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Chapter 1

The Prime Fields

Y
OU WILL BE FAMILIAR with finite or modular arithmetic—in which an integer m > 0
is chosen as modulus, and we perform the arithmetic operations (addition, subtraction
and multiplication) modulo m.

These operations define the structure of a commutative ring on the set of remainders

{0, 1, 2, . . . ,m− 1}.

(Recall that a commutative ring is defined by 2 binary operations—addition and multiplication—
satisfying the usual laws of arithmetic: addition and multiplication are both commutative and
associative, and multiplication is distributive over addition.)

We denote this ring by Z/(m) (said: ‘the ring Z modulo m’). We can think of Z/(m) either
as the set {0, 1, . . . ,m− 1} of remainders; or as the set of congruence classes

ā = {. . . , a− 2m, a−m, a, a+m, a+ 2m, . . . } (a = 0, 1, 2, . . . ,m− 1).

The latter is ‘classier’; but the former is perfectly adequate, and probably preferable for our
purposes.

Example 1. Let m = 6. Addition and multiplication in Z/(6) are given by

+ 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 5 0 1 2 3 4

× 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
4 0 4 2 0 4 2
5 0 5 4 3 2 1

Proposition 1. Suppose p is prime. Then each non-zero element a ∈ Z/(p) is invertible, ie
there exists an element b ∈ Z/(p) such that

ab ≡ 1 (mod p)
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Proof. Consider the p remainders

a · 0 mod p, a · 1 mod p, . . . , a · (p− 1) mod p.

These are distinct. For if
a · r ≡ a · s (mod p),

where 0 ≤ r < s ≤ p− 1, then
a · (s− r) ≡ 0 (mod p).

In other words,
p | a(s− r).

Since p is prime, this implies that
p | a or p | s− r.

Both these are impossible, since 0 < a < p and 0 < s− r < p.
Since the p remainders a · i mod p above are distinct, they must constitute the full set of re-

mainders modulo p (by the Pigeon-Hole Principle). In particular, they must include the remainder
1, ie for some b

a · b ≡ 1 (mod p).

Recall that a field is a commutative ring with precisely this property, i.e. in which every
non-zero element is invertible.

Corollary 1. For each prime p, Z/(p) is a field.

Definition 1. We denote this field by Fp.

The reason for the double notation—Fp and Z/(p)—is this. We shall show later that there
exists a unique field Fpn for each prime-power pn. The fields Fp form so to speak the lowest layer
in this hierarchy.

Nb: Fpn is not the same as the ring Z/(pn), unless n = 1. Indeed, it is easy to see that Z/(m)
cannot be a field unless m is prime.

Finite fields are often called Galois fields, in honour of their discoverer, the French mathe-
matician Évariste Galois. As you probably know, Galois died in a duel (not even over a woman!)
at the age of 21.

The notation GF(q) is sometimes used in place of Fq, although Fq seems to be becoming
standard, presumably to emphasize that finite fields should be considered on a par with the
familiar fields Q,R,C.

Example 2. Addition and multiplication in F7 are given by

+ 0 1 2 3 4 5 6
0 0 1 2 3 4 5 6
1 1 2 3 4 5 6 0
2 2 3 4 5 6 0 1
3 3 4 5 6 0 1 2
4 4 5 6 0 1 2 3
5 5 6 0 1 2 3 4
6 6 0 1 2 3 4 5

× 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6
2 0 2 4 6 1 3 5
3 0 3 6 2 5 1 4
4 0 4 1 5 2 6 3
5 0 5 3 1 6 4 2
6 0 6 5 4 3 2 1

Summary: For each prime p the remainders modulo p form a field Fp
containing p elements.
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Finite Fields

Exercises on Chapter 1

Exercise 1

In questions 1–5 find all solutions of the given equation in F13.
* 1. 2x = 7.

** 2. x2 = 7.
* 3. 3x = 4.

*** 4. x10 = 5.
** 5. x2 + x+ 3 = 0.
** 6. Find the multiplicative order of each non-zero element of F17.
* 7. Find the additive order of each element of F13.

** 8. Show that the group F×23 is cyclic.
*** 9. How many elements are there in the group GL(2,F7) (the group of non-singular 2 × 2-

matrices over F7)?
**** 10. How many elements are there in the group SL(2,F11) (the group of matrices over F11 with

determinant 1)?
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Chapter 2

The Prime Subfield of a Finite Field

A
SUBFIELD OF A FIELD F is a subset K ⊂ F containing 0 and 1, and closed under the
arithmetic operations—addition, subtraction, multiplication and division (by non-zero
elements).

Proposition 2. Suppose F is a field. Then F contains a smallest subfield P .

Proof. Any intersection of subfields is evidently a subfield. In particular, the intersection of all
subfields of F is a subfield P contained in every other subfield.

Definition 2. We call the smallest subfield P of a field F the prime subfield of F .

Definition 3. The characteristic of a field F is defined to be the smallest integer n > 0 such that

n · 1 =
n times︷ ︸︸ ︷

1 + 1 + · · ·+ 1 = 0,

if there is such an integer, or 0 otherwise.

Proposition 3. The characteristic of a field is either a prime or 0. The characteristic of a finite
field is always a prime.

Proof. Suppose the characteristic n of the field F is a non-prime integer, say n = rs, where
1 < r, s. Since 1 · 1 = 1, repeated application of the distributive law gives

(r · 1)(s · 1) = (
r times︷ ︸︸ ︷

1 + 1 + · · ·+ 1)(
s times︷ ︸︸ ︷

1 + 1 + · · ·+ 1) = n · 1 = 0.

Since F is a field, it follows that either r · 1 = 0 or s · 1 = 0; and in either case the characteristic
of F is less than n, contrary to hypothesis.

Now suppose F is finite. Then the sequence

0, 1, 1 + 1, 1 + 1 + 1, . . .

must have a repeat; say
r · 1 = s · 1

where r < s. Then
(s− r) · 1 = 0,

and so F has finite characteristic.
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Proposition 4. If F is a field of characteristic p, then its prime subfield P ⊂ F is uniquely
isomorphic to Fp:

charF = p =⇒ P = Fp.

Proof. If F has characteristic p then we can define a map

Θ : Fp → F

by
r 7→ r · 1 (r = 0, 1, . . . , p− 1).

It is readily verified that this map preserves addition and multiplication, and so is a homomor-
phism. (We always take ‘homomorphism’ to mean unitary homomorphism, i.e. we always assume
that Θ(1) = 1.)

Now a homomorphism of fields is necessarily injective. For suppose Θa = Θb, where a 6= b.
Let c = b− a. Then

Θa = Θb =⇒ Θc = 0
=⇒ Θ(1) = Θ(cc−1) = ΘcΘc−1 = 0
=⇒ Θ(x) = Θ(x · 1) = Θ(x)Θ(1) = 0,

for all x.
Thus Θ defines an isomorphism between Fp and im Θ.
But every subfield of F contains the element 1, and so also contains r · 1 = 1 + · · ·+ 1. Hence

the field im Θ is contained in every subfield of F , and so must be its prime subfield:

P = im Θ ∼= Fp.

Finally, the isomorphism Θ is unique, since

Θ1 = 1 =⇒ Θr = Θ(1 + · · ·+ 1) = Θ1 + . . .Θ1 = r · 1.

Corollary 2. Fp is the only field containing p elements.

Much the same argument shows that the prime subfield of a field of characteristic 0—which
as we have seen must be infinite—is uniquely isomorphic to the rational field Q:

charF = 0 =⇒ P = Q.

Summary: Every finite field F contains one of the prime fields Fp as its
smallest (or prime) subfield.
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Finite Fields

Exercises on Chapter 2

Exercise 2

* 1. What is the characteristic of the field R?
** 2. Show that the prime subfield of a field of characteristic 0 is Q.
** 3. Find an infinite field of characteristic 2.
** 4. Show that an integral domain either has prime characteristic or else has characteristic 0.
* 5. What is the characterstic of Z/(12)?
* 6. Show that every non-zero element in a ring of prime characteristic p has additive order p.

** 7. Does there exist a commutative ring of order 4 (ie with 4 elements) that is not a field?
*** 8. Does there exist a non-commutative ring of order 6?
*** 9. Find all commutative rings of order 12.
** 10. Show that a ring of characteristic n has an element of multiplicative order m for each

factor m of n.
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Chapter 3

Finite Fields as Vector Spaces

S
UPPOSE THAT F is a finite field of characteristic p, with prime subfield P = Fp.
Then we can regard F as a vector space over P . You may be more familiar with vector
spaces over C and R. In fact the full panoply of linear algebra—the concepts of basis,
dimension, linear transformation, etc—carry over unchanged to the case of vector spaces

over a finite field.

Theorem 1. Suppose F is a finite field of characteristic p. Then F contains pn elements, for
some n:

‖F‖ = pn.

Proof. Suppose that F , as a vector space, has dimension n over P . Then we can find a basis
{e1, e2, . . . , en} for F over P . Each element a ∈ F is then uniquely expressible in the form

a = λ1e1 + λ2e2 + · · ·+ λnen.

There are just p choices for each coordinate λi; so the total number of elements in F is
n times︷ ︸︸ ︷
p · p · · · p = pn.

By convention, we usually denote the number of elements in F by q. So we have shown that

q = pn :

every finite field has prime-power order.
We are going to show—this is one of our main aims—that there is in fact exactly one finite

field (up to isomorphism) of each prime order pn, which we shall denote by Fpn .

Proposition 5. Suppose the finite field F contains pn elements; and suppose K is a subfield of
F . Then K contains pm elements, where m | n.

Proof. In the proof of the Theorem above we considered F as a vector space over P , and we
showed that if this space has dimension n then

‖F‖ = ‖P‖n.

But we can equally well consider F as a vector space over K. Our argument now shows that
if this space has dimension d then

‖F‖ = ‖K‖d.
If ‖F‖ = pn, it follows that ‖K‖ = pm, where n = md.
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Another way to prove this result is to consider the multiplicative groups

F× = F − {0}, K× = K − {0},

formed by the non-zero elements of F and K. These groups have orders pn− 1 and pm− 1. Since
K× is a subgroup of F×, it follows by Lagrange’s Theorem that

(pm − 1) | (pn − 1).

We leave it to the reader to show that this is true if and only if m | n.
We shall see later that in fact Fpn contains exactly one subfield with pm elements if m | n; as

we may say,
Fpm ⊂ Fpn ⇐⇒ m | n.

We can exploit the vector-space structure of F in other ways (apart from proving that ‖F‖ =
pn). Suppose a ∈ F . Then multiplication by a defines a map

µa : F → F : x 7→ ax.

This map is evidently a linear transformation of F , regarded as a vector space over P . It follows
that we can speak of its trace and determinant; and these will in turn define functions

T, D : F → P

on F with values in P :
T (a) = trµa, D(a) = detµa.

We shall return to these functions later, when we have finite fields to hand in which to see
them at work. At present the only finite fields we know about are the prime fields Fp and T (a)
and D(a) both reduce trivially to a in this case.

Summary: The number of elements in a finite field is necessarily a prime-
power:

‖F‖ = pn.
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Finite Fields

Exercises on Chapter 3

Exercise 3

In questions 1–8, V is a vector space of dimension 3 over F2.
* 1. How many elements are there in V ?

** 2. How many linear maps α : V → V are there?
** 3. How many of these maps are surjective?
** 4. How many vector subspaces does V have?
** 5. Is there a linear map α : V → V satisfying α2 + I = 0?
** 6. Which linear maps α : V → V commute with every linear map β : V → V ?
** 7. How many linear maps α : V → V have trace 0 and determinant 1?

*** 8. Are any two such linear maps similar?
*** 9. Show that the subsets of a set X form a ring of characteristic 2 if we set U + V =

(U \ V ) ∪ (V \ U) and U × V = U ∩ V . What are the zero and identity elements in this
ring?

*** 10. Is this ring a field for any set X?
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Chapter 4

Looking for F4

D
OES THERE EXIST a field with 4 elements? (This is the first case in which there
could exist a non-prime field.) A bull-headed approach—with a little help from the
computer—will surely succeed in such a simple case.

Let’s suppose, then, that the field F has 4 = 22 elements. We know that F must have
characteristic 2, so that

x+ x = 0

for all x ∈ F .
Two of the elements of F are 0 and 1. Let the two others be called ⊥ and > (said: bottom

and top). Thus
F = {0, 1,⊥,>}.

Consider the element ⊥+ 1. A little thought shows that it cannot be 0, 1 or ⊥. For example,

⊥+ 1 = 0 =⇒ (⊥+ 1) + 1 = 0 + 1
=⇒ ⊥+ (1 + 1) = 1
=⇒ ⊥+ 0 = 1
=⇒ ⊥ = 1,

which contradicts our choice of ⊥ as an element of F different from 0 and 1.
Now we can draw up the addition-table for F :

+ 0 1 ⊥ >
0 0 1 ⊥ >
1 1 0 > ⊥
⊥ ⊥ > 0 1
> > ⊥ 1 0

Turning to the multiplication table, let’s see what we already know:

× 0 1 ⊥ >
0 0 0 0 0
1 0 1 ⊥ >
⊥ 0 ⊥
> 0 >
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Evidently it suffices to determine ⊥2 = ⊥×⊥, since the remaining products will then follow
on applying the distributive law.

We have 4 choices:

⊥2 = 0 Since ⊥ is non-zero, it has an inverse ⊥−1. Thus

⊥2 = 0 =⇒ ⊥−1(⊥2) = 0
=⇒ (⊥−1⊥)⊥ = 0
=⇒ 1 · ⊥ = 0
=⇒ ⊥ = 0,

contrary to our assumption that ⊥ differs from 0 and 1.

⊥2 = 1 This gives
⊥2 − 1 = (⊥− 1)(⊥+ 1) = 0.

Since F is a field, this implies that

⊥ = 1 or ⊥ = −1.

In fact since F has characteristic 2, −1 = 1 and so

⊥2 = 1 =⇒ ⊥ = 1,

again contrary to assumption.

More simply, since F has characteristic 2,

⊥2 − 1 = (⊥− 1)2,

the middle term −2⊥ vanishing.

⊥2 = ⊥ This implies that
⊥(⊥− 1) = 0

and so either ⊥ = 0 or ⊥ = 1, both of which are excluded.

⊥2 = > As Sherlock Holmes said, When all other possibilities have been exhausted, the one re-
maining, however improbable, must be true. So in this case we conclude that we must
have

⊥2 = >.

Now we can complete our multiplication table

⊥×> = ⊥(⊥+ 1) = ⊥2 +⊥ = ⊥+> = 1,
>×> = (⊥+ 1)2 = ⊥2 + 1 = >+ 1 = ⊥.

× 0 1 ⊥ >
0 0 0 0 0
1 0 1 ⊥ >
⊥ 0 ⊥ > 1
> 0 > 1 ⊥
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So if there is a field with 4 elements, this must be it. But do these tables in fact define a
field?

This is a convenient point to review exactly what we mean by a field, by listing the Field
Axioms.

Definition 4. A field F is defined by giving

1. A set F with 2 distinguished elements 0 and 1;

2. Two binary operations on F , ie 2 maps

+ : F × F → F, × : F × F → F,

subject to the axioms:

(F1) addition is associative: for all a, b, c ∈ F ,

a+ (b+ c) = (a+ b) + c;

(F2) addition is commutative: for all a, b ∈ F ,

b+ a = a+ b;

(F3) for all a ∈ F ,
a+ 0 = a;

(F4) for each a ∈ F , there is a b ∈ F such that

a+ b = 0;

(F5) multiplication is associative: for all a, b, c ∈ F ,

a(bc) = (ab)c;

(F6) multiplication is commutative: for all a, b ∈ F ,

ba = ab;

(F7) for all a ∈ F ,
a · 1 = a;

(F8) multiplication is distributive over addition: for all a, b, c ∈ F ,

a(b+ c) = ab+ ac.

(F9) for each a 6= 0 in F , there is a b ∈ F such that

ab = 1;
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The rationals Q, the reals R and the complex numbers C are examples of fields, as of course
are the finite (or galois) fields Fp.

Proposition 6. Suppose F is a field. Then

1. for each a, b ∈ F , the equation
a+ x = b

has a unique solution;

2. for each a, b ∈ F with a 6= 0, the equation

ay = b

has a unique solution.

Proof. By (F4) there exists a c such that

a+ c = 0.

But then
a+ (c+ b) = (a+ c) + b by (F1)

= 0 + b
= b by (F3)

Thus x = c+ b is a solution of the equation a+ x = b. It is moreover the only solution, since

a+ x = b = a+ y =⇒ c+ (a+ x) = c+ (a+ y)
=⇒ (c+ a) + x = (c+ a) + y by(F1)
=⇒ (a+ c) + x = (a+ c) + y by(F2)
=⇒ 0 + x = 0 + y
=⇒ x = y by(F3).

The second part of the Proposition is proved in an exactly analogous way.

Returning to our prospective field F of 4 elements: to prove that this is a field we must verify
that the axioms (F1–F9) hold.

This is a straighforward, if tedious, task. To verify (F1), for example, we must consider
43 = 64 cases, since each of the 3 elements a, b, c can take any of the 4 values 0, 1,⊥,>.

Let’s pass the task on to the computer, by giving a little C program to test the axioms.

#include <stdio.h>

typedef enum{zero, one, bottom, top} GF4;

char *el[4] = {"0", "1", "b", "t"};

GF4 add[4][4] = {
{zero, one, bottom, top},
{one, zero, top, bottom},
{bottom, top, zero, one},
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{top, bottom, one, zero}
};

GF4 mul[4][4] = {
{zero, zero, zero, zero},
{zero, one, bottom, top},
{zero, bottom, top, one},
{zero, top, one, bottom}

};

main() {
GF4 x, y, z;

/* testing (F1) */

for(x = zero; x <= top; x++)
for (y = zero; y <= top; y++)
for (z = zero; z <= top; z++)

if (add[add[x][y]][z] != add[x][add[y][z]])
printf("(%s + %s) + %s != %s + (%s + %s)\n",

el[x], el[y], el[z], el[x], el[y], el[z]);

/* testing (F2) */

for(x = zero; x <= top; x++)
for (y = zero; y <= top; y++)
if (add[x][y] != add[y][x])

printf("%s + %s != %s + %s\n", el[x], el[y], el[y], el[x]);

/* testing (F3) */

for(x = zero; x <= top; x++)
if (add[x][zero] != x)

printf("%s + 0 != %s\n", el[x], el[x]);

/* testing (F4) */

for(x = zero; x <= top; x++) {
for (y = zero; y <= top; y++)
if (add[x][y] == 0)

break;
if (y > top)
printf("%s + x = 0 has no solution in x\n", el[x]);

}

/* testing (F5) */
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for(x = zero; x <= top; x++)
for (y = zero; y <= top; y++)
for (z = zero; z <= top; z++)

if (mul[mul[x][y]][z] != mul[x][mul[y][z]])
printf("(%s * %s) * %s != %s * (%s * %s)\n",

el[x], el[y], el[z], el[x], el[y], el[z]);

/* testing (F6) */

for(x = zero; x <= top; x++)
for (y = zero; y <= top; y++)
if (mul[x][y] != mul[y][x])

printf("%s * %s != %s * %s\n", el[x], el[y], el[y], el[x]);

/* testing (F7) */

for(x = zero; x <= top; x++)
if (mul[x][one] != x)

printf("%s * 1 != %s\n", el[x], el[x]);

/* testing (F8) */

for(x = zero; x <= top; x++)
for (y = zero; y <= top; y++)
for (z = zero; z <= top; z++)

if (mul[add[x][y]][z] != add[mul[x][z]][mul[y][z]])
printf("(%s + %s) * %s != %s * %s + %s * %s\n",

el[x], el[y], el[z], el[x], el[z], el[y], el[z]);

/* testing (F9) */

for(x = one; x <= top; x++) {
for (y = one; y <= top; y++)
if (mul[x][y] == 1)

break;
if (y > top)
printf("%s * x = 1 has no solution in x\n", el[x]);

}

}

Not a very strenuous test for the computer, admittedly. But at least it shows who is boss.

Summary: There is just one field with 4 elements, as we expected.
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Finite Fields

Exercises on Chapter 4

Exercise 4
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Chapter 5

The Multiplicative Group of a Finite
Field

S
UPPOSE F is a field. The non-zero elements

F× = F − {0}

form a group under multiplication. (We could even take this as the definition of a field: a
commutative ring whose non-zero elements form a multiplicative group.)

If F contains q elements, then F× contains q−1 elements. It follows from Lagrange’s Theorem
for finite groups that

aq−1 = 1

for all a ∈ F×.
(There is a very simple proof of Lagrange’s Theorem for a finite abelian—or commutative—

group
A = {a1, a2, . . . , an}.

Suppose a ∈ A. Consider the n products

aa1, aa2, . . . , aan.

These are distinct, since
ax = ay =⇒ x = y.

Hence they must be all the elements of A, in some order:

{aa1, aa2, . . . , aan} = {a1, a2, . . . , an}.

Multiplying together the elements on each side,

(aa1)(aa2) . . . (aan) = a1a2 . . . an.

In other words,
ana1a2 . . . an = a1a2 . . . an.

Hence
an = 1,

on dividing both sides by a1a2 . . . an.)
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Theorem 2. Suppose F is a finite field. Then the multiplicative group F× is cyclic.

Proof. Recall that a group G is said to be of exponent e (where e is a positive integer) if

ge = 1

for all g ∈ G, and there is no smaller positive integer with this property. (Another way of
expressing this is to say that e is the lcm of the orders of the elements of G.)

By Lagrange’s Theorem, the exponent e of a finite group G divides its order:

e | |G|.

In general a group of exponent e need not contain an element of order e. For example, the
symmetric group S3 has exponent 6 (since it contains elements of orders 2 and 3); but it has no
element of order 6 — otherwise it would be cyclic. However, an abelian group always has this
property.

Lemma 1. Suppose A is a finite abelian group, of exponent e. Then there exists an element
a ∈ A of order e.

Proof of Lemma. Let
e = pe11 · · · p

er
r .

There must exist an element a ∈ A of order pe11 m for some m, since otherwise p1 would occur to
a lower power in e. Then

a1 = am

has order pe11 . Similarly there exist elements a2, . . . , ar or orders pe22 , . . . , p
er
r .

Sublemma 1. In an abelian group A, if a has order m and b has order n, and gcd(a, b) = 1,
then ab has order mn.

Proof of Sublemma. Suppose ab has order d. Since

(ab)mn = (am)n(bn)m,

we have d | mn.
On the other hand,

(ab)d = 1 =⇒ (ab)nd = 1 =⇒ and = 1,

since bnd = (bn)d = 1. But a has order m; consequently

m | nd =⇒ m | d,

since gcd(m,n) = 1. Similarly n | d. But then

mn | d,

since gcd(m,n) = 1.
We conclude that d = mn.
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The orders of the elements a1, . . . , ar are mutually co-prime. It follows from the Sublemma
that their product

a1 · · · ar
is of order

pe11 · · · p
er
r = e

Now suppose the multiplicative group F ∗ has exponent e. Then each of the q − 1 elements
a ∈ F ∗ satisfies the polynomial equation

xe − 1 = 0.

But a polynomial p(x) of degree d has at most d roots. It follows that

q − 1 ≤ e.

Since e | q − 1 we conclude that
e = q − 1.

Hence, by our Lemma, F ∗ contains an element a of order q − 1, which therefore generates F ∗

(since this group has q − 1 elements). In particular, F ∗ is cyclic.

Definition 5. Suppose F is a finite field. A generator of F× is called a primitive element (or
primitive root) of F

Our Theorem can thus be stated in the form: Every finite field possesses at least one primitive
element.

Recall that Euler’s function φ(n) (for positive integers n) is defined to be the number of
numbers i in the range

{0, 1, 2, . . . , n− 1}

coprime to n (ie with gcd(i, n) = 1). Thus

φ(1) = 1, φ(2) = 1, φ(3) = 2, φ(4) = 2, φ(5) = 4, φ(6) = 2, φ(7) = 6, φ(8) = 4,

and so on.

Proposition 7. The number of primitive roots in F is φ(q − 1).

Proof. Since we know that
F ∗ = Cq−1,

the result is a consequence of the following Lemma.

Lemma 2. The cyclic group Cn has φ(n) generators

Proof of Lemma. Suppose g is a generator of Cn. We have to determine how many of the elements
gr with 0 ≤ r < n are also generators of Cn.

Sublemma 2. The order of gr ∈ Cn is

n

gcd(n, r)
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Proof of Sublemma. Let the order of gr be d; and let gcd(n, r) = e. Then

n = en′, r = er′ (gcd(n′, r′) = 1).

Hence
(gr)n

′
= (gen

′
)r
′

= (gn)r
′

= 1,

since gn = 1. It follows that
d | n′.

On the other hand,

(gr)d = 1 =⇒ grd = 1
=⇒ n | rd
=⇒ n′ | r′d
=⇒ n′ | d,

since gcd(n′, r′) = 1.
We conclude that

d = n′ =
n

e
=

n

gcd(n, r)
.

In particular, the number of elements of order n in Cn, ie the number of generators of Cn, is
equal to the number of integers r in the range 0 ≤ r < n which are coprime to n. But that, by
definition, is φ(n).

Recall the explicit formula for φ(n): if

n = pe11 p
e2
2 . . . pess

then
φ(n) = pe1−1

1 (p1 − 1)pe2−1
2 (p2 − 1) . . . pes−1

s (ps − 1).

This follows from the fact that the function φ(n) is multiplicative in the number-theoretic sense,
ie

φ(mn) = φ(m)φ(n) if gcd(m,n) = 1.

(This in turn is a simple consequence of the Chinese Remainder Theorem.) The result now follows
from the particular case n = pe. But the only numbers in {0, 1, 2, . . . , pe − 1} not coprime to pe

are the multiples of p; and there are just pe−1 of these. Hence

φ(pe) = pe − pe−1 = pe−1(p− 1).

So now it is easy to determine the number of primitive elements in a finite field. For example,
F24 has φ(15) = 8 primitive elements, while F25 has φ(31) = 30 primitve elements.

Surprisingly, perhaps, it is just as difficult to prove our theorem for the elementary finite
fields Fp as in the general case. Moreover, there is really no better way of finding a primitive root
modulo p (ie a primitive element of Fp) than testing the elements 2, 3, 5, 6, . . . successively. (We
can at least omit powers like 4; for if 4 were primitive 2 would certainly be so.)
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On the other hand, once we have found one primitive element a ∈ F× it is easy to determine
the others; they are just the powers

ar where gcd(r, q − 1) = 1.

As an illustration, consider the field F7 = Z/(7). We find that

23 = 8 ≡ 1.

Thus 2 has order 3, and is not primitive. But 32 ≡ 2, 33 ≡ 6. Since the order of every non-zero
element must divide q− 1 = 6, we conclude that 3 has order 6, and so is a primitive root modulo
7. There are just φ(6) = 2 primitive elements; and these are the elements 3r where 0 ≤ r < 6 and
gcd(r, 6) = 1; in other words r = 1 and r = 5. Thus the full set of primitive roots modulo 7 is

3, 35 = 5.

(We may note that since 36 ≡ 1,
35 = 3−1.

And clearly, if a is a primitive element of F× then so is its inverse a−1.)

Summary: The multiplicative group F× of a finite field F is cyclic. The
generators of this group are called the primitive elements of the field.
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Finite Fields

Exercises on Chapter 5

Exercise 5

In questions 1–4, determine all the primitive roots of the given field.
** 1. F5

** 2. F13

** 3. F23

** 4. F31

In questions 5–7, find the orders of all the elements in the given group.
** 5. F×7
** 6. F×11

** 7. F×17

In questions 8–10, determine how many primitive roots there are in the given field.
** 8. F29

** 9. F37

** 10. F257

* 11. Find the additive order of each element of Z/(12).
* 12. Find the multiplicative order of each element of (Z/12)×.

*** 13. Show that if m,n are coprime then

(Z/mn)× = (Z/m)× × (Z/n)×.

*** 14. For which n ∈ N is Z/n)× cyclic?
** 15. Find all elements of finite order in Q×

*** 16. Show that
(Z/8)× = C2 × C2.

In questions 17–20, express the group as a product of cyclic groups of prime-power order.
*** 17. (Z/10)×

*** 18. (Z/16)×

*** 19. (Z/25)×

*** 20. (Z/36)×
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Chapter 7

Polynomials over a Finite Field

A
POLYNOMIAL over a field F is a formal expression

f(x) = cnx
n + cn−1x

n−1 + · · ·+ c0 (ci ∈ F ).

When F is finite we must distinguish between the polynomial f(x) and the map

x 7→ f(x) : F → F

which it defines; for 2 different polynomials may define the same map, or what comes the the
same thing, a polynomial may vanish for all elements of F , as for example the polynomial

f(x) = x2 − x,

in the field F2.
The polynomials over F can be added and multiplied—we assume that the constructions are

familiar—and so constitute a commutative ring (with 1) which we denote by F [x].

Example 3. There are just 8 polynomials of degree ≤ 2 over F2, namely

0, 1, x, x+ 1, x2, x2 + 1, x2 + x, x2 + x+ 1.

We have
(x+ 1) + (x2 + x+ 1) = x2, (x+ 1)(x2 + x+ 1) = x3 + 1.

We will be dealing almost exclusively with polynomials over a prime field P . Many of the
questions concerning a finite field F can be expressed in terms of the polynomials over its prime
subfield, which are generally much easier to get hold of, particularly with a computer.

At the same time, the study of the ring P [x] of polynomials over the prime field P is a
subject of great interest in its own right. There is a remarkable analogy between the ring P [x]
and the familiar ring of integers Z. Almost every question that one can ask about Z—for example,
questions concerning the distribution of the primes—can equally well be asked of P [x]. To take
an extreme example, the Riemann hypothesis (or more accurately, conjecture)—which has baffled
generations of mathematicians—can be proved relatively easily in P [x]. (Usually it is simpler to
establish a proposition in P [x] than in Z.)

Definition 6. A polynomial f(x) of degree ≥ 1 over the field F is said to be prime (or indecom-
posable) if it cannot be expressed as the product of 2 polynomials of lower degree over F .
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Example 4. There are just 5 prime polynomials of degree ≤ 3 over F2, namely

x, x+ 1, x2 + x+ 1, x3 + x+ 1, x3 + x2 + 1.

Theorem 3. (The Prime Factorisation Theorem) Every polynomial over the field F is expressible
as a product of prime polynomials over F , unique up to order (and scalar multiples).

Proof. This is almost identical with the usual proof in the classical case Z.

Lemma . Suppose f(x), g(x) ∈ F [x]; and suppose g 6= 0. Then we can divide f by g to obtain
quotient q(x) and remainder r(x):

f(x) = q(x)g(x) + r(x) (deg r < deg g).

Lemma . Suppose f(x), g(x) ∈ F [x]. Then f and g have a greatest common divisor

d(x) = gcd(f(x), g(x))

such that
d(x) | f(x), g(x);

and if e(x) ∈ F (x) then
e(x) | f(x), g(x) =⇒ d(x) | e(x).

Furthermore, we can find polynomials u(x), v(x) ∈ F [x] such that

u(x)f(x) + v(x)g(x) = d(x).

Proof. We apply the Euclidean algorithm to f(x) and g(x):

f(x) = q1(x)g(x) + r1(x)
g(x) = q2(x)r1(x) + r2(x)
r1(x) = q3(x)r2(x) + r3(x)

. . .

ri−1(x) = qi+1(x)ri(x).

the process must end with an exact division, since the degrees of the remainders are strictly
decreasing:

deg g > deg r1 > deg r2 > . . . .

Now it is easy to see that the last non-zero remainder ri(x) is the required polynomial:

ri(x) = gcd (f(x), g(x)) .

For on the one hand, going up the chain we see successively that

ri(x) | ri−1(x),
ri(x) | ri−2(x),

. . .

ri(x) | g(x),
ri(x) | f(x).
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On the other hand, if e(x) | f(x), g(x) then going down the chain we see successively that

e(x) | r1(x),
e(x) | r2(x),

. . .

e(x) | ri(x).

Finally, going down the chain we can successively express r1(x), r2(x), . . . in the form

rj(x) = uj(x)f(x) + vj(x)g(x)
rj+1(x) = rj−1(x)− qj+1(x)rj(x)

= (uj−1(x)− qi+1(x)ui(x)) f(x) + (vj−1(x)− qi+1(x)vi(x)) g(x)
= uj+1(x)f(x) + vj+1(x)g(x),

where
uj+1(x) = (uj−1(x)− qi+1(x)ui(x)) , vj+1(x) = (vj−1(x)− qi+1(x)vi(x)) ;

until finally we obtain an expression for ri(x) = gcd(f, g) of the form

gcd(f(x), g(x) = u(x)f(x) + v(x)g(x),

as required.

Example 5. Working over F2, suppose

f(x) = x5 + x2 + 1, g(x) = x4 + x3 + 1.

We have

f(x) + xg(x) = x4 + x2 + x+ 1,
f(x) + xg(x) + g(x) = x3 + x2 + x = r1(x).

This is the first step of the euclidean algorithm. Continuing,

g(x) + xr1(x) = x3 + x+ 1,
g(x) + xr1(x) + r1(x) = x2 + x+ 1 = r2(x),

r1(x) + xr2(x) = 1 = r3(x).

Hence
gcd (f(x), g(x)) = 1,

and working backwards we find that

1 = r1(x) + xr2(x)
= r1(x) + g(x) + (x+ 1)r1(x)
= g(x) + xr1(x)
= g(x) + f(x) + (x+ 1)g(x)
= f(x) + xg(x).
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Returning to the proof of the Prime Factorisation Theorem—sometimes call the Fundamental
Theorem of Arithmetic—

Lemma 3. Suppose p(x), f(x), g(x) ∈ F [x]; and suppose p is prime. Then

p(x) | f(x)g(x) =⇒ p(x) | f(x) or p(x) | g(x).

Proof of Lemma. Consider
d(x) = gcd (p(x), f(x)) .

Since d(x) by definition divides p(x); and since p(x) by definition has only the factors 1 and itself,
either d(x) = 1 or d(x) = p(x).

If d(x) = p(x) then
p(x) | f(x)

(since d(x) | f(x)) and we are done.
On the other hand if d(x) = 1, then by the Lemma above we can find u(x), v(x) ∈ F [x] such

that
u(x)p(x) + v(x)f(x) = 1.

Multiplying by g(x),
u(x)p(x)g(x) + b(x)f(x)g(x) = g(x).

Now p(x) divides both terms on the left (since p(x) | f(x)g(x)). Hence

p(x) | g(x).

Turning to the proof of the Proposition, if f(x) is not a prime then we can factorise it

f(x) = u(x)v(x)

into 2 polynomials of lesser degree. If these are not prime, they can again be split; until finally
we must attain an expression for f(x) as a product of primes.

Finally, if we have 2 expressions for f(x) as products of primes

p1(x) · · · pm(x) = f(x) = q1(x) · · · qn(x)

then the last Lemma shows that the p’s and q’s must be the same, up to order.

Proposition 8. Suppose F is a finite field, with prime subfield P . Each element a ∈ F is a root
of a unique prime polynomial m(x) over P .

If ‖F‖ = pn then the degree of m(x) is ≤ n.
For each polynomial f(x) over P ,

f(a) = 0⇐⇒ m(x) | f(x).

Proof. If ‖F‖ = pn, then
dimP F = n.

Hence if a ∈ F , the n+ 1 elements
1, a, a2, . . . , an
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must be linearly dependent, ie

c0 + c1a+ c2a
2 + · · ·+ cna

n = 0

for some ci ∈ P (not all zero). In other words a is a root of the polynomial

f(x) = c0 + c1x+ c2x
2 + · · ·+ cnx

n = 0.

Now let m(x) be the polynomial of smallest degree ≥ 1 satisfied by a. Then

degm(x) ≤ deg f(x) ≤ n.

Also m(x) must be prime. For if
m(x) = u(x)v(x)

then
0 = m(a) = u(a)v(a) =⇒ u(a) = 0 or v(a) = 0,

since F is a field. But that contradicts the minimality of m(x).
Finally, suppose f(a) = 0. Divide f(x) by m(x):

f(x) = m(x)q(x) + r(x),

where deg r(x) < degm(x). Then

r(a) = f(a)−m(a)q(a) = 0,

and so r(x) = 0 by the minimality of m(x), ie m(x) | f(x).
This last result shows in particular that m(x) is the only prime polynomial (up to a scalar

multiple) satisfied by a.

Remarks 1. 1. Another way of seeing that a ∈ F satisfies an equation of degree ≤ n is to
consider the linear map µa : F → F defined by multiplication by a:

µa(t) = at.

By the Cayley-Hamilton theorem, this linear transformation satisfies its own characteristic
equation

χa(x) = det (xI − µa) .

It follows that a also satisfies this equation:

χa(a) = 0.

2. We shall see in Chapter 9 that if a ∈ Fpn then the minimal polynomial of a must have
degree d | n.

Conversely—and more surprisingly—we shall find that all the roots of any prime polynomial
of degree d | n lie in Fpn .

Summary: Each element a ∈ F is the root of a unique prime polynomial
m(x) ∈ P [x].
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Finite Fields

Exercises on Chapter 6

Exercise 6

** 1. How many polynomials of degree 3 over F3 are there?
** 2. How many polynomials of degree 4 over F4 are there?

In questions 3–6 determine how many irreducible polynomials there are of the given degree
over the given field.

* 3. Degree 2 over F2.
** 4. Degree 4 over F2.
** 5. Degree 3 over F3.
** 6. Degree 3 over F4.

In questions 7–9, f(x), g(x) ∈ F2[x] are given by f(x) = x4 + 1, g(x) = x2 + x+ 1.
** 7. What is the remainder if f(x) is divided by g(x)?

*** 8. Find polynomials u(x), v(x) ∈ F2[x] such that

u(x)f(x) + v(x)g(x) = 1.

*** 9. What is g(x)10 mod f(x)?
***** 10. Can you find non-zero polynomials f(x), g(x), h(x) ∈ F2[x] such that

f(x)3 + g(x)3 = h(x)3?
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Chapter 8

The Universal Equation of a Finite
Field

I
N AN INFINITE FIELD, a polynomial p(x) cannot vanish for all values of x unless it
vanishes identically, ie all its coefficients vanish. For if p is of degree d it cannot have
more than d roots, by the Remainder Theorem.

In a finite field, however, the position is quite different.

Theorem 4. Suppose F is a finite field of order q. Then every element a ∈ F satisfies the
equation

U(x) ≡ xq − x = 0.

Proof. By Lagrange’s Theorem
aq−1 = 1

for all a ∈ F×. Multiplying by a,
aq = a.

But this is also satisfied by a = 0. Thus it is satisfied by all a ∈ F .

Corollary . Suppose F is a finite field of order q. Then

xq − x ≡
∏
a∈F

(x− a)

over F .

Corollary . Suppose F is a finite field of order q; and suppose p(x) ∈ P [x], where P is the prime
subfield of F . Then

p(x) = 0 for all x ∈ F ⇐⇒ U(x) | p(x).

Corollary . Suppose F is a finite field of order q; and suppose a ∈ F . Then the minimal
polynomial m(x) of a is a factor of the universal polynomial:

m(x) | U(x).
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Let
Un(x) ≡ xpn − x.

We want to show that
Um(x) | Un(x)⇐⇒ m | n.

It turns out to be simpler to prove a more difficult result.

Proposition 9. Let d = gcd(m,n). Then

gcd (Um(x), Un(x)) = Ud(x),

where
Um(x) ≡ xpm − x, Un(x) ≡ xpn − x, Ud(x) ≡ xpd − x.

Proof. Recall the recursive version of the euclidean algorithm (for calculating gcd(m,n)), en-
shrined in the following C-code.

unsigned gcd( unsigned m, unsigned n )
{
if( m == 0 ) return n;
if( n == 0 ) return m;
if ( m < n ) return gcd( m, n - m );
return gcd( n, m - n );

}

Following this idea, we prove the result by induction on max(m,n). The result is trivial if
m = n, or m = 0, or n = 0. We may therefore assume, without loss of generality, that 0 < m < n.
Let

n = m+ r.

By the binomial theorem, (
xp

m − x
)p

= xp
m+1 − xp,

all the terms except the first and last in the expansion vanishing. Repeating this r times,

Um(x)p
r

=
(
xp

m − x
)pr

= xp
m+r − xpr

= xp
n − xpr

= Un(x)− Ur(x).

It follows from this that

gcd (Um(x), Un(x)) = gcd (Ur(x), Um(x)) .

But by the inductive hypothesis,

gcd (Ur(x), Um(x)) = Ugcd(r,m)(x)
= Ugcd(m,n)(x),

since
gcd(r,m) = gcd(m,n).
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Corollary 2. We have
Um(x) | Un(x)⇐⇒ m | n.

Summary: In a finite field, every element satisfies the universal equation

xq = x,

where q = ‖F‖.
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Finite Fields

Exercises on Chapter 7

Exercise 7

** 1. Factorise U3(x) = x8 − x ∈ F2[x] into irreducible factors.
** 2. Factorise U2(x) = x9 − x ∈ F3[x] into irreducible factors.

*** 3. Show that if m,n ∈ N are coprime then Um(x), Un(x) ∈ Fp[x] are coprime.
Hence show that there are an infinity of irreducible polynomials in Fp(x).

*** 4. Show that there are an infinity of irreducible polynomials over any finite field F .
In questions 5–7 determine which elements in the given field satisfy the equation x7 = 1.

** 5. F7

** 6. F8

** 7. F11

** 8. Find the minimal polynomial of ⊥ in F4.
*** 9. Show that the only proper subfield of F8 is the prime subfield F2.

*** 10. Does any element of F8 have minimal polynomial x2 + x+ 1?
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Chapter 9

Uniqueness of the Finite Fields

I
F WE ARE NOT YET in a position to show that the field Fpn exists for each prime
powers pn, we can at least show that there is at most one such field.

Theorem 5. Two finite fields with the same number of elements are necessarily isomorphic.

Proof. Suppose F, F ′ are finite fields with

‖F‖ = q = ‖F ′‖.

(Of course we know that q must be a prime-power: q = pn.)
Choose a primitive root π ∈ F . Let its minimal polynomial be m(x). Then

m(x) | xq − x.

Now let us go across to F ′. Since

xq − x =
∏
a′∈F ′

(
x− a′

)
,

m(x) must factor completely in F ′, say

m(x) = (x− a′1) · · · (x− a′d).

Choose any of these roots as π′, say π′ = a′1. We are going to define an isomorphism

Θ : F → F ′

under which
π 7→ π′.

Observe first that π′ must be a primitive root in F ′, ie it must have order q− 1. For suppose
its order were d < q − 1. Then π′ would satisfy the equation

xd − 1.

Now m(x), as a prime polynomial satisfied by π′, must in fact be its minimal polynomial. Hence

m(x) | xd − 1.
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But then, going back to F , this implies that

πd − 1 = 0,

ie π has order < q − 1. We conclude that π′ must be a primitive root in F ′.
Thus π and π′ each generates a cyclic group Cq−1. So we can certainly define a group

isomorphism
Θ : F× → F ′

× : πi 7→ π′
i
.

We can extend this to a bijection
Θ : F → F ′

by adding the rule 0 7→ 0.
This bijection Θ certainly preserves multiplication:

Θ(ab) = Θ(a)Θ(b)

for all a, b ∈ F . It remains to show that it also preserves addition, ie

Θ(a+ b) = Θ(a) + Θ(b).

If one (or both) of a and b is 0 this holds trivially; so we may assume that a, b 6= 0. There are
2 cases to consider, according as a+ b = 0 or not.

Dealing first with the second (and general) case, let

a = πi, b = πj , a+ b = πk.

Thus
πi + πj = πk

in F . In other words, π satisfies the equation

xi + xj − xk = 0.

It follows that
m(x) | xi + xj − xk.

Going across to F ′, we deduce that π′ also satisfies the equation

xi + xj − xk = 0.

In other words
π′
i + π′

j = π′
k

Thus
Θ(a) + Θ(b) = Θ(a+ b),

as required.
It remains to consider the trivial case

a+ b = 0.

If the characteristic is 2 then this implies that a = b, in which case it is evident that Θ(a) =
Θ(b), and so

Θ(a) + Θ(b) = 0.
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If the characteristic is odd, then we note that −1 is the only element in F of order 2; for the
polynomial

x2 − 1 = (x− 1)(x+ 1)

has just the 2 roots ±1. (This is a particular case of our earlier result that the number of elements
in F of order d | q − 1 is φ(d).) In fact we must have

−1 = π
q−1
2

since the element on the right certainly has order 2.
Thus if we suppose that i > j (as we may without loss of generality)

πi + πj = 0 =⇒ πi−j = −1

=⇒ i− j =
q − 1

2
=⇒ (π′)i−j = −1

=⇒ π′
i + π′

j = 0;

so addition is preserved in this case also.
We have shown that the bijection Θ : F → F ′ preserves addition and multiplication; in other

words, it is an isomorphism.

Summary: There is at most 1 field Fpn with pn elements. (It remains to
be shown that this field actually exists!)
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Finite Fields

Exercises on Chapter 8

Exercise 8

** 1. Determine the primitive elements in F4 = {0, 1,>,⊥}.
** 2. Determine the minimal polynomial of each element of F4.

*** 3. Determine the minimal polynomials of the elements of F8.
*** 4. Verify that each of these polynomials divides U8(x).
*** 5. Determine the minimal polynomials over F4 of the elements of F8.
** 6. Are all commutative rings of order 10 isomorphic?
** 7. Are all commutative rings of order 12 isomorphic?

*** 8. Two elements of F = Fpn are said to be conjugate (strictly, conjugate over Fp) if they
have the same minimal equation. Show that any conjugate of a primitive element is also
primitive.

** 9. How many automorphisms does F17 have?
*** 10. How many automorphisms does F4 have?
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Chapter 10

Existence of Fpn

W
E HAVE SEEN that if there is at most one field containing pn elements. Now we must
show that such a field does in fact exist.

10.1 Extension fields

We saw in Chapter 1 that the quotient-ring Z/(m) is a field if and only if m is prime.
There is a remarkably close analogy between the ring of integers Z and the ring of polynomials

k[x] over a field k — particularly if k is finite. In this analogy, primes in Z correspond to irreducible
polynomials in k[x].

We have already seen one example of this — the Fundamental Theorem of Arithmetic, that
every natural number n > 0 has a unique expression (up to order) as a product of primes

n = pe11 · · · p
er
r

has an exact analogy for polynomials: every non-zero monic polynomial f [x] ∈ k[x] has a unique
expression (up to order) as a product of irreducible monic polynomials

f(x) = p1(x)e1 · · · pr(x)er .

Equivalence of integers modulo m carries over to equivalence of polynomials modulo a poly-
nomial m(x) ∈ k[x]. Thus if f(x), g(x) ∈ k[x] (where f(x), g(x),m(x) are taken to be monic for
simplicity) then we say that f(x), g(x) are equivalent modulo m(x), and we write

f(x) ≡ g(x) mod m(x)

if

m(x) | g(x)− f(x),

ie

g(x)− f(x) = m(x)q(x)

for some q(x) ∈ k[x].
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It is a straightforward matter to verify that this is an equivalence relation on k[x], and that
the equivalence classes form a ring k[x]/(m(x)) (often said the ring k[x] modulo m(x)). This ring
contains the field k (identified with the constant polynomials), and can thus be regarded as a
vector space over k.

Theorem 6. The quotient-ring k[x]/(m(x)) is a field if and only if m(x) is irreducible.

Proof. Suppose m(x) is not irreducible, say

m(x) = u(x)v(x).

Then the equivalence classes u(x), v(x) are non-zero, and

u(x) v(x) = u(x)v(x) = m(x) = 0.

Thus k[x]/(m(x)) is not a field.
Now suppose m(x) is irreducible. Suppose f(x) ∈ k[x] and m(x) - f(x). We must show that

f(x) has an inverse modm(x).
We can regard k[x]/(m(x)) as a vector space V over k.

Lemma 4. If m(x) is of degree d then the equivalence classes

1, x, x2, . . . , xd−1

form a basis for the vector space V = k[x]/(m(x)). In particular

dimk V = d.

Proof of Lemma. The equivalence classes are independent; for suppose

c01 + c1x+ · · ·+ cd−1xd−1 = 0,

where c0, c1, . . . , cd−1 ∈ k. Then the polynomial

f(x) = c0 + c1x+ · · ·+ cd−1x
d−1 ≡ 0 mod m(x),

ie

m(x) | f(x).

But that is impossible, since
degm(x) > deg f(x).

The equivalence classes span the vector space; for suppose f(x) ∈ k[x]. We can divide f(x)
by m(x):

f(x) = m(x)q(x) + r(x),

where
deg r(x) < degm(x).

Then
f(x) ≡ r(x) mod m(x);

and if
r(x) = c0 + c1x+ · · ·+ cd−1x

d−1 ≡ 0 mod m(x)

then
f)x = c01 + c1x+ · · ·+ cd−1xd−1.
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Consider the map
Θ : f(x) 7→ u(x)f(x) : V → V

(where V denotes the vector space k[x]/(m(x))).
This is a linear map of vector spaces; and it is injective, since

ker Θ = {f(x) : u(x)f(x) ≡ 0 mod m(x)}
= {f(x) : m(x) | u(x)f(x)}.

But
m(x) | u(x)f(x) =⇒ m(x) | f(x) =⇒ f(x) = 0,

since m(x) is irreducible and m(x) - u(x). Thus

ker Θ = 0,

and so Θ is injective.
Now we invoke a result from linear algebra: if V is a finite-dimensional vector space then a

linear map θ : V → V is surjective if and only if it is injective. This follows from the fact that

dim ker θ + dim im θ = dimV.

Accordingly, the map Θ is surjective; and so in particular there exists a polynomial f(x) ∈ k[x]
such that

u(x)f(x) = 1,

ie

u(x)f(x) ≡ 1 mod m(x).

Thus every non-zero element of k[x]/(m(x)) is invertible; and so this quotient-ring is a field.

The extension field K = k[x]/(m(x)) is often described as arising ‘by the adjunction of a root
of m(x)’, in accordance with the following Proposition.

Proposition 10. Suppose K = k[x]/(m(x)), where m(x) ∈ k[x] is an irreducible monic polyno-
mial. Then the element α = x ∈ K is a root of m(x):

m(α) = 0.

Proof. We have
m(α) = m(x) = m(x) = 0,

since m(x) | m(x).

Corollary 3. The irreducible polynomial m(x) factorises in K = k[x]/(m(x)), with at least one
linear factor:

m(x) = (x− α)f1(x) · · · fr(x),

where f1(x), . . . , fr(x) ∈ K[x] are irreducible.
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During the proof of Theorem 4 we established the following result.

Proposition 11. If K = k[x]/(m(x)), where m(x) ∈ k[x] is an irreducible polynomial of degree
d, then

dimkK = d.

An extension field of the form K = k[x]/(m(x)) is said to be simple. A field extension K ⊃ k
is said to be finite if dimkK is finite. Thus we have shown that a simple extension is finite.

Corollary 4. If m(x) ∈ Fp[x] is an irreducible polynomial of degree d then Fp[x]/(m(x)) is a
field containing pd elements.

Proof. This follows at once from the fact that K = Fp[x]/(m(x)) is of dimension d over Fp: for
if e1, . . . , ed is a basis of K over Fp then each element α ∈ K is uniquely expressible in the form

α = c1e1 + · · ·+ cded,

and there are p choices for each of the d coefficients ci ∈ Fp.

It follows from this Corollary that the Existence Theorem — that there exists a field with pn

elements — will be proved if we can show that there exists an irreducible polynomial m(x) over
Fp of each degree 1, 2, 3, . . . .

10.2 Counting the irreducibles

Let
N(d) = N(d, p)

denote the number of irreducible monic polynomials of degree d over Fp. (We can usually drop
the p because we are working in a given characteristic.)

We have to show that
N(d, p) > 0

for all d ≥ 1 and all primes p. This we shall do by establishing an explicit formula for N(d, p).
There are pn monic polynomials

f(x) = xn + c1x
n−1 + · · ·+ cn

of degree n over Fp, since we have p choices for each of the n coefficients ci.
By the Unique Factorisation Theorem (Theorem 3) each of these polynomials is uniquely

expressible in the form
f(x) = p1(x)e1 · · · pr(x)er ,

where p1(x), . . . , pr(x) are distinct irreducible monic polynomials over Fp.
We can include all the irreducible monic polynomials on the right,

f(x) =
∏
i

pi(x)ei ,
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with the understanding that ei = 0 for all but a finite number of the i. (We are supposing here
that the irreducible polynomials p1(x), p2(x), . . . have been ordered in some way, eg by listing the
irreducibles of degree 1 first, then those of degree 2, and so on.)

If the degree of pi(x) is di then
n =

∑
i

diei.

We can write this as
tn =

∏
i

(tdi)ei ;

and each monic polynomial f(x) corresponds to a single term in the infinite product(
1 + td1 + t2d1 + · · ·

)(
1 + td2 + t2d2 + · · ·

)
· · · .

Adding the terms for all monic polyomials (and remembering that there are pn such polynomials
of degree n), it follows that

1 + pt+ p2t2 + · · · =
∏
i

Φi(t),

where Φi(t) is the power-series

Φi(t) = 1 + tdi + t2di + · · ·

=
1

1− tdi

Thus
1

1− pt
=
∏
i

1
1− tdi

.

Since there are N(d) identical terms on the right for each degree d, we conclude that

1
1− pt

=
∏

d=1,2,...

(
1

1− td

)N(d)

We should emphasize at this point that we are dealing here with formal power-series, without
introducing any questions of convergence. Thus the last identity asserts that if each side is
expanded then there are only a finite number of terms on each side of degree n, and these sum
to the same value. For example, t occurs on the left with coefficient p, and on the right with
coefficient N(1), so that N(1) = p, as is obvious since all polynomials of degree 1 are irreducible.

(Having said that, it is easy enough to verify that the two sides do in fact converge for
|t| < 1/p, using the fact that the infinite product

∏
(1 + an) converges absolutely if and only if

the series
∑
an converges absolutely. But that is irrelevant to our argument.)

Recall that if
f(t) = f1(t) · · · fr(t)

then we can deduce by ‘logarithmic differentiation’ that

f ′(t)
f(t)

=
f ′1(t)
f1(t)

+ · · ·+ f ′r(t)
fr(t)

.
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(Of course it is not necessary to introduce logarithms in order to verify this result.) We can
extend this to our infinite product (since a term of given degree will only occur in a finite number
of the terms), and derive the identity

p

1− pt
=
∑
d

dtd−1

1− td

Multiplying by t,

pt

1− pt
= pt+ p2t2 + · · ·

=
∑
d

dtd

1− td

=
∑
d

(
dtd + dt2d + · · ·

)
.

On equating coefficients of tn, we obtain the identity

pn =
∑
t|n

dN(d)

This result enables us to compute N(d) for any d, by successively calculating N(1), N(2), . . . .
Thus

p1 = ·N(1) =⇒ N(1) = p,

p2 = 2N(2) +N(1) =⇒ N(2) =
1
2
p(p− 1),

p3 = 3N(3) +N(1) =⇒ N(3) =
1
3
p(p2 − 1),

p4 = 4N(4) + 2N(2) +N(1) =⇒ N(4) =
1
4
p(p2 − 1),

and so on.
We have established

Theorem 7. If there are N(d) irreducible monic polynomials of degree d over Fp then

pn =
∑
d|n

dN(d)

for each n ≥ 1.

10.3 Möbius inversion

Definition 7. The Möbius function µ : N → Z is defined by µ(n) = 0 if n = 0 or n contains a
square factor, while if n = p1 · · · pr where the pi are distinct primes then

µ(n) = (−1)r.
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Thus

µ(0) = 0,
µ(1) = 1,
µ(2) = −1,
µ(3) = −1,
µ(4) = 0,
µ(5) = −1,
µ(6) = 1,

and so on.

Proposition 12. (Möbius Inversion Formula) Suppose

f(n) =
∑
d|n

g(d).

Then
g(n) =

∑
d|n

µ(n/d)f(d).

Proof. Lemma 5. For each n ≥ 1,

∑
d|n

µ(d) =

{
0 if n = 1
1 otherwise.

Proof of Lemma. Suppose
n = pe11 · · · p

er
r .

The square-free factors of n are just the factors of

n′ = p1 · · · pr.

Thus we may suppose that n is square-free, say

n = p1 · · · pr.

But now consider
g(t) = (1− t)r = (1− t)(1− t) · · · (1− t),

where there is a factor (1 − t) corresponding to each prime pi dividing n. We can associate
each factor d | n to a term in the expansion of g(t). Thus p1p3 is associated to the factor
(−t)× 1× (−t)× 1 · · · × 1 = t2. The coefficient of the term is just µ(d), since each prime factor
pi will contribute −1.

The result follows on setting t = 1:

f(1) =
∑
d|n

= 0

if n > 1.
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Turning to the Proposition, it is clear that the values of g(n) for n = 1, 2, 3, . . . are determined
recursively by the relations

f(n) =
∑
d|n

g(d);

for g(n) occurs in the formula for f(n), while all the remaining terms in the formula involve g(d)
for d < n.

It follows that it is sufficient to show that∑
d|n

g(d) = f(n)

when we substitute for each g(d) in terms of the f(·)’s. Thus we have to show that∑
d|n

∑
e | dµ(d/e)f(e) = f(n).

The expression on the left involves only f(e) for e dividing n; and the coefficient of f(e) is∑
e|d|n

µ(d/e).

Setting d/e = r this becomes ∑
r | n/eµ(r) = 0

by the Lemma if r > 1, ie e < n. Thus the coefficient of f(e) vanishes for all e < n, while f(n)
occurs only once, when e = d = n, with coefficient µ(n/n) = 1.

Hence the sum is f(n), as required.

Theorem 8. The number of irreducible monic polynomials f(x) of degree d over Fp is

N(d) =
1
d

∑
e|d

µ(d/e)pe.

Proof. The result follows from Theorem 7 on applying Möbius Inversion Formula with

f(n) = pn g(d) = dN(d).

For example,

N(6) =
1
6
(
µ(6)p1 + µ(3)p2 + µ(2)p3 + µ(1)p6

)
=

1
6
(
p6 − p3 − p2 + p

)

Corollary 5. N(d) > 0 for all d ≥ 1.
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Proof. Making a very crude estimate,

N(d) ≥ pd − pd−1 − pd−2 − · · · − 1

< pd − pd−1

1− 1/p

= pd − pd

p− 1
≥ 0.

Now we have all the ingredients for our main result.

Theorem 9. There exists a field with pn elements for each prime-power pn.

Proof. By Corollary 5 there exists an irreducible monic polynomial m(x) of degree n over Fp.
But then by Corollary 4

K = Fp[x]/(m(x))

is a field of dimension n over Fp, containing pn elements.

10.4 An alternative proof

Instead of constructing Fpn in one step as above, we can reach it by a succession (or ‘tower’)
of extensions.
Proposition 13. Suppose f(x) ∈ k[x]. We can find a field K ⊃ k of finite dimension dimkK
in which f(x) factorises completely:

f(x) = (x− α1) · · · (x− αd),

where α1, . . . , αd ∈ K.

Proof. We argue by induction on d = deg f(x).
If the pi(x) are all of degree 1 then we are done. We may suppose therefore that deg p1(x) > 1.

Let k1 be the extension field
k1 = k[x]/(p1(x)).

Recall that k1 contains a root α = x of p1(x). Thus

p1(x) = (x− α)q(x),

where q(x) ∈ k1[x], and so
f(x) = (x− α)g(x),

where q(x) ∈ k1[x].
But now by our inductive hypothesis we can find a finite extension K ⊃ k1 in which g(x)

factorises completely. But then f(x) factorises completely in K too.
It only remains to see that K is a finite extension of k.

Lemma 6. If k1 is a finite extension of k and K is a finite extension of k1 then K is a finite
extension of k, and

dimkK = dimk k1 · dimk1 K.
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Proof of Lemma. Suppose e1, . . . , er is a basis for the vector space k1 over k, and f1, . . . , fs is a
basis for the vector space K over k1. Then

eifj (1 ≤ i ≤ r, 1 ≤ j ≤ s)

is a basis for K over k. For x ∈ K is uniquely expressible in the form

x = λ1f1 + · · ·+ λsfs,

with λ1, . . . , λs ∈ k1; and then each λj is uniquely expressible in the form

λj = µ1je1 + · · ·+ µrjer,

with µ1j , . . . , µrj ∈ k. Putting these together,

x =
∑
ij

µijeifj ,

and it is easy to show that the µij are unique.

We have established that K is a finite extension of k in which f(x) splits completely into
linear factors. We call such a field K a splitting field for f(x).

We apply this result to the ‘universal polynomial’

Un(x) = xp
n − x.

Lemma 7. Suppose K is a splitting field for Un(x) ∈ Fp[x]:

Un(x) = (x− α1) · · · (x− αpn),

with αi ∈ K. Then
S = {α1, . . . , αpn}

is a field containing pn elements.

Proof of Lemma. First we show the αi are distinct. If not then Un(x) would have a double root
α. But in that case (x− α) would be a factor of

U ′n(x) = −1,

which is absurd.
Thus S contains pn elements. We have to show that

α, β ∈ S =⇒ α± β, αβ ∈ S,

and also that
α ∈ S, α 6= 0 =⇒ α−1 ∈ S.

Multiplication is immediate:

α, β ∈ S =⇒ αp
n

= α, βp
n

= β

=⇒ (αβ)p
n

= αp
n
βp

n
= αβ

=⇒ αβ ∈ S.
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Addition is a little more subtle. Recall that in characteristic p,

(a+ b)p = ap + bp,

since all the other binomial coefficients are divisible by p and so vanish in characteristic p. Re-
peating this n times,

(a+ b)p
n

= ap
n

+ bp
n
.

Thus

α, β ∈ S =⇒ (α+ β)p
n

= αp
n

+ βp
n

= α+ β

=⇒ α+ β ∈ S.

If p is odd then
(−1)p

n
= −1 =⇒ −1 ∈ S;

while if p is even then −1 = 1 so the result still holds. Thus

α, β ∈ S =⇒ α− β = α+ (−1)β ∈ S.

Finally, if α 6= 0 then the map
β 7→ αβ : S → S

is injective, and so surjective (by the Pigeon-Hole Principle), and therefore

αβ = 1

for some β ∈ S, ie α−1 ∈ S.

We have thus shown that S is a field containing pn elements.
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Chapter 10

Automorphisms of a Finite Field

T
HE AUTOMORHPHISM GROUP G of a field F is usually called its Galois group.
Galois theory establishes a correspondence between subfields of F and subgroups of G.
To each subfield K ⊂ F we associate the subgroup

{g ∈ G : gx = x for all x ∈ K}.

Conversely, to each subgroup H ⊂ G we associate the subfield

{x ∈ F : gx = x for all g ∈ H}.

In the case of a finite field F , as we shall see, this establishes a one-one correspondence between
the subfields of F and the subgroups of G.

Proposition 14. Suppose F is a finite field of characteristic p. Then the map

a 7→ ap

is an automorphism of F .

Proof. The map evidently preserves multiplication:

(ab)p = apbp.

Less obviously, it also preserves addition:

(a+ b)p = ap + bp.

For on expanding the left-hand side by the binomial theorem, all the terms except the first and
last vanish. For

p |
(
p
i

)
(i = 1, . . . , p− 1),

since p divides the numerator but not the denominator of(
p
i

)
=
p(p− 1) · · · (p− i+ 1)

1 · 2 · · · i
.

Finally, the map is injective since

ap = 0 =⇒ a = 0.

Since F is finite, this implies that the map is bijective, and so an automorphism of F .
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Remarks 2. 1. This is an astonishing result. In characteristic p, the map

x 7→ xp

is linear.

2. The map a 7→ ap is an injective endomorphism for any field F of characteristic p. But it
may not be bijective if F is infinite.

Definition 8. We call the automorphism a 7→ ap the Frobenius automorphism of F , and denote
it by Φ.

Theorem 10. Suppose F is a finite field, with

‖F‖ = pn.

Then the automorphism group of F is a cyclic group of order n, generated by the Frobenius
automorphism:

Aut Fpn = Cn = {I,Φ,Φ2, . . . ,Φn−1 : Φn = I}

Proof. Lemma . The Frobenius automorphism Φ of Fpn has order n

Proof of Lemma. We know that
ap

n
= a

for all a ∈ F . We can rewrite this as
Φn(a) = a

for all a, ie
Φn = I.

Suppose
Φm = I

for some m < n. In other words
ap

m
= a

for all a ∈ F . This is an equation of degree pm with pn > pm roots: an impossibility.
We conclude that Φ has order n.

We must show that
I,Φ,Φ2, . . . ,Φn−1

are the only automorphisms of Fpn .

Lemma . Every automorphism Θ of a finite field F leaves invariant each element of its prime
subfield P .

Proof of Lemma. If c ∈ P , we have
c = 1 + · · ·+ 1.

Hence
Θ(c) = Θ(1) + · · ·+ Θ(1) = 1 + · · ·+ 1 = c.
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Lemma . The only elements of a finite field F left invariant by the Frobenius automorphism Φ
are the elements of its prime subfield P .

Proof of Lemma. By the last lemma, the p elements of P are all roots of the equation

Φ(a) ≡ ap = a.

Since this equation has degree p, they are all the roots.

Lemma . Suppose π is a primitive element of the finite field F . Then any automorphism Θ of
F is completely determined by its action on π; that is, if Θ,Θ′ are 2 such automorphisms then

Θ(π) = Θ′(π) =⇒ Θ = Θ′.

Proof of Lemma. Since every element α 6= 0 in F is of the form α = πi for some i, the result
follows from the fact that

Θ(π) = Θ′(π) =⇒ Θ(πi) = Θ′(πi).

Let π be a primitive element in F . Consider the product

f(x) = (x− π)(x− Φπ) · · · (x− Φn−1π).

Applying the automorphism Φ to this product,

fΦ(x) = (x− Φπ)(x− Φ2π) · · · (x− π)
= f(x),

the n factors simply being permuted cyclically. Thus f(x) is left unchanged by Φ. From the
Lemma above, this implies that the coefficients of f(x) all lie in the prime subfield P :

f(x) ∈ P [x].

Now suppose Θ is an automorphism of F . Then

fΘ(x) = f(x),

since the coefficients of f(x), being in P , are left unchanged by Θ. Thus

fΘ(x) = (x−Θπ)(x−ΘΦπ) · · · (x−ΘΦn−1π)
= (x− π)(x− Φπ) · · · (x− Φn−1π).

It follows that
Θπ = Φiπ

for some i. But by the last lemma, this implies that

Θ = Φi.

Proposition 15. Suppose p(x) ∈ P [x] is a prime polynomial of degree d; and suppose p(x) has
a root α in the finite field F . Then all the roots of p(x) lie in F ; they are in fact the d elements{

α,Φα, . . . ,Φd−1α
}
.
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Proof. Since the automorphism Φ leaves the elements of the prime field P fixed,

p(α) = 0 =⇒ p(Φα) = 0

Thus Φα = αp is also a root of p(x). So by the same argument are Φ2α,Φ3α, . . . .
On the other hand, we saw in the proof of the last Proposition that

f(x) ≡
∏

0≤i<n

(
x− Φiα

)
∈ P [x].

Since p(x) is the minimal polynomial of α, and α is a root of f(x), it follows that

p(x)|f(x).

But f(x) factorises completely in F . Hence the same is true of p(x); and its roots must lie among
the roots {

α,Φα, . . . ,Φn−1α
}

of f(x).
Let e be the least integer > 0 such that

Φeα = α.

Then the elements {
α,Φα, . . . ,Φe−1α

}
are all distinct. For if 0 ≤ i < j ≤ e,

Φiα = Φjα =⇒ Φj−iα = α,

on applying the automorphism Φ−i. But since 0 < j− i < e that contradicts the minimality of e.
On the other hand, we saw that the elements of this reduced set are all roots of p(x). In fact

they are all the roots. For we know that every root is of the form Φiα; and if

i = eq + r (0 ≤ r < e),

then
Φiα = Φrα.

Finally, since p(x) is of degree d, it has just d roots. Hence d = e.

Proposition 16. The field Fpn has exactly one subfield containing pm elements for each m | n.

Proof. We know from Chapter 3 that if F ⊂ Fpn contains pm elements then m | n; and we also
know that in this case

F = Fpm .

It follows that all the elements of F satisfy the equation

xp
m

= x.

Since this equation has at most pm roots in Fpn ,

F =
{
x ∈ Fpn : xp

m
= x

}
.
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Conversely, suppose m | n. Let

F =
{
x ∈ Fpn : xp

m
= x

}
= {x ∈ Fpn : Φmx = x} .

Then F is a subfield of Fpn , since Φm is an automorphism of Fpn :

x, y ∈ F =⇒ Φmx = x,Φmy = y

=⇒ Φm(x+ y) = x+ y,Φm(xy) = xy

=⇒ x+ y, xy ∈ F.

But we saw in Chapter 8 that

m | n =⇒ Um(x) | Un(x).

Since Un(x) factorises completely in F , the same must be true of Um(x). In other words, Um(x)
has pm roots in Fpn , ie

‖F‖ = pm.

In conclusion, let us see how this fits in with the general remarks on galois theory with which
the chapter opened.

A cyclic group Cn has just 1 subgroup of order m for each m | n (ie each m allowed by
Lagrange’s Theorem). These subgroups are all cyclic. Suppose Φ generates Cn. If n = md then
the subgroup of order m is generated by Φd:

Cm =
{

1,Φd,Φ2d, . . . ,Φ(m−1)d
}
.

According to the prescription of galois theory this corresponds to the subfield

K =
{
x ∈ Fpn : Φdx = x

}
=

{
x ∈ Fpn : xp

d
= x

}
= Fpd .

Thus we have a one-one correspondence between subfields and subgroups:

Fpm ←→ Cn/m.

Notice that under this correspondence, the larger the subfield the smaller the subgroup: if
K ←→ S,K ′ ←→ S′,

K ⊂ K ′ =⇒ S ⊃ S′.
It follows from this that the Galois correspondence sends intersections into joins, and vice versa:

K ∩K ′ ←→ 〈S, S′〉, 〈K,K ′〉 ←→ S ∩ S′.

(The join 〈K,K ′〉 of 2 subfields K,K ′ is the smallest subfield containing both K and K ′; Similarly
the join 〈S, S′〉 of 2 subgroups S, S′ is the smallest subgroup containing both S and S′.)

Concretely, if Fpn exists, and d | n, e | n then we can regard Fpd and Fpe as subfields of Fpn :

Fpd ,Fpe ⊂ Fpn .

It follows from the galois correspondence that

Fpd ∩ Fpe = Fpgcd(d,e), 〈Fpd ,Fpe〉 = Fplcm(d,e).
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Summary: A finite field has just one subfield of each allowed size:

Fpm ⊂ Fpn ⇐⇒ m | n.
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Chapter 11

Wedderburn’s Theorem

I
F WE RELAX THE CONDITION that multiplication should be commutative, but
retain all the other laws of arithmetic, we are left with the axioms for a skew-field or
division-algebra. (We shall use the term skew-field.) Note that with this definition, fields
(ie commutative fields) are also skew-fields.

The most familiar example of a non-commutative skew-field is furnished by the quaternions

H = {t+ xi+ yj + zk : t, x, y, z ∈ R},

with multiplication defined by

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j.

In fact one can show that the only finite-dimensional skew-fields over R are: R itself, the complex
numbers C, and the quaternions H.

Theorem 11. Every finite skew-field is commutative.

Proof. Suppose S is a finite skew-field. Let F be the centre of S, ie

F = {z ∈ S : zs = sz for all s ∈ S}.

We have to prove in effect that F = S.
To this end we assume that F 6= S; we shall show that this leads to a contradiction. We do

this by ‘counting conjugates’ in the multiplicative group

S× = S − {0}.

Let
‖F‖ = q = pm.

Just as in the commutative case, in Chapter 3, we can regard S as a vector space over F . As
there, we deduce that

‖S‖ = ‖F‖n,
where n = dimF S.

Recall that 2 elements h, k of a finite group G are said to be conjugate (and we write h ∼ k)
if there is an element g ∈ G such that

k = ghg−1.

Conjugacy is an equivalence relation; so G is partitioned into conjugacy classes.
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Lemma . Suppose G is a finite group; and suppose g ∈ G. Then the number of elements conju-
gate to g is

‖G‖
‖Z(g)‖

,

where
Z(g) = {z ∈ G : zg = gz}

Proof of Lemma. Each element x ∈ G defines a conjugate xgx−1 of g. We shall see that each
conjugate arises just ‖Z(g)‖ times in this way.

Suppose h ∼ g, say
h = x0gx

−1
0 .

Then

xgx−1 = h = x0gx
−1
0 ⇐⇒ x−1

0 xg = gx−1
0 x

⇐⇒ x−1
0 x ∈ Z(g)

⇐⇒ x ∈ x0Z(g).

Thus just ‖Z(s)‖ elements x ∈ G give rise to h ∼ g. Since this holds for each conjugate of g, the
number of conjugates is

‖G‖
‖Z(g)‖

.

We apply this result with G = S×.

Lemma . Suppose s ∈ S. Then

Z(s) = {z ∈ S : zs = sz}

is a sub-skew-field of S.

Corollary 6. With the same notation,

‖Z(s)‖ = qd

for some d | n

Proof of Lemma. Regarding Z(s) as a skew-field over F , we see that

‖Z(s)‖ = qd

If s = 0 the result is trivial. Suppose not; then s ∈ S×, and Z(s)× is a subgroup of S×.
Hence, by Lagrange’s Theorem,

qd − 1 | qn − 1.

As we have already seen, this implies that

d | n.

(For on dividing n by d, say n = md+ r (where 0 ≤ r < d), we have

qn − 1 = qmd+r − 1 = qr(qmd− 1) + (qr − 1).

Thus
qd − 1 | qn − 1, qd − 1 | qmd − 1 =⇒ qd − 1 | qr − 1.

But that is impossible unless r = 0, since qd − 1 > qr − 1.)
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Proof of Lemma. We can regard S as a vector space over the skew-field Z(s). Usually we consider
linear algebra over a commutative field; but the fundamental theory—the notions of dimension
and basis—extends to vector spaces over a skew-field. In particular, if

dimZ(s) S = e

then
qn = ‖S‖ = ‖Z(s)‖e = qde,

and so n = de, ie
d | n.

Lemma . The number of elements conjugate to s ∈ S× is

qn − 1
qd − 1

for some d | n.

Proof of Lemma. The number of elements conjugate to s is

‖S×‖
‖Z(s)×‖

=
qn − 1
qd − 1

by our last result.

An element s ∈ S× lies in a conjugacy class by itself if and only if s ∈ F×. Thus there are
just q − 1 such elements. Each of the remaining conjugacy classes contains

qn − 1
qd − 1

elements, for some d | n (d 6= n).
So counting the elements in the various conjugacy classes gives an equation of the form

qn − 1 = q − 1 +
qn − 1
qd1 − 1

+
qn − 1
qd2 − 1

+ · · · .

We are going to show that all the fractions

qn − 1
qd − 1

share a common factor f > 1, which also divides qn − 1. It will follow that

f | q − 1.

But that, as we shall see, is impossible since f > q. We thus arrive at a contradiction.

Definition 9. Suppose n is a positive integer. Let

ω = e
2πi
n .

Then the cyclotomic polynomial Cn(x) is defined to be

Cn(x) =
∏

0<i<n, gcd(i,n)=1

(x− ωi).
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Thus Cn(x) is a polynomial of degree φ(n) (where φ(n) is Euler’s function).

Lemma 8. For each n > 0,
xn − 1 =

∏
d|n

Cd(x).

Proof of Lemma. We know that

xn − 1 =
∏

0≤i<n
(x− ωi).

We divide the factors x− ωi according to the value of gcd(i, n).
Suppose n = de. Then

gcd(i, n) = d⇐⇒ i = dj, gcd(j, e) = 1, 0 ≤ j < e.

Thus ∏
gcd(i,n)=d,0≤i<n

(x− ωi) =
∏

gcd(j,e)=1,0≤j<e

(x− σj),

where
σ = ωd = e

2πi
e .

In other words, ∏
gcd(i,n)=d,0≤i<n

(x− ωi) = Ce(x).

We conclude that
xn − 1 =

∏
d|n

Cn
d
(x).

Since n
d runs over the factors of n as d does, we can rewrite our last result as

xn − 1 =
∏
d|n

Cd(x).

Corollary 7. The cyclotomic polynomial Cn(x) has integer coefficients.

Proof of Lemma. We argue by induction on n. Suppose the result true of Cm(x) for all m < n.
We have

Cn(x) =
xn − 1∏

d|n,d 6=nCd(x)
.

Each cyclotomic polynomial is evidently monic, ie has leading coefficient 1. But if we divide
f(x) by g(x), where both f(x) and g(x) have integer coefficients and g(x) is monic, say

f(x) = q(x)g(x) + r(x) (deg r(x) < deg g(x)),

then both q(x) and r(x) have integer coefficients. (This is clear if we derive q(x) and r(x) by
repeatedly reducing the degree of f(x) by subtracting terms of the form axrg(x).)

Since by our inductive hypothesis the factors Cd(x) have integer coefficients, and each is
monic, the same is true of their product. Hence Cn(x), as the quotient of xn− 1 by this product,
also has integer coefficients.
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Example 6. We have

C1(x) = x− 1

C2(x) =
x2 − 1
x− 1

= x+ 1

C3(x) =
x3 − 1
x− 1

= x2 + x+ 1

C4(x) =
x4 − 1

C1(x)C2(x)
=

x4 − 1
(x− 1)(x+ 1)

= x2 + 1

C5(x) =
x5 − 1
x− 1

= x4 + x3 + x2 + x+ 1

C6(x) =
x6 − 1

(x− 1)C2(x)C3(x)
=

x6 − 1
(x− 1)(x+ 1)(x2 + x+ 1

=
x6 − 1

(x+ 1)(x3 − 1)
= x2 − x+ 1.

Lemma 9. If d | n (d 6= n) then

Cn(q) | q
n − 1
qd − 1

.

Proof of Lemma. Let
xn − 1
xd − 1

= f(x).

Then f(x) has integer coefficients.
We know that

Cn(x) | f(x).

It follows on substituting x = q that
Cn(q) | f(q),

ie
Cn(q) | q

n − 1
qd − 1

for all d | n (d 6= n).

Thus we see that the number of elements in each conjugacy class in S× − F× is divisible by

f = Cn(q).

Since Cn(q) | q − 1, we conclude that

Cn(q) | q − 1.

But
Cn(q) =

∏
gcd(i,n)=1

(q − ωi)

and so
|Cn(q)| =

∏
|q − ωi| ≥ (q − 1)φ(n),

since
|q − ωi| ≥ q − 1.
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Moreover there is equality only if each factor is q − 1, which is the case only if n = 1. Thus if
n 6= 1,

|Cn(q)| > q − 1.

But this contradicts our assertion that

Cn(q) | q − 1.

We conclude that our original hypothesis is untenable, ie F = S, and so S is commutative.

Summary: There are no ‘finite quaternions’; every finite skew-field is
commutative.
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Chapter 13

Irreducible Polynomials over a Prime
Field

A
S WE HAVE SEEN (particularly in the last chapter), there is an intimate relation
between the finite fields Fpn of characteristic p and polynomials—in particular irreducible
polynomials—over the prime field P = Fp. The following result summarises the relation.

Proposition 17. Suppose α ∈ Fpn. Then the minimal polynomial of α over P = Fp is an
irreducible polynomial of degree d | n.

Conversely, if p(x) is an irreducible polynomial of degree d in P [x] then the roots of p(x) lie
in Fpn if and only if d | n.

Proof. Let m(x) be the minimal polynomial of α ∈ Fpn . Suppose degm(x) = d. Let K be the
smallest subfield containing α. Then

dimP K = d,

where P = Fp. In other words,
K = Fpd .

But since K ⊂ Fpn this implies that
d | n.

Conversely, suppose p(x) is an irreducible polynomial of degree d over P . By the construction
of an algebraic extension in the last Chapter, we can find a field F ⊃ P in which p(x) has a root
α. (In fact, as we saw, this means that p(x) factorises completely in F .)

Let K be the smallest subfield containing α. As we just saw

K = Fpd .

It follows that α satisfies the universal equation

Ud(x) = 0.

Hence
p(x) | Ud(x).

But if d | n,
Ud(x) | Un(x)
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Thus
p(x) | Un(x),

and so p(x) factorises completely in Fpn .

Corollary . Let
U(x) ≡ xpn − x

over P = Fp. Then the ‘prime’ factorisation of U(x) takes the form

U(x) =
∏

degm(x)|n

m(x),

where m(x) runs over all irreducible polynomials of degree d | n over P .

Corollary . If Π(n) = Πp(n) denotes the number of irreducible polynomials of degree n over the
prime field P = Fp, then ∑

d|n

dΠ(d) = pn.

Proof. This follows from the previous Corollary on comparing degrees.

Corollary . The number of irreducible polynomials of degree n over P = Fp is given by

Π(n) =
1
n

∑
d|n

µ
(n
d

)
dn,

where µ(n) is Möbius’ function:

µ(n) =
{

0 if n has a repeated irreducible factor
(−1)e if n has e distinct irreducible factors.

Proof. This follows from the previous Corollary on applying Möbius’ inversion formula:

F (n) =
∑
d|n

f(d) =⇒ f(n) =
∑
d|n

µ
(n
d

)
F (d).

Example 7. The number of irreducible polynomials of degree 6 over P = F2 is

Π(6) = Π2(6) =
1
6
(
µ(1)26 + µ(2)23 + µ(3)22 + µ(6)21

)
=

1
6
(
26 − 23 − 22 + 21

)
=

54
6

= 9.

In determining these 9 polynomials, note that if

p(x) = c0 + c1x+ c2x
2 + c3x

3 + c4x
4 + c5x

5 + c6x
6

is an irreducible polynomial of degree 6 then
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1. The first and last coefficients c0 and c6 must not vanish:

c0 = c6 = 1.

2. The sum of the coefficients must be non-zero, or else 1 + x would divide p(x):

c0 + c1 + c2 + c3 + c4 + c5 + c6 = 1.

This leaves just 16 possibilities.
Suppose p(x) is irreducible. Then so is the polynomial obtained by taking the coefficients in

reverse order

p̃(x) = x6p

(
1
x

)
.

For it is easy to verify that if p(x) factorises so does p̃(x).
So the irreducible polynomials of degree 6 occur in pairs, except for those which are ‘symmet-

rical’, ie p̃(x) = p(x). There are just 4 symmetrical polynomials among the 16 we are examining,
namely

1 + x3 + x6, 1 + x+ x3 + x5 + x6, 1 + x2 + x3 + x4 + x6, 1 + x+ x2 + x3 + x4 + x5 + x6.

So 1 or 3 of these is irreducible; and then 4 or 3 of the remaining 6 pairs are irreducible.
If one of our 16 polynomials is not irreducible then it must have an irreducible factor of degree

2 or 3. (We have excluded the irreducible factors x and 1 + x of degree 1.)
The number of irreducible polynomials of degree 2 is

Π(2) =
1
2
(
22 − 21

)
= 1,

while
Π(3) =

1
3
(
23 − 21

)
= 2.

The only irreducible of degree 2 is evidently

1 + x+ x2,

while the 2 irreducibles of degree 3 are

1 + x+ x3, 1 + x2 + x3.

Dividing the 4 symmetrical polynomials of degree 6 by each of these in turn, we see that just
1 is irreducible, namely the first:

1 + x3 + x6.

Thus just 4 out of the 6 pairs of asymmetric polynomials are irreducible. We can exclude the
pair

(1 + x+ x3)2 = 1 + x2 + x6, (1 + x2 + x3)2 = 1 + x4 + x6.

Just one non-irreducible pair more to go!
It is evident that

(1 + x+ x2)3, (1 + x+ x3)(1 + x2 + x3)
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are both symmetric. It follows that the last non-irreducible of degree 6 must be the product of
1 + x+ x2 and an irreducible of degree 4.

Now
Π(4) =

1
4
(
24 − 22

)
= 3.

The 3 irreducible polynomials of degree 4 are

1 + x+ x4, 1 + x3 + x4, 1 + x+ x2 + x3 + x4.

So our last non-irreducible pair is

(1 + x+ x2)(1 + x+ x4) = 1 + x3 + x4 + x5 + x6

and its ‘conjugate’
(1 + x+ x2)(1 + x3 + x4) = 1 + x+ x2 + x3 + x6.

So if we represent the polynomial by its coefficients as a sequence of bits,

c0 + c1x+ c2x
2 + c3x

3 + c4x
4 + c5x

5 + c6x
6 ←→ (c0c1c2c3c4c5c6),

then our 9 irreducible polynomials of degree 6 are

(1000011) (1100001)
(1000101) (1010001)

(1001001)
(1001011) (1101001)
(1001101) (1011001)

Definition 10. Suppose p(x) is an irreducible polynomial of degree d over P = Fp. Let α be a
root of p(x) in Fpd. Then p(x) is said to be primitive if α is primitive.

Proposition 18. Suppose p(x) is an irreducible polynomial of degree d over P = Fp; and suppose
α ∈ Fpd is a root of p(x). Then the order of α in F×

pd
is equal to the order of x modulo p(x), ie

the least integer e > 0 such that
p(x) | xe − 1.

Proof. Suppose
αe = 1.

Then α satisfies the equation
xe − 1 = 0.

But p(x) is the minimal polynomial of α. hence

p(x) | xe − 1,

or in other words,
xe ≡ 1 mod p(x).

Conversely,

xe ≡ 1 mod p(x) =⇒ p(x) | xe − 1
=⇒ αe − 1 = 0
=⇒ αe = 1.
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Corollary . With the same notation, the order of x modulo p(x) divides pd − 1.

Corollary . Suppose p(x) is an irreducible polynomial of degree d over P . Then p(x) is primitive
if and only if x has order pd − 1 modulo p(x).

Proposition 19. The number of primitive polynomials of degree d is

φ(pd − 1)
d

,

where φ(n) denotes Euler’s function.

Proof. Lemma 10. If α ∈ Fq is primitive, then so are all its conjugates

α,Φα,Φ2α, . . . .

Proof of Lemma. Suppose Φα is not primitive. In other words Φα had degree d < q − 1. Then

(Φα)d = 1 =⇒ Φ
(
αd
)

= 1

=⇒ αd = 1,

since Φ is an automorphism.

There are φ(pd − 1) primitive elements in Fpd . Each primitive polynomial p(x) of degree d
has d of these elements as roots. Thus the number of such polynomials is

φ(pd − 1)
d

.

Example 8. The number of primitive polynomials of degree 6 over F2 is

φ(26 − 1)
6

= =
φ(63)

6

=
φ(32)φ(7)

6

=
3 · 2 · 6

6
= 6.

So of our 9 irreducible polynomials of degree 6, just 6 are primitive and 3 non-primitive.
It is a straightforward matter to establish that if p(x) is primitive then so is its ‘conjugate’

p̃(x). (We leave the proof of this to the reader.) So it follows that our symmetric irreducible of
degree 6 cannot be primitive (or there would be an odd number of primitive polynomials). Let us
verify this.

It is sufficient, as we have seen, to determine the order of x modulo p(x). If p(x) is primitive
this will be 26 − 1 = 63. In any case, it will be a factor of 63.

Taking
p(x) = 1 + x3 + x6,

we have
x6 ≡ x3 + 1 mod p(x),
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and so

x9 ≡ x6 + x3

≡ 1.

Thus x has order 9 modulo p(x), and so p(x) is not primitive. (We’ve actually shown that the
order divides 9; but since the order of x modulo p(x) is manifestly greater than the degree of p(x),
the order must in fact be 9.)

We leave it to the student to determine which of the 4 pairs of asymmetric irreducibles is not
primitive.

Summary: The irreducible polynomials over the P = Fp divide into 2
classes: primitive and non-primitive. We are able to compute both the
number of irreducible polynomials, and the number of primitive polyno-
mials, of a given degree.
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Appendix A

Galois Theory

A.1 The Galois Correspondence

Definition 11. Suppose G is finite group of automorphisms of the field K. Let k be the set of
fixed elements under G:

k = {θ ∈ K : gθ = θ for all g ∈ G}.

Then we say that K is a galois extension of k.

We shall show that in this case

1. k is a subfield of K;

2. degkK is finite;

3. G is the full group of automorphisms of K over k:

G = Aut
k
K.

It will follow in particular from this that if K is a galois extension of k then we can take
G = AutkK; so the property depends only on K and k (and not on G).

Examples 1. 1. The finite field
K = F(p

n)

is a galois extension of F(p), with

G = {I,Φ,Φ2, . . . ,Φn−1},

where Φ is the Frobenius automorphism x 7→ xp.

2. The Gaussian rationals
K = Q(i),

ie the field of complex numbers of the form x+ yi, where x, y ∈ Q, is a galois extension of
Q, with

G = {I, C},

where C is complex conjugation x+ yi 7→ x− yi.
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3. The quadratic number field
K = Q(

√
2),

ie the field of real numbers of the form x + y
√

2, where x, y ∈ Q, is a galois extension of
Q, with

G = {I, J},

where J is the map x+ y
√

2 7→ x− y
√

2.

4. The cyclotomic field
K = Q(ω),

where ω = e2πi/n, is a galois extension of Q; G is the group of φ(n) automorphisms of the
form

ω 7→ ωi,

where gcd(i, n) = 1.

Definition 12. Suppose G is a finite group of automorphisms of K. Then

For each subgroup S ⊂ G we set

F(S) = {θ ∈ K : gθ = θ for all g ∈ S}.

1.2. For each subfield F ⊂ K we set

S(F ) = {g ∈ G : gθ = θ for all θ ∈ F}.

As indicated above, we assume that

k = F(G),

ie k denotes the set of elements left fixed by all the automorphisms in G,

Proposition 20. Suppose G is a finite group of automorphisms of K. Then

1. For each subgroup S ⊂ G, F(S) is a subfield of K.

2. For each subfield F ⊂ K, S(F ) is a subgroup of G.

3. If S is a subgroup of G then
S ⊂ SF(S);

4. If F is a subfield of K then
F ⊂ FS(F );

5. If S, T are subgroups of G then

S ⊂ T =⇒ F(S) ⊃ F(T );

6. If E,F are subfields of K then

E ⊂ F =⇒ S(E) ⊃ S(F );
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7. For each subgroup S ⊂ G,
FSF(S) = F(S).

In other words,
FSF = F .

8. For each subfield F ⊂ K,
SFS(F ) = S(F ).

In other words,
SFS = S.

Proof. All these results are immediate, except perhaps the last two.
For (7) we note that by (3)

S ⊂ SF(S).

Hence
F(S) ⊃ F(SF(S)),

by (5). On the other hand,
F(S) ⊂ FS(F(S)),

on applying (4) with F(S) in place of F .
The last part (8) is proved similarly.

It follows from the last 2 parts of this Proposition that if F = F(S), ie if F is the fixed field
of some subgroup S ⊂ G, then

FS(F ) = F ;

and similarly, if S = S(F ), ie if S is the invariant subgroup of some subfield F ⊂ K then

SF(S) = S.

We shall show that every field F between k and K is the fixed field of some subgroup, and
every subgroup S ⊂ G is the invariant group of some subfield.

It will follow from this that the mappings

S 7→ F(S), F 7→ S(F )

establish a one-one correspondence between the subgroups of G and the subfields of K containing
k. That is the Fundamental Theorem of Galois Theory.

A.2 Towers of Extensions

Proposition 21. Suppose F is a subfield of K containing k,

k ⊂ F ⊂ K;

and suppose degk F and degF K are both finite. Then degkK is finite, and

degkK = degk F · degF K.
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Proof. Let {ε1, . . . , εr} be a basis for F over k; and let {η1, . . . , ηs} be a basis for K over F . Then
the rs elements

εiηj (1 ≤ i ≤ r, 1 ≤ j ≤ s)
form a basis for K over k.

For any θ ∈ K is uniquely expressible in the form

θ =
∑

1≤j≤s
ξjηj ,

with ξ1, . . . , ξs ∈ F . But now each ξj is uniquely expressible in terms of the εi:

ξj =
∑

1≤i≤r
aijεi,

where aij ∈ k, giving
θ =

∑
i,j

aijεiηj ,

A.3 Algebraic Extensions

Recall that an element θ ∈ K is said to be algebraic over the subfield k if it satisfies a
polynomial equation

xn + c1x
n−1 + · · ·+ cn = 0

with coefficients ci ∈ k.
We say that K is an algebraic extension of k if every element θ ∈ K is algebraic over k. The

algebraic extension K over k is said to be simple if

K = k(α)

for some α ∈ K. If this is so, and m(x) is the minimal polynomial of α over k then

degkK = degm(x),

with each element θ ∈ K uniquely expressible in the form

θ = c0 + c1α+ · · ·+ cd−1α
d−1,

where d = degm(x).
Proposition 22. An extension of finite degree is necessarily algebraic.

Proof. Suppose degkK = d; and suppose θ ∈ K. The d+ 1 elements

1, θ, θ2, . . . , θd

must be linearly dependent over k, ie we can find c0, c1, . . . , cd ∈ k such that

c0 + c1θ + · · ·+ cdθ
d = 0.

In other words θ is a root of the polynomial

c0 + c1x+ · · ·+ cdx
d = 0.

Corollary 8. If θ is algebraic over k then the extension k(θ) is algebraic.
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A.4 Conjugacy

We suppose in this Section that G is a finite group of automorphisms of the field K, and that
k = F(G).
Definition 13. Suppose θ ∈ K. Then the elements gθ(g ∈ G) are called the conjugates of θ.

The argument used in the proof of the following Proposition is frequently encountered in
galois theory.

Proposition 23. Suppose θ ∈ K. Let the distinct conjugages of θ be

θ = θ1, θ2, . . . , θd;

Then the minimal polynomial of θ is

m(x) = (x− θ1) · · · (x− θd).

Proof. Consider the action of the automorphism g ∈ G on m(x). It is easy to see that g simply
permutes the factors of m(x):

mg(x) = (x− gθ1) · · · (x− gθd)
= (x− θ1) · · · (x− θd)
= m(x).

It follows that the coefficients of m(x) are invariant under all g ∈ G, and so lie in the groundfield
k:

m(x) ∈ k[x].

Thus m(x) is a polynomial over k satisfied by θ. If M(x) is the minimal polynomial of θ, therefore,

M(x) | m(x).

But on applying the automorphism g ∈ G

M(θ) = 0 =⇒M(gθ) = 0,

since g leaves the coefficients of M(x) fixed. Thus every conjugate θi of θ is a factor of M(x),
and so

m(x) |M(x).

Hence M(x) = m(x), ie m(x) is the minimal polynomial of θ.

Corollary 9. If θ ∈ K has d distinct conjugates then

d = degk k(θ).

Recall that the polynomial p(x) is said to be separable if it has distinct roots. We say that θ
is separable over k if it is algebraic over k and its minimal polynomial m(x) is separable; and we
say that the algebraic extension F of k is separable if every element of F is separable over k.

In characteristic 0 (which is the case we are chiefly interested in), every algebraic element is
separable; for if g(x) = gcd(m(x),m′(x)) then g(x) | m(x), and so g(x) = 1.
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However, in finite characteristic p this argument may break down, since m′(x) may vanish
identically. This happens if (and only if) m(x) contains only powers of xp, say

m(x) = M(xp).

In fact this cannot happen in our case; for we have seen that each element θ ∈ K satisfies an
equation over k with distinct roots θi.

Corollary 10. K is a separably algebraic extension of k.

Proposition 24. Suppose
F = k(θ),

where θ ∈ K. Then
degk F · ‖S(F )‖ = ‖G‖.

Proof. Suppose θ has d conjugates. Then

degk k(θ) = d,

by the Corollary to the last Proposition.
On the other hand

S(F ) = {g ∈ G : gθ = θ};

for if g leaves θ fixed then it will leave every element of k(θ) fixed.
Let S = S(F ). Then

g1θ = g2θ ⇐⇒ g−1
2 g1θ = θ

⇐⇒ g−1
2 g1 ∈ S

⇐⇒ g1S = g2S.

This establishes a one-one correspondence between the conjugates of θ and the cosets of S. Hence
the number d of conjugates is equal to the number of cosets, ie

d = ‖G‖/‖S‖.

Thus
degk k(θ) · ‖S‖ = d · ‖S| = ‖G‖,

as required.

A.5 The Correspondence Theorem

Theorem 12. Suppose G is a finite group of automorphisms of the field K; and suppose k =
F(G) is the field of fixed elements under G. Then

1. The maps
S 7→ F(S), F 7→ S(F )

establish a one-one correspondence between subgroups S ⊂ G and subfields F ⊂ K contain-
ing k.
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2. If S and F correspond in this way then

‖S‖ · degk F = ‖G‖.

3. In particular
degkK = ‖G‖.

4. Each subfield F is a simple extension of k:

F = k(θ).

5. G is the full group of isomorphisms of K:

G = Aut
k
K.

Proof. Let us assume that degkK < ∞, as is implied by (3). We shall show at the end of the
proof that this assumption is justified.

We argue by induction on G. Thus we may assume the result true for all proper subgroups
S ⊂ G.

To establish the correspondence we have to show that SF(S) = S for every subgroup S ⊂ G,
and FS(F ) = F for every subfield F ⊂ K containing k.

Lemma 11. For each subgroup S ⊂ G we have

SF(S) = S.

Proof of Lemma. This follows at once on applying our inductive hypothesis with S in place of
G, and k′ = F(S) in place of k. For the last part of the Theorem tells us that S is the full group
of automorphisms of Autk′ K).

Lemma 12. Suppose
k ⊂ F, F ′ ⊂ K;

and suppose
Θ : F → F ′

is an isomorphism over k. Then Θ can be extended to an automorphism of K over k.

Putting the matter the other way round, Θ is the restriction to F of some g ∈ AutkK.

Proof of Lemma. Suppose θ ∈ K \ F . Let

m(x) = (x− θ1) · · · (x− θd) = xd + γ1x
d−1 + · · ·+ γd

be the minimal polynomial of θ over F .
We know that the minimal polynomial of θ over k is of the form

M(x) = (x− g1θ) · · · (x− grθ),

where g1θ, . . . , grθ are the distinct conjugates of θ. Since m(x) | M(X), we deduce that (1) the
roots of m(x) are distinct, and (2) these roots are all of the form gθ.
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Now consider the transform of m(x) under Θ,

mΘ(x) ≡ xd + (Θγ1)xd−1 + · · ·+ (Θγd).

Since
mΘ(x) |MΘ(x) = M(x),

we see that mΘ(x) factorises completely in K.
Let θ′ be any root of mΘ(x). We extend Θ to a map

Θ′ : F (θ)→ F ′(θ′)

as follows. Suppose φ ∈ F (θ, say φ = p(θ), where p(x) ∈ F [x]. Then

φ = p(θ) 7→ φ′ = pΘ(θ′).

This is well-defined, since

p(θ) = 0 =⇒ m(x) | p(x) =⇒ mΘ(x) | pΘ(x) =⇒ pΘ(θ′) = 0.

Since Θ′ clearly preserves addition and multiplication, it is an isomorphism extending Θ to F (θ).
We can extend the isomorphism repeatedly in this way to

F (θ1, . . . , θr

until finally we must reach K since we are assuming that degkK is finite.
As it stands, we only know that this extension is an endomorphism of K. However, a linear

transformation t : V → V of a finite-dimensional vector space V is bijective if and only if it is
injective (that is, if det t 6= 0). Thus we have extended the isomorphism Θ to an automorphisms
g ∈ AutkK.

Lemma 13. Suppose
k ⊂ F ⊂ K.

Then
degk F · ‖S(F )‖ = ‖G‖.

Proof of Lemma. We argue by induction on degk F . Let us suppose the result holds for F ; and
suppose θ ∈ K \ F . Let

m(x) = (x− θ1) · · · (x− θd)

be the minimal polynomial of θ over F . In the proof of the last Lemma we showed how to
construct an isomorphism F (θ)→ F (θi) for each root θi of m(x). These isomorphisms extend —
by the same Lemma — to automorphisms

g1, . . . , gd ∈ Aut
F

K = S(F ).

Let S = S(F ); and suppose g ∈ S. Since g leaves m(x) unchanged, gθ = θi for some i. It follows
that g restricts on F (θ) to one of our d isomorphisms, say the restriction of gi. But then g−1

i g
leaves θ fixed, and so leaves every element of F ′ = F (θ) fixed:

g−1
i g ∈ S(F ′) = S′,
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say. We deduce that
S = g1S

′ ∪ · · · ∪ gdS′.

Thus
‖S‖ = degF F

′ · ‖S′‖;

and so

degk F
′ · ‖S′‖ = degk F · degF F

′ · ‖S′‖
= degk F · ‖S‖
= ‖G‖,

by the inductive hypothesis.

Applying this Lemma with F = K,

degkK = ‖G‖,

since S(K) = {e}.

Lemma 14. For each subfield F ⊂ K containing k we have

FS(F ) = F.

Proof of Lemma. We know that
F ′ = FS(F ) ⊃ F,

and that
S(F ′) = SFS(F ) = S(F ).

Thus from the last Lemma,

degk F
′ =

‖F‖
‖S(F ′)‖

=
‖F‖
‖S(F )‖

= degk F.

Hence
F ′ = F,

by Proposition 21.

Lemma 15. Suppose V is a vector space over an infinite field k; and suppose U1, . . . , Ur are
subspaces of V . Then

V =
⋃

1≤i≤r
Ui =⇒ V = Ui

for some i.

Proof of Lemma. Suppose to the contrary that the Ui are all proper subspaces of V . We may
suppose r minimal, so that

U1 ∪ · · · ∪ Ur−1 6= V.

Let
v ∈ V, v /∈ U1 ∪ · · · ∪ Ur−1;
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and let
w ∈ V, w /∈ Ur.

Consider the “line”
u = v + tw (t ∈ k).

This cuts each Ui in at most one point; for if there were 2 such points then the whole line would
lie in Ui. Thus if we choose t to avoid at most r values we can ensure that u = v + tw does not
lie in any of the subspaces, contrary to supposition.

Lemma 16. Suppose k ⊂ F ⊂ K. Then F is a simple extension of k:

F = k(θ).

Proof of Lemma. If k is finite, then so is F , and the result follows from the fact that a finite field
F is a simple extension of every subfield k ⊂ F , eg F = k(π), where π is a primitive root of F .

We may suppose therefore that k is infinite. By Lemma 14, each subfield F ⊂ K containing
k corresponds to the subgroup of S(F ) ⊂ G. Thus there can only be a finite number of such
subfields.

It follows by the last Lemma that we can find θ ∈ F not belonging to any proper subfield of
F containing k. But then k(θ) must be the whole of F :

k(θ) = F.

Lemma 17. G is the full group of automorphisms of K over k:

G = Aut
k
K.

Proof of Lemma. By the last Lemma,
K = k(θ).

By Proposition 23 θ has minimal equation

m(x) = (x− g1θ) · · · (x− gnθ),

where g1, . . . , gn ∈ G.
Every automorphism Θ of K over k must send θ into one of these conjugates gθ. But this

determines the automorphism completely. Hence Θ = g.

It only remains to show that degkK is finite. Suppose not. Then we can certainly find
θ1, . . . , θn such that

degk k(θ1, . . . , θn) > ‖G‖.

Now adjoin all the conjugates mθi of these elements; and let

F = k(g1θ1, . . . , gmθn)

be the resulting subfield of K. Every automorphism g ∈ G sends F into itself, since it merely
permutes the elements giθj . We can therefore apply the Theorem in this case, since degk F <∞.
But then we conclude that

degk F ≤ ‖G‖,

contrary to construction.
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Corollary 11. Suppose K is a galois extension of k; and suppose F is a subfield of K containing
k:

k ⊂ F ⊂ K.

Then K is a galois extension of F .

Corollary 12. Suppose K is a finite extension of k. Then

Aut
k
K ≤ degkK,

with equality if and only if the extension is galois.

Proof. First we must show that G = AutkK is finite. Suppose

K = k(θ1, . . . , θn).

Let mi(x) be the minimal polynomial of θi. Then each automorphism g ∈ G must send θi into
another root gθi of mi(x). Thus there are only a finite number of choices for each gθi; and since
g is completely determined by the gθi, there are only a finite number of choices for g.

Now we can apply the Theorem. Let

F = F(G) = {θ ∈ K : gθ = θ for all g ∈ G}.

Then
‖G‖ = degF K ≤ degkK,

with equality if and only if F = k, in which case the extension is galois, by definition.

A.6 Normal Subgroups and Galois Extensions

Proposition 25. Suppose F is a subfield of K containing k:

k ⊂ F ⊂ K.

Then K is sent into itself by every g ∈ G = AutkK if and only if S(G) is a normal subgroup of
G; and if this is so then

Aut
k
F =

G

S(F )
.

Proof. We know that
F = k(θ)

for some θ ∈ K, by Theorem 12(5). Let the conjugates of θ be

θ1 = θ, θ2 = g2θ, . . . , θd = gdθ.

The automorphism g ∈ G carries k(θ) into itself if and only if

gθ ∈ k(θ).
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But θ and gθ have the same minimal polynomial, and so

degk k(gθ) = degk k(θ).

Thus
gθ ∈ k(θ)⇐⇒ k(gθ) = k(θ).

Now

S (k(θ)) = {h ∈ G : hgθ = gθ}
= {h ∈ G : g−1hgθ = θ}
= gS (k(θ)) g−1.

Thus
k(gθ) = k(θ)⇐⇒ S (k(gθ)) = S (k(θ))⇐⇒ g−1Sg = S,

where S = S(k(θ)). In particular every g ∈ G sends k(θ) into itself if and only if g−1Sg = S for
all g, ie S �G.

In this case, two automorphisms g, h ∈ G induce the same automorphism of F if and only if
they map θ into the same element. But

gθ = hθ ⇐⇒ h−1gθ = θ

⇐⇒ h−1g ∈ S
⇐⇒ hS = gS.

Thus the induced automorphisms of F are in one-one correspondence with the cosets of S, ie
with the elements of the quotient-group G/S. It follows that

Aut
k
F = G/S.

We note that these must be all the automorphisms of F over k, by Theorem 12(6).

A.7 Splitting Fields

Definition 14. The extension F of k is said to be a splitting field for the polynomial p(x) ∈ k[x]
if

1. p(x) splits completely in F :

p(x) = (x− θ1) · · · (x− θd) (θi ∈ F ).

2. F is generated by the roots of p(x):

F = k(θ1, . . . , θd).

Proposition 26. Suppose K is a splitting field for the separable polynomial p(x). Then K is a
galois extension of k.
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Proof. Certainly
K = k(θ1, . . . , θd)

is of finite degree over k, by Proposition 21. Thus we may argue by induction on degkK.
First let us dispose of the case in which k is finite. In this case K is a galois field

K = F(p
n);

and we know that F(p
n) is a galois extension of all its subfields F(p

m) (where m | n).
We may therefore assume that k is infinite. Let F be a minimal subfield of K containing k.

Evidently K is the splitting field for p(x) over F . Thus by our inductive hypothesis K is a galois
extension of F .

There are 2 cases. Suppose first that there are two (or more) minimal subfields, F1 and F2.
Then

F(G) ⊂ F1 ∩ F2 = k.

Hence K/k is galois.
Now suppose F is the unique minimal subfield. Since K/F is galois, K has only a finite

number of subfields. By Lemma 15 we can choose φ ∈ K not in any of these subfields; and then

K = k(φ).

Let m(x) be the minimal polynomial of φ.
We can express φ as a polynomial in θ1, . . . , θd, say

φ = f(θ1, . . . , θd).

For each permutation π ∈ Sd, let

φπ = f
(
θπ(1), . . . , θπ(d)

)
(π ∈ Sd).

The coefficients of the product
P (x) =

∏
π∈Sd

(x− φπ)

are all symmetric functions of θ1, . . . , θd, and so lie in k:

P (x) ∈ k[x].

It follows that all the roots of the minimal polynomial of θ, say

m(x) = (x− θ1) . . . (x− θd),

all lie in K.

Lemma 18. Every element θ ∈ K is separable, ie θ is the root of a separable polynomial.

Proof of Lemma. Let
g(x) = gcd(m(x),m′(x)).

Then
g(x) | m(x).
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Since m(x) is irreducible, this implies that either g(x) is constant, in which case m(x) is separable,
or else m′(x) vanishes identically.

This is impossible in characteristic 0; so we need only consider the case of finite characteristic
p.

In that case m′(x) ≡ 0 if and only if m(x) contains only terms with powers xpr; in other
words,

m(x) = M(xp) = xpr + c1x
p(r−1) + · · ·+ cr.

It is easy to see that the pth powers form a subfield of K, say

Kp = {θp : θ ∈ K}.

Suppose Kp 6= K. If Kp = k then
θpi ∈ k

for each of the roots θi of the generating polynomial p(x). In other words, θi satisfies an equation

xp − θpi ≡ (x− θi)p = 0

over k. But since p(x) is separable, so is the minimal polynomial of θi. It follows that θi ∈ k.
Since this must hold for all the generators θi, K = k and the result is trivial.

We may assume therefore that F = Kp is a non-trivial subfield of K. Thus we can apply our
inductive hypothesis, and deduce that the extension K/Kp is galois.

But if θ ∈ K then θp ∈ Kp, and θ has minimal polynomial

xp − θp ≡ (x− θ)p.

It follows that every automorphism of K over Kp will leave θ fixed. Hence

G(K/Kp) = {e},

and so the extension K/Kp is not galois, contrary to hypothesis.

We have shown that K = k(θ), where the minimal polynomial m(x) of θ splits completely in
K into distinct factors:

m(x) = (x− θ1) · · · (x− θd).

For each root θi, the map
p(θ) 7→ p(θi)

defines an automorphism of K over k. Thus

degK k = d ≤ ‖Aut
k
K‖.

It follows that K is a galois extension of k, by Corollary 2 to Theorem 12.
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Appendix B

The Normal Basis Theorem

As we have seen, we can regard a finite field F as a vector space over its prime subfield P . We
often want to construct a basis for this vector space.

The simplest way to choose such a basis is to pick an element α ∈ F whose minimal polynomial
has degree n—or equivalently, such that F = P (α). (For example, any primitive root of F will
have this property.) For then the elements{

1, α, α2, . . . , αn−1
}

are linearly independent, and so form a basis for F .
However, it is sometimes preferable to use a more specialized basis, namely one consisting of

a complete family of conjugates {
γ, γp, . . . , γp

n−1
}

Such a basis is said to be normal; and the Normal Basis Theorem asserts the existence of normal
bases in every finite field.

Theorem 13. There exists an element α ∈ F = F(p
n) whose n conjugates

α, πα, π2α, . . . , πn−1α

form a basis for F over its prime subfield P .

Our proof of this theorem is based on a straightforward but perhaps unfamiliar result from
linear algebra.

Suppose
T : V → V

is a linear transformation of the finite-dimensional vector space over the scalar field k. Let m(x)
be the minimal polynomial of T .

(Recall that m(x) is the polynomial of least degree satisfied by T , taken with leading coefficient
1. It has the property that

p(T ) = 0⇐⇒ m(x)|p(x),

as is readily seen on dividing p(x) by m(x):

p(x) = m(x)q(x) + r(x) (deg r(x) < degm(x))
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(Incidentally, there certainly do exist polynomials p(x) such that p(T ) = 0. For the space
hom(V, V ) of all linear maps T : V → V has dimension n2; and so the linear maps

I, T, T 2, . . . , Tn
2

must be linearly independent, ie T satisfies an equation of degree ≤ n2. In fact, by the Cayley-
Hamilton Theorem T satisfies its own characteristic equation

χT (x) = det(xI − T );

so the minimal polynomial of T actually has degree ≤ n. But we don’t need this.)
We can extend this notion of minimal polynomial as follows. Suppose v ∈ V . Consider the

set of polynomials
I(v) = {f(x) : f(T )v = 0}.

This set is an ideal in the polynomial ring k[x], ie it is closed under addition, and under multi-
plication by any polynomial in k[x]. It follows—since k[x] is a principle ideal doman—that I(v)
consists of all the multiples of a polynomial mv(x). (It is easy to prove this result directly, taking
mv(x) to be a polynomial of minimal degree in I(v).) The main properties of this polynial are
summarised in

Lemma 19. 1. mv(x)‖m(x) for all v ∈ V .

2. m(x) = lcmv∈V mv(x).

3. If u = f(T )v for some polynomial f(x) then mu(x)‖mv(x).

4. If u, v ∈ V and mu(x),mv(x) are co-prime then

mu+v(x) = mu(x)mv(x).

Proof. 1. Since m(T ) = 0, it follows that m(T )v = 0 for all v, and so

mv(x)‖m(x).

2. It follows from the above that
f(x) = lcm

v∈V
mv(x)

is defined, with f(x)‖m(x). But
f(T )v = 0

for all v ∈ V , and so
f(T ) = 0.

Hence f(x) = m(x).

3. We have
mv(T )u = mv(T )f(T )v = f(T )mv(T )v = 0.

Hence mu(x)‖mv(x).
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4. Clearly
mu+v(x)‖mu(x)mv(x).

Let
w = mu(T )(u+ v) = mu(T )v;

and let f(x) = mw(x). Then

0 = f(T )w = f(T )mu(T )v,

and so
mv(x)‖f(x)mu(x).

But since mu(x),mv(x) are coprime, this implies that

mv(x)‖f(x).

On the other hand, by part 3 of the Lemma,

f(x)‖mu+v(x).

Hence
mv(x)‖mu+v(x),

and similarly
mu(x)‖mu+v(x).

Since mu(x),mv(x) are coprime, this implies that

mu(x)mv(x)‖mu+v(x),

from which the result follows.

Lemma 20. There exists a vector v (sometimes called a cylic vector of T ) such that mv(x) =
m(x).

Proof. Let
m(x) = p1(x)e1p2(x)e2 · · · pr(x)er

be the expression for the minimal polynomial m(x) of T as a product of prime polynomials.
From part 2 of the Lemma above, for each i(1 ≤ i ≤ r) we can find a vector ui whose minimal

polynomial is divisible by pi(x)ei , say

mui(x) = pi(x)eifi(x).

But then
vi = fi(T )ui

has minimal polynomial pi(x)ei .
Now from part 4 of the Lemma above, if we set

v = v1 + v2 + · · ·+ vr

then
mv(x) = m(x).
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We shall apply this result to the fundamental automorphism π of F(p
n).

Proof. Since π : F → F is a linear transformation, we can apply the Lemma above.
The minimal polynomial of π is

m(x) = xn − 1.

For π satisfies m(x) = 0; and it cannot satisfy any equation of lower degree. For suppose

c0π
d + c1π

d−1 + . . . cd = 0.

Then every element α ∈ F satisfies the equation

c0x
pd + c1x

pd−1
+ . . . cd = 0.

But that is a contradiction, since the polynomial on the left has at most pd roots.
By the Lemma, we can find a cyclic vector of π, ie an element α ∈ F whose minimal polynomial

is xn − 1. But this implies in particular that

α, πα, π2α, . . . , πn−1α

are linearly independent, and so form a basis for F over P .
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