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Attempt 4 questions from Part A, and 2 questions from Part B.
Part B

. Show that the number of elements in a finite field is a prime power p®;
and show that there is exactly one field (up to isomorphism) with p®
elements.

Answer:

(a) Suppose k is a finite field of characteristic p. Then the elements
0,1,2,...,p—1 form a subfield isomorphic to F, = Z/(p).
We can consider k as a vector space over this subfield IF,. If the
vector space is of dimension d with basis ey, ..., eq then k consists
of the p? elements

T = Aey+ -+ Ageqg,

with \; € {0,1,...,p—1}.
(b) We have to show

1. There exists a field containing p™ elements.
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0.

Two fields containing p" elements are isomorphic;

Let
Un(z) = 2" — x € F[].

We can construct a splitting field K for U,(z), ie a field in
which U, (x) factorises completely into linear factors, by re-
peatedly adjoining roots of U, (z):

]Fp:k‘QCth"'Ck‘r:K,

where

kit1 = ki(6;).

More precisely, suppose U,(x) factorises over k; into irre-
ducible factors, as

Un(x) = fi(2) - fol).

If all the factors are linear, we are done. If not, say fi(x) is
not linear, then we adjoin a root of fi(x), ie we set

ki = kilz]/(f1()).

This ‘splits off* a new linear factor (x —6;), where 6; is a root
of f1(x), and so of U,(z). Since U,(x) has at most p" such
factors, the process must end after at most p" iterations.

The polynomial U, (z) splits completely in K, say

Up(z) = (x —a1) - (z — apm).
The factors must be distinct, ie U, () is separable, since
Ul(zx)=1

and so
ged(Un(z), Uy (2)) = 1.

We claim that the roots
k= {Oél,...,Oépn}

form a subfield of k, containing p" elements. For suppose
a,B € k. Then

o =a, " =a = (aB) =af
— af €k,



while also
(a+B)P =" + 8" =a+p = a+Bck.

Thus we have constructed a field with p" elements.

Suppose k, k' are two field with p" elements. We assume the
following result:

Lemma 1. If k is a finite field then the multiplicative group

k= k\{0}

18 cyclic.

Let m € k be a generator of k* (ie a primitive element of k).
Suppose the minimal polynomial of = over F, is m(z).

We also assume the following result (an easy consequence of
Lagrange’s Theorem):

Lemma 2. If the field k contains p" elements, say

k:{al,...,apn}

then
Up(x) = H(x — )
ack
It follows in particular that
Up(m) = 0.
Hence
m(x) | Un(z).

Passing to k', since
U(z) = [] (@ =)
a'ck!

and
m(z) | Un(z)

it follows that there is an element " € k' satisfying
m(r') = 0.

Since m(x) is irreducible, it is the minimal polynomial of '

Hence if f(z) € F,[x] then
f(r) =0 <= m(z)| f(z) < f(x') =0.



In particular, @' is a primitive element of k', since
=1 = 7’ is aroot of 2" — 1
= 7 s a root of x" — 1
= 7¢=1.
Now we define a map
0:k— K
by setting
O(r") = 7",

together with 0 +— 0. We note that 0 is well-defined, since
m, 7 have the same order.

Suppose
a=7n", =mn°
Then
0(af) = (")

— 7T/T+S

= 0(a)0(8).
Also

a+f=1" = f(r)=0,

where

flx) =a" +2° — 2.
In this case

f@)=0 = " +7° =7x"
= 0(a) +0(3) =0(a+ f).

It 1s trivial to show that these results also hold if one or more
of a, B, + 3 is 0. Hence

0:k—k

18 a ring-homomorphism.
Moreover, 0 is injective since

O(n") =0 = 7" =0 = 7 =0.

which 1s impossible.
Hence 0 is an isomorphism.



8. Show that a finite abelian group A is the direct sum of its p-primary
parts A, (consisting of the elements of order p° for some e).

Determine whether the equation
v 4oy =1 +1

defines an elliptic curve over each of the fields Fo, F3, Fy, F5, Fr, Fg, Fy;
and in those cases where it does, determine the group on the curve.
Answer:

(a) Suppose
Al =n=pl"-p

Let n
7% = Hpjj - i
j#i pi
Then qi,...,q. are co-prime, and so (by the Chinese Remainder
Theorem) we can find my, ..., m, such that

migr+ -+ mpq = 1.

Thus if a € A then

a=miqa—+ -+ m.q,a.

But
miga € Ap,
since
Pt (migia) = m;(pjiqi)a
= m;(na)
=0.
Thus

A=Ay +-+ Ay,
It remains to show that the sum is direct. Suppose
ay -+t =0,

where a; € A,,.



By Lagrange’s Theorem,

pjjaj =0.
It follows that
gia; =0
if i # j. Hence
gia; =0

But since
ged(pf, ¢;) = 1

we can find r,s such that

rpst + sq; = 1.
Then
a; = rpiia; + sqa;
=0+40.
Thus
alz"':ar:Oa

and so the sum is direct.

(b) k =Ty The equation takes the homogeneous form
FIX,Y,2)=Y2Z + XYZ +X*+ 7% = 0.
We have

OF/0X =Y 7Z + X?,
OF Y = X Z,
OF/0Z =Y? + XY + Z°.

At a singular point,
XZ=0= X=0o0rZ=0.
But
X=0=YZ=0,Y’4+2°=0 = Y=2=0,

while
7/=0—= X=0 = Y =0.



Thus there is no singular point, and we have an elliptic curve.
Returning to the inhomogeneous equation,

r=0 = 3’=0 = y=0,

while

r=1= y*+y=0,
which is true for y =0, 1.
Thus there are 3 affine points (0,1), (1,0), (1,1) on the curve,
which together with the point at infinity gives a group of order
4.

We have to determine if the group is
Z](4) or Z/(2) ® Z/(2).

We can distinguish between these by the number of elements
of order 2; the first group has 1, the second has 3.

Suppose P = (x0,y0), Then —P is the point where the line
OP through the point at infinity O = [0, 1,0] meets the curve
again. This is the line

r = Xyp.

Thus P is of order 2, ie —P = P, if and only if this line meets
the curve just once.

Since there is only 1 point with x = 0, the line x = 0 meets
the curve twice at A = (0,0). Thus A is of order 2.

There are two points on the line x = 1, so neither is of order
2.

We conclude that the group is 7./(4).

F3 Completing the square on the left, the equation becomes
(y+2/2)° =2+ 2°/4+1,
1€
y? =2t 42?41,
on setting y' = y+x/2 = y—x and noting that 1/4 = 1 mod 3.
The polynomial p(x) = x> + 2% + 1 is separable, since p'(z) =

2z and so ged(p(x), p'(x)) = 1. Hence the curve is elliptic.
The quadratic residues mod3 are 0, 1.



We draw up a table for x,z® + 2* + 1 and possible y:
v | +22+1 ¢

0 1 +1
1 0 0
—1 1 +1

Thus the curve has 6 points (including the point at infinity).
There is only one abelian group of order 6, namely Z/(6), so
we conclude that this is the group on the curve.

k =1, The argument in the case k = Fy shows that the curve s
non-singular, ie an elliptic curve E(Fy). Also

E(Fa) = 2/(4)

18 a subgroup:

E(Fy) C E(Fy).

In particular, E(Fy4) is of order 4m for some m.
Suppose P = (a,b) € E(Fy). The line

OP:z=a
meets the curve where
yly+a)=a’+1.
Thus OP meets the curve again at
—P = (a,y+ a).
Note that
—P=P < a=0 < P=(0,1).

It follows that there is just 1 point of order 2.
If v € F} then
=1,

and so the equation reduces to
y(y + ) = 0.

Thus there are 2 solutions (x,0), (x,x) for each x € Fy \ Fy.
It follows that there are 8 points on the curve. Since there is
a subgroup 7./(4) the group is either

Z/(8) or Z/(4) & Z/(2).

Since there is only one point of order 2, we conclude that the
group is 7./(8).



k =T5 In this case 1/4 = —1 and the curve takes the form

y' =p(r) =2° — 22 + 1.
Since
p'(z) = 32% — 22 = 3z(z + 1).

Since neither 0 nor 1 is a root of p(x), the polynomial is sep-
arable, and the curve is elliptic.

The quadratic residues mod5 are {0, £1}.

We draw up a table as before:

v |2d—224+1 vy
0 1 +1
1 1 +1
2 0 0
—1 —1 +2
-2 -1 +2

Thus there are 9 + 1 = 10 points on the curve. Hence the
group is 7,/(10).
k =T; Since 1/4 =2 in this case, the equation is

y* =p(x) =2 +22° + 1.
We have
p'(z) =32 + 41 = 3z(z — 1).
Since neither 0 nor 1 is a root of p(x), the polynomial is sep-
arable, and the curve is elliptic.
The quadratic residues mod7 are {0,1,2, —3}.
We draw up a table as before:

v |2d+2224+1 vy
0 1 +1
1 -3 +2
2 2 +3
3 -3 +2
-1 2 +3
-2 1 +1
-3 -1 _

Thus there are 12 + 1 = 13 points on the curve. Hence the
group is 7./ (13).



k =Tg The argument in the cases Fy and Fy remains valid here;
the curve is non-singular and so elliptic.
As before, we can write the equation as

y(y +2) =2+ 1.

Thus the points appear in pairs P = (z,y), —P = (z,y + ),
except when x = 0, in which case there is just one point (0, 1)
of order 2.

Also, as in the case Fy,

E(Fy) = Z/(4) C E(Fs),

and in particular there are 4n points for some n.
[But note that Fy is not a subfield of Fg.]
The Frobenius automorphism

®: (2,y) = (2%, y%)
has order 3; so either
®(P)=P < Peé&F)
or else there is a triplet of points
{P, ®P, ®*P}.

It follows that the number of points in E(Fs)\E(F2) is divisible
by 3, as well as /.

Since there are at most 2 values of y for each of the 8 values
of ©, there are at most 16 points on the curve (there is just
one point for x = 0 to balance the additional point at infinity).
It follows that the curve contains either 4 or 16 points.
Hasse’s Theorem tells us that the number N of points on the

curve satisfies
IN — 9] <2V8 <6,

from which it follows that
4 < N <14.

Hence N =4, and so the group is Z/(4).



k =TFy As in the case F3, we can complete the square on the left
and the curve takes the form

v =plr) =2+ 22 + 1.
We know that
E(F3) =17/(6) C E(Fy).

In particular the curve has 6m points for some m.
Recall that the point (x,y) is of order 2 if y = 0 and p(z) = 0.
We know that (1,0) is one such point. In fact

p(z) = (x—1)(2* —x—1).
The polynomial g(x) = x*> —x — 1 is irreducible over F3 (since

none of {0, £1} are roots). It follows that

Fo = Fsla]/(g(x))-

Hence

g9(x) = (z — a)(z — §)
with o, 3 € Fy.
Thus there are 3 points of order 2 on the curve. Hence the
2-primary part of the group contains at least 4 points, and so
the curve contains 12n points for some n.
There are at most 2 points for each x© € Fy. [In fact only 1
forx =1,c,3.] It follows that the curve has 12 points. Since
there are 3 points of order 2, the 2-primary part is 7/(2) ®
Z/(2). Hence the group is

Z)(2) @ Z/(2) ®Z/(3) = Z/(6) ®Z/(2).
9. Show that the map
D:x—af

is an automorphism of the finite field IF,.; and show that every auto-
morphism of this field is of the form ®" for some r.

Find an irreducible polynomial f(x) of degree 5 over Fy. Hence or
otherwise determine the group on the elliptic curve

vV ry=a+u

over [Fos.

Answer:



(a)

(b)

We have
®(zy) = (zy)”
— zPyP
= &(x)P(y)
while
Oz +y)=(z+y)
— i[fp + yp
= &(x) + P(y),
since

()

Thus ® is a ring-homomorphism. Moreover, ® is injective since

forr=1,....,n—1.

P(r)=0 = 2P=0 = z=0.
Hence ® is bijective (since the field is finite), ie ® is an automor-
phism.

Suppose © is an automorphism of k = Fpe. By definition ©(1) =
1. Hence © leaves invariant the elements of the prime subfield IF,.

We assume the following result:

Lemma 3. Suppose f(z) is an irreducible polynomial of degree e
over F,,. Then f(x) factorizes completely over Fpe; and if a is one
root then the others are

d(a), d*(a), d(a).

[This follows from the fact that the polynomial
H (r — ®'a)
0<i<e

is fized under ®, and so has coefficients in IF,./

Let  be a primitive element of k. Then © is completely deter-
mined by ©(m), since



Suppose m(x) is the minimal polynomial of m over F,. Then ©
leaves m(x) invariant, since it leaves F), invariant. It follows that
© permutes the roots of m(x).

e

But by the Lemma, these roots are m, ®x, ..., ® 1w, Hence

Or=d'1
for some r. It follows that
0=9".

(¢) If a polynomial of degree 5 is reducible then it must have a factor
of degree 1 or 2.
There is just one irreducible polynomial of degred 2 over Fy, namely
m(z) = 2* +x + 1. Thus a polynomial f(z) € Folz] of degree 5 is
irreducible unless it is divisible by x,x + 1 or m(z).
Also

2% = 1 mod m(x),

since
2 —1=(z — Dm(z).
Let
flz) =2+ 22+ 1.
Then
f0)=f(1) =1,
while

f(z) =2+ 2* +1 =1 mod m(x)
since ° = x2. Hence f(x) is irreducible.

(d) Let us first verify that the curve is non-singular. The equation
takes homogeneous form

FX\)Y,Z2)=Y?Z+YZ*+ X*+ XZ? =0,
We have

OF/0X = X* + 77,
OF /oY = Z?,
OF/0Z =Y?.



Thus at a singular point,

Y=7=0 = X=0.

Hence there are no singular points, and the curve is elliptic.

Three ideas help us determine the group on the curve:

1.
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Consider the points on the curve defined over Fy, forming the
subgroup E(Fg) C E(Fys). It is readily verified that all 4 affine
points

(0,0), (0,1), (1,0), (1,1)

lie on the curve. Adding the point at infinity, it follows that
E(F2) = Z/(5).

In particular E(Fys) contains 5m points, for some m.

The equation can be written
y(y+1) =2° + .

It follows that if P = (a,b) is on the curve then so is —P =
(a,b+1). (This second point is —P because it is the point
where the line

OP :z=a

meets the curve again.)
We see in particular that there are mo points of order 2 on
E(Fy5). So the number N of points is odd: 5,15, . ...

Hasse’s Theorem tells us that
IN — 33| <2v32=8V2.
Since [8v/2] = 11, this yields
22 < N < 44.

Thus
N = 25 or 35.

This leaves 3 possible cases:

Z)(25), Z)(35) and Z/(5) ® Z/(5).



iv. Consider the action of the Frobenius automorphism
D (z,y) — (22, 9%) : E(Fys) — E(Fas).

The fixzed points of this map are precisely the 5 points of E(Fy).
Moreover,
P° =1.

Thus the group
<(I)> = Cs

acts on the group on the curve; and the fived elements under
this action form a subgroup of order 5.
This last observation allows us to distinguish between the 3 cases.
An automorphism 6 of the group Z/(n) is completely determined
by
6(1) = a.

Moreover, a must be invertible modn. It follows that
AWt(Z/(n)) = (Z/n)*.
This group has ¢(n) elements; and since

¢(35) = ¢(5)¢(7) = 4 -6 = 24,

the automorphism group of 7/(35) cannot contain an element of
order 5; so this case is impossible.

The group A = 7Z/(25) has just one subgroup B with 5 elements.
If an automorphism
0:A— A

has ker = B then imf = B and so 6> = 0, contradicting the
assumption that 6 is an automorphism.

We are left with only 1 possibility; the group must be Z/(5)BZ/(5).
[Although not necessary for this question, it is worth noting that
we can regard the group Z/(5) & Z/(5) as a 2-dimensional vector
space over the field Fs.

Thus the automorphism group of this group is GL(2,F5), the group
of invertible 2 x 2 matrices over the field Fs.

We can construct such a matrix by first choosing a non-zero vector
for first column; this can be done in 5* — 1 = 24 ways. Then any



vector can be chosen for the second row, except for the 5 scalar
products of the first row. This can be done in 5 — 5 = 20 ways.

It follows that the automorphism group in this case has 480 el-
ements. By Sylow’s Theorem, the subgroups of order 5 are all
conjugate; a typical one is formed by the matrices

((1] Cl‘) (a € F).

It is readily verified that this automorphism subgroup leaves in-
variant a 1-dimensional subspace containing 5 vectors.]



