

for all n, ie -
. T8y —nb g
= _27r/o a(e”)e ™™ df = 0.

In other wordsall the Fourier coefficients aof(¢*) vanish.
But this implies (from Fourier theory) that the function itself must vanish,
which is impossible sinca(1) = 1. <

Cn
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Remark: As this proof suggests, the representation theoryJof) is just the
Fourier theory of periodic functions in disguise. (In fact, the whole of group rep-
resentation theory might be described as a kind of generalised Fourier analysis.)

Let p denote the representation ©f(1) in the space”(U(1)) of continuous
functionsf : U(1) — C, with the usual action: iff = ¢'* then

(gf)(€?) = €9,
The Fourier series

f(eiﬁ) — Z CneinG

neL
expresses the splitting 6t(U(1)) into 1-dimensional spaces

C(U1) =DV,

where
Vi = (™) = {ce™ : ¢ € C}.

Notice that with our definition of group actiothe spacé’, carries the repre-
sentationE_,,, rather thant,,. For if g = ¢/, andf(e?) = e™?, then

(9f)(e”) = e f(e") = E_n(g) f ().

In terms of representations, the splitting@fU (1)) may be written:
p= Z E,.

We must confess at this point that we have gone ‘out of bounds’ in these re-
marks, since the vector spac&() is infinite-dimensionalunlessG is finite),
whereas all our results to date have been restricted to finite-dimensional represen-
tations. We shall see in Chapter 7 how we can justify this extension.



Chapter 5

Representations ofSU(2)

5.1 Conjugacy inSU(n)

Since characters are class functions, our first step in studying the representations
of a compact groug-—as of a finite group—is to determine ha@wdivides into
conjugacy classes.

We know that if 2 matrices5,T € GL(n, k) are similar, ie conjugate in
GL(n, k), then they will have the same eigenvalugs. .., \,. So this gives a
necessaryondition for conjugacy in any matrix group C GL(n, k):

S ~ T (inG) = S, T have same eigenvalues.

In general this condition is not sufficient, eg

(o) #(6 %)

in GL(2, C), although both matrices have eigenvalues. However we shall
see that the conditiois sufficient in each of the classical compact matrix groups
O(n),S0O(n),U(n),SU(n), Sp(n).

Two remarks: Firstly, when speaking of conjugacy we must always beiolear
what group we are taking conjugateswo matricesS, 7’ € G C GL(n, k) may
well be conjugate itGL(n, k) without being conjugate it.

Secondly, the concepts of eigenvalue and eigenvector really belormgposa
sentationof a group rather than the group itself. So for example, when we speak
of an eigenvalue of' € U(n) we really should—though we rarely shall—say
eigenvalue of in the natural representation afi(n) in C".

Lemma 5.1 The diagonal matrices ifJ(n) form a subgroup isomorphic to the
torus groupT™ = U(1)".

424-11 5-1
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Proof » We know that the eigenvalues 6fc U(n) have absolute value 1, since

Tov=X = v'T=X\"
— V"T*Tv = Mty
— v*'v = A\
= A\P=M=1
= [N =1

Thus the eigenvalues @f can be written in the form
e e (0y,...,0, €R).

In particular the diagonal matrices Wi(n) are just the matrices

61’91

eiHn

It follows that the homomorphism

U)" = U(n) : (e, )
eien

mapsU (1)" homeomorphically onto the diagonal subgroud i), allowing us
to identify the two:
U((1)" c U(n).

<

Lemma 5.2 Every unitary matrix” € U(n) is conjugate (inU(n)) to a diagonal
matrix:
T ~DeU(1)"

Remark:You are probably familiar with this resulEvery unitary matrix can be
diagonalised by a unitary transformatiomut it is instructive to give a proof in
the spirit of representation theory.

Proof » Let (T') denote the closed subgroup generated/bye the closure in
U(n) of the group
{...,7 Y 1,T,T% ...}

formed by the powers df.
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This group is abelian; and its natural representatiofi’ineaves invariant the
standard positive-definite hermitian forfmy | + - - - 4 |z,,|?, since it consists of
unitary matrices.

It follows that this representation splits into a sum of 1-dimensional represen-
tations, mutually orthogonal with respect to the standard form. If we choose a
vectore; of norm 1 in each of these 1-dimensional spaces we obtain an orthonor-
mal set of eigenvectors @f. If U is the matrix of change of basis, ie

U= (61,...,6n)
then 4
6191
U'TU =
oin
where
Te; = e(”eZ
<

Lemma 5.3 The diagonal matrices i8U(n) form a subgroup isomorphic to the
torus groupT™—! = U(1) L.

Proof » If

then
det T = ei01t+0n)

Hence
TeSUmn)<=60+---+0,=0 (mod 2m).
Thus the homomorphism
101
U(1)" ! — SU(n): (691, . ,69"*1) = 0
61 n—1
e_i(91+"‘+97z—1)

mapsU(1)"~! homeomorphically onto the diagonal subgrougtf(n), allowing
us to identify the two:
U(1)"* c SU(n).
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Lemma 5.4 Every matrixT" € SU(n) is conjugate (inSU(n)) to a diagonal
matrix:
T~DecUu()"

Proof » From the corresponding lemma fbi(n) above,I" is conjugaten the full
groupU(n) to a diagonal matrix:

U'TU =D (U € U(n)).

We know that det U| = 1, say

det U = €.
Let .

V =¥y,
ThenV € SU(n); and

VTV = D.

<

Lemma5.5 LetG = U(n) or SU(n). Two matriced/, V' € G are conjugate if
and only if they have the same eigenvalues

{e 2 . e},

Proof » Supposd/,V € G. If U ~ V then certainly they must have the same

eigenvalues.

Conversely, suppodé, VV € G have the same eigenvalues. As we have seen,

U andV are each conjugate i@ to diagonal matrices:
U ~ Dl, V ~ DQ.

The entries in the diagonal matrices are just the eigenvalues. Thasd D,

contain the same entries, perhaps permuted. So we can find a permutation matrix

P (with just one 1 in each row and column, and O’s elsewhere) such that
Dy =P 'D,P.

Now P € U(n) since permutation of coordinates clearly leaves the farit +
.-+ + |z,|* unchanged. Thus i = U(n) we are done:

SNDlNDQNT.
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Finally, supposé& = SU(n). Then

T=U"SU
for someU € U(n). Suppose
det U = €.
Let
V=M.
ThenV € SU(n); and
T=V*SV

5.2 Representations o8U(2)

Summarising the results above, as they appl§tg2):
1. eachl’ € SU(2) has eigenvalues™

2. with the same notation,

3. U(=0) ~ U(0)

ThusSU(2) divides into classes’'(#) (for 0 < # < ) containing all7" with
eigenvalues®.
The classes

CO) ={1}, c@)={-1},

constituting the centre dfU(2), each contain a single element; all other classes
are infinite, and intersect the diagonal subgroup in 2 elements:

C(6) NU(1) = {U(0)}.

Now let p denote the natural representationSifi(2) in C?, defined by the

()~ (2)-(2)



5.2. REPRESENTATIONS OF SU(2) 424-11 5-6

Explicitly, recall that the matrice$ € SU(2) are just those of the form

U:(_C‘E f’) (al? + |b? = 1)

a
Taking T in this form, its action is given by
(z,w) +— (az + bw, —bz + aw)

By extension, this change of variable defines an actioff2) on polyno-
mials P(z,w) in z andw:

P(z,w) — P(az + bw, —bz + aw).

Definition 5.1 For each half-integer = 0,1/2,1/,3/2,... we denote by); the
representation o8U(2) in the space

V() = (4, 25w, w?)

of homogeneous polynomials4mu of degree2;.

Example:Let j = 3/2. The 4 polynomials

3 3

23, 22w, 2w, w

form a basis for V(3/2).
Consider the action of the matrix

We have
T(z*) = (iw)® = —iw®,
T(Zw) = —izw?,
T(zw?) = —iz’w,
T (w®) —iz’
Thus underD%,
0 0 0 —
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Proposition 5.1 The charactety; of D; is given by the following rule: Suppose
T has eigenvalues™ Then

XG(T) = 290 4 2U=10 . 4 =20

Proof » We know that

Hence

X5(T) = x; (U(0)).
The result follows on considering the actionf6) on the basigz%, ..., w%}
of V(j). For

U0)z"w* = (ewz)k (6—i9w>21'—k‘

_ eQz(k—j)Qka%—k.

Thus undeD;;,

whence
x; (U(0)) = 20 4 o220 | . | ,—2ij6

<

Proposition 5.2 For each half-integeyj, D, is a simple representation 8fU(2),
of dimensior; + 1.

Proof » On restricting to the diagonal subgroljf1) c SU(2),
(Dj)uy = E_gj + E_gjyn + - + Eyj.

Since the simple parts on the right are distinct, it follows that the corresponding
expression

Vi) = () @)
for V'(j) as a direct sum of simpl&(1)-modules is unique.
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Now suppose thdt () splits as ar8U(2)-module, say
Vi) =UaW.

If we expressed’ andWW as direct sums of simpl&(1)-spaces, we would obtain
an expression fov'(j) as a direct sum of simplg(1)-spaces. It follows from the
uniqueness of this expression that eaclyadnd ¥ must be the spaces spanned
by some of the monomials®w®. In particularz?’ must belong either té/ or to
W . Without loss of generality we may suppose that

2eU

But then '
T(z*)eU

for all 7" € SU(2). In particular, taking

1 1 1
=34
(almost anyl” would do) we see that

(z+w)? =2% 4222w+ +w¥ e U

Each of the monomials of degr@g occurs here with non-zero coefficient. It
follows that each of these monomials must bé/in

27k e U for all k.
HenceU =V (j), ie D; is simple. <«

Proposition 5.3 The D; are the only simple representationsSiJ(2).

Proof » Supposex is a simple representation 8fU(2) distinct from theD;.
Then in particular
I(Oé, D]) =0.

In other words;y,, is orthogonal to eacly;,
Consider the restriction af to the diagonal subgroug(1). Suppose

aya) = anEj7
J

where of course all but a finite number of thevanish (and the rest are positive

integers). It follows that 3
Xa (U(0)) = nje”
j
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Lemma 5.6 For any representation. of SU(2),
n—j = Ny,

ie B/; and E_; occur with the same multiplicity ivyq).

Proof » This follows at once from the fact that
U(=0) ~U(0)

inSU(2). =
Sincen_; = n;, we see that, (U(6)) is expressible as a linear combination of
the x;(U(8)) (in fact with integral—and not necessarily positive—coefficients):

X (U(0) = X e (U(9)).

Since eacll” € SU(2) is conjugate to som& (0) it follows that
Xa(T) =2 ¢ix;(T)
J

for all 7" € SU(2). But this contradicts the proposition that the simple characters
are linearly independent (since they are orthogonaly

We know that every finite-dimensional representatiof0f 2) is semi-simple.
In particular, each produd®; Dy, is expressible as a sum of simple representations,
ieasasumob,’s.

Theorem 5.1 (The Clebsch-Gordan formula) For any pair of half-integerg, k&
DDy = Djir+ Djyp—1+ -+ Dyjjp-
Proof » We may suppose that> k.

Supposel’ has eigenvalues™. For any 2 half-integers, b such thata <
b, a—beN,let

L(a,b) = ¥ 4 (el ...y o200

(We may think ofL(a, b) as a ‘ladder’ linkingz to b on the axis, with ‘rungs’ every
step,att + 1,a+ 2,....) Thus

x;(0) = L(=3,7);

and so
xXp; 0 (1) = x;(0)xx(0) = L(—j,5) L(—k, k).
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We have to show that
L(—7,7)L(=k, k) = L(—j—k, j+k)+L(—j—k+1, j+k—1)+- - -+ L(—j+k, j—k).

We argue by induction oh. The result holds trivially fok = 0.
By our inductive hypothesis,

L(=j, )L(, —k+1,k=1) = L(—j—k+1, j+k—1)+- -+ L(—j+k—1, j—k-+1).

Now
L(k) = L(k — 1) 4 (e~ 4 ¢¥k0),
But
L(=j,j)e ™ = L(—j—k,j—k),
L(=j,5)e®™ = L(—j+k,j+k).
Thus

L(—7,j)(e7®®0 + ¥ ) = L(—j—k,j—k)+ L(—j+k,j+k)
= L(—j—k,j+k)+L(—j+k,j—k).

Gathering our ladders together,

L(—j,))L(=k,k) = L(—j—k+1,j+k—-1)+---+L(—j+k—1,j—k+1)
+L(—j—k,j+k)+L(—j+kj—k)

as required. «

Proposition 5.4 The representatio®, of SU(2) is real for integralj and quater-
nionic for half-integraly.

Proof » The character
X;(0) = €270 4 2010 Ly o200

is real, since

Xj(e) — 6721']'0 + 6721'(]'71)0 T €2ij0 — Xj(e)-

ThusD; (which we know to be simple) is either real or quaternionic.
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A quaternionic representation always has even dimension; for it carries an
invariant non-singular skew-symmetric form, and such a form can only exist in
even dimension, since it can be reduced to the form

T1Yo — ToY1 + T3Ys — TaYys + -+

But

is odd for integralj. HenceD,; must be real in this case.

Lemma 5.7 The representatiom)% IS quaternionic.
Proof of Lemma- SupposeD% were real, say

D, = Cp,

D=

where
B :SU((2) — GL(2,R)

is a 2-dimensional representationS¥ (2) overR. We know that this representa-
tion carries an invariant positive-definite form. By change of coordinates we can
bring this toz? + 23, so that

im 3 C O(2).

Moreover, sinceSU(2) is connected, so is its image. Hence
im 3 C SO(2).
Thus defines a homomorphism
SU(2) — SO(2) = U(1),

ie a 1-dimensional representatigrof SU(2), which must in fact beD, = 1. It
follows thats = 1 + 1, contradicting the simplicity oD%. <

Remark:lt is worth noting that the representatiﬁ)% IS quaternionic in its original
sense, in that it arises from a representation in a quaternionic vector space. To see
this, recall that

SU(2) =Sp(1) = {q e H: |¢| =1}.

The symplectic groupp(1) acts naturally o, by left multiplication:

(9,9) — gq (g €Sp(l), ¢ € H).
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(We take scalar multiplication in quaternionic vector spaces on the right.) It is
easy to see that this 1-dimensional representationlfi\gves rise, on restriction
of scalars, to a simple 2-dimensional representation @yerhich must beD%.

It remains to prove thab; is quaternionic for half-integrgl > % Suppose in
fact D; were real; and suppose this were the first half-integveith that property.
Then

Dle = Dj+1 + Dj + Dj,1
would also be real (since the product of 2 real representations is real)) But
is quaternionic, by assumption, and so must appear with even multiplicity in any
real representation. This is a contradiction; 3p must be quaternionic for all
half-integralj. <«

Alternative Proof Recall that ifce is a simple representation then
1 if aisreal,

/Xa(QQ) dg=1<{ 0 if aisessentially complex,
—1 if «is quaternionic.

Leta = D;. Supposeg € SU(2) has eigenvalues=. Theng? has eigenval-
uese*?? and so

(g?) = M0 A0y il
= X2i(9) — x2j-1(9) + - + (=1)7x0(9).

Thus

/Xj(92) dg = /ij(g) dg—/m—l(g) dg + - 2”/><o

I(1,D9;) — I(1,Dgj_y) + -+ + (— 1)231(1 Dy)
(-1)¥I(1,1)
{ +1 if jis integral

—1 if jis half-integral



Chapter 6

Representations ofSO(3)

Definition 6.1 A coveringof one topological grouj- by anotherC' is a continu-
ous homomorphism
0:C—-G

such that
1. ker © is discrete;
2. ©is surjective, iem © = G.

Proposition 6.1 A discrete subgroup is necessarily closed.

Proof » SupposeS C G is a discrete subgroup. Then by definition we can find
an open subséf C G such that

Uns={1}.

(For if S is discrete ther{1} is open in the induced topology of ie it is the
intersection of an open set (A with S.)
We can find an open sét C G containing 1 such that

VvV c U,
ie vy vy € U for all vy, v, € V. This follows from the continuity of the map
(r,y) — 2y :GxG—G.

Now supposgy € G \ S. We must show that there is an open &eb ¢ not
intersectingS. The open sejV’ > g contains at most 1 element 6f For suppose
s,t € gV, say

s = gvi, T = guo.

424-11 6-1
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Then
st=vlv,eUNS.

Thuss™ 't =1,ies =t.

If gV NS = () then we can tak®& = gV. Otherwise, supposg’ N S = {s}.
We can find an open s&f C G such thaty € W, s ¢ W; and then we can take
O=gVNW. <

Corollary 6.1 A discrete subgroup of a compact group is necessarily finite.

Remark:We say that
0:C—-GC

is ann-fold covering if || ker ©| = n.

Proposition 6.2 Suppos® : C' — G is a surjective (and continuous) homomor-
phism of topological groups. Then

1. Each representation of GG in V' defines a representationl of C' in V' by
the composition

o CSGSGLV).

2. If the representations,, a, of G define the representationg, o/, of C' in
this way then
] = ah <= a; = ao.

3. With the same notation,

(1 + )’ = a] + ay, (a10) = jal, (o) = ()"

4. A representation of C' arises in this way from a representation@fif and
only if it is trivial on ker ©, ie

g € ker® = [(g) = 1.

5. The representation’ of C' is simple if and only ity is simple. Moreover, if
that is so theny' is real, quaternionic or essentially complex if and only if
the same is true af.

6. The representation’ of C' is semisimple if and only i is semisimple.
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Proof » All follows from the fact thatyv (g € G, v € V) is the same whether
defined throughyv or /. <«

Remark:We can express this succinctly by saying ttegt representation-ring of
G is a sub-ring of the representation-ring 6f

R(G, k) C R(C, k).

We can identify a representatienof G with the corresponding representation
o/ of C; so that the representation theory@fis included, in this sense, in the
representation theory @f.

The following result allows us, by applying these ideas, to determine the rep-
resentations 08O (3) from those ofSU(2).

Proposition 6.3 There exists a two-fold covering

0 : SU(2) — SO(3).

Remark:We know thatSU(2) has the real 2-dimensional representation de-
fined by a homomorphism

6 :SU(2) — GL(3,R).

SinceSU(2) is compact, the representation-space carries an invariant positive-
definite quadratic form. Taking this in the formd + 32 + 22, we see that

im© C O(3).
Moreover, sinceSU(2) is connected, so is its image. Thus
im© C SO(3).

This is indeed the covering we seek; but we prefer to give a more constructive
definition.
Proof » Let H denote the space of &lx 2 hermitian matrices, ie all matrices of
the form .
- T Y — 12

A_<y—|—iz y ) (z,y,2,t € R).
Evidently H is a 4-dimensional real vector space. (It is not a complex vector
space, sincel hermitian does not imply thatd is hermitian; in fact

A hermitian = i A skew-hermitian
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since(tA)* = —iA* forany A.)
Now supposé/ € SU(2). Then

AeH = (UAU)* = U*A*U™ = U* AU
— U*AU € H.

Thus the action
(U, A) — U"AU = U AU

of SU(2) on’H defines a 4-dimensional real representatio8G12).
This is not quite what we want; we are looking for a 3-dimensional represen-
tation. Let
T={AeH: trA=1}

denote the subspace &fformed by therace-freehermitian matrices, ie those of

the form '
T — 12
A:<y—|—iz y—x ) (r,y,2z,t € R).

These constitute a 3-dimensional real vector space; and since
tr (UTAU) = tr (U AU) = tr A

this space is stable under the actionSdf(2). Thus we have constructed a 3-
dimensional representation 81U(2) overR, defined by a homomorphism

©:SU(2) — GL(3,R).

The determinant defines a negative-definite quadratic forf ince

det(y—fzz y:xZZ ) :—Z‘2—y2—22

Moreover this quadratic form is left invariant by the actiorSaf (2), since
det (U"AU) = det (U™ AU) = det A,

In other wordsSU (2) acts by orthogonal transformations @i so that

imO C O(3).
Moreover, sinceSU(2) is connected, its image must also be connected, and so

im© C SO(3).
We use the same symbol to denote the resulting homomorphism

© : SU(2) — SO(3).

We have to show that this homomorphism is a covering.
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Lemma 6.1 ker© = {£I}.

Proof of Lemma- SupposdJ € ker ©. In other words,

UtAU = A
forall AeT.
In fact this will hold for all hermitian matriced € H since
H = T@(Z).

But now the result holds also for all skew-hermitian matrices, since they are
of the formi A, with A hermitian. Finally the result holds fa@ll matricesA <
GL(2,C), since every matrix is a sum of hermitian and skew-hermitian parts:

1 1
A:i(A+A*)+§(A—A*).
Since

U AU = A < AU = UA,

we are looking for matrice§ which commute with alR x 2-matricesA. It is
readily verified that the only such matrices are the scalar multiples of the identity,
ie

U=npl.
But now,
UeSU(2) = detU=1
— p’=1
— p==1
<

Lemma 6.2 The homomorphis® is surjective.

Proof of Lemma- Let us begin by looking at a couple of examples. Suppose first

and suppose
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Then
. e” 0 T Yy —1z e 0
vrAU. = ( 0 e y+iz —x 0 e
x e 20(y —iz)
e?(y +iz) —x
B X Y-iZ
Y+iZz —-X ’
where

Y = cos20y +sin260z
Z = sin20y — cos20z.

ThusU(0) induces a rotation in the spa@ethrough26 about theDz-axis, say
U(0) — R(20,0x).

As another example, let
1 1 1
=)
In this case

N - x y+iz\ X Y +i7
VAV_(y—iz —x >_<Y—iZ -X ’

where
X = -y
Y ==«
Z Pt
Thus©(V) is a rotation throughr /2 aboutO~.
It is sufficient now to show that the rotatiod& ¢, Ox) about thez-axis, to-

gether withT' = R(w /2, Oz), generate the groupO(3). Since® is a homomor-
phism, VU (0)V~! maps onto

TR(20,02)T~" = R(20,T(Ox)) = R(20,Oy).

Thusim © contains all rotations abodlz and aboutDy. It is easy to see that
these generate all rotations. For consider the rotation /) about the axig. We
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can find a rotatiort’ aboutOx bringing the axid into the plane)zz; and then a
rotation7” aboutOy bringing! into the coordinate axi®x. Thus

TSR(¢,1)(TS)™* = R(¢, Ox);

and so
R(¢,1) = SflT”R(Q Ox)T'S.

<
These 2 lemmas show thatdefines a covering 30(3) by SU(2). <«

Remarks:

1. We may express this result in the succinct form:

SO(3) = SO(2)/{+I}.

Recall thatSU(2) = S3. The result shows th&0(3) is homeomorphic
to the space resulting from identifying antipodal points on the spkére
Another way of putting this is to say th&O(3) is homeomorphic to 3-
dimensional real projective space:

SO(3) = PY(R) = (B*\ {0})/R".

2. We shall see in Part 4 that the spacéor more accurately the spatg) is
justthe Lie algebraof the groupSU(2). Every Lie group acts on its own
Lie algebra. This is the genesis of the homomorphsm

Proposition 6.4 The simple representations 80 (3) are the representationd;

for integral ;:
D(]:l, Dl; DQ,...

Proof » We have established that the simple representatiorsdf3) are just
thoseD; which are trivial on{£/}. But under—1,

(Zu U}) = <_Za —U))
and so ifP(z,w) is a homogeneous polynomial of degtge
P(—z,—w) = (=1)¥P(z,w).

Thus—1 acts trivially onV; if and only if 25 is even, igj is integral. <
The following result is almost obvious.
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Proposition 6.5 Let p be the natural representation 800(3) is R®. Then

(Cp = Dl.

Proof » To start with,p is simple. For if it were not, it would have a 1-dimensional
sub-representation. In other words, we could find a directidR’isent into itself
be every rotation, which is absurd.

It follows thatCp is simple. For otherwise it would split into 2 conjugate parts,
which is impossible since its dimension is odd.

The result follows sincé); is the only simple representation of dimension 3.

<



Chapter 7

The Peter-Weyl Theorem

7.1 The finite case
Suppos€- is a finite group. Recall that
C(G) =C(G,C)
denotes the banach space of mgpss — C, with the norm

|| =sup|f(g)|-
geG

(For simplicity we restrict ourselves to the case of complex scatatsC.)
The groupG acts onC'(G) on both the left and the right. These actions can be
combined to give an action &f x G:

(9. 7)f) (x) = f(g~ " wh).
Recall that the corresponding representatiaf G x G splits into simple parts
T =01% X001+ -+ 05 % X0y

whereo, ..., o, are the simple representations(@{overC).
Supposé/ is aG-space. We have a canonical isomorphism

hom(V, V) =V*®@ V.

ThusG x G acts onhom(V, V'), with the first factor acting o * and the second
onV. A little thought shows that this action can be defined as follows. Suppose
t:V — Visalinear map, ie an elementloém(V, V). Then

(g, h)t =1t

424-11 7-1
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wheret’ is the linear map
t'(v) = ht(g~ ).

The expression for above can be re-written as
C(G) = hOm(VUN VU1) T+t hom(Vas, VUs)?

whereV,, is the space carrying the simple representation
In other words
C(G) =C(G)o ® -+ & C(G)o,,

where
C(G), = hom(V,, V,).

Since the representation$ x ¢ of G x G are simple and distinct, it follows that
the subspaceS(G), C C(G) are the isotypic components 61G).

If we pass to the (perhaps more familiar) regular representatichinfC(G)
by restricting to the subgroupx G C G x G, so thatG acts onC(G) by

(9.f)() = (g~ 2),

then each subspadé* @ V' is isomorphic (as &--space) todimoV. Thus it
remains isotypic, while ceasing (unlesisn ¢ = 1) to be simple. It follows that
the expression

C(G> = C(G)Ul PR C(G)Usa

can equally well be regarded as the splitting of thepaceC (G) into its isotypic
parts.

Whichever way we look at it, we see that each functfdm) on G splits into
components, (x) corresponding to the simple representatiorsf G.

What exactlyis this componenf, (z) of f(z)? Well, recall that the projection
7 of the G-spacel/ onto itse-component/; is given by

= |é‘ > xlg g

geG

A

It follows that

folz) = ﬁ ™ x(9)/(g2).

geG
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