
Chapter 6

The p-adic Case

6.1 The p-adic valuation on Q
The absolute value |x| on Q defines the metric, or distance function,

d(x, y) = |x− y|.

Surprisingly perhaps, there are other metrics on Q just as worthy of study.

Definition 6.1 Let p be a prime. Suppose

x =
m

n
∈ Q,

where m,n ∈ Z with gcd(m,n) = 1. Then we set

‖x‖p =


0 if x = 0,

p−e if pe ‖ m,
pe if pe ‖ n.

We call the function x 7→ ‖x‖p the p-adic valuation on Q.

Another way of putting this is: If x ∈ Q, x 6= 0, then we can write

x =
m

n
pe

where p - m,n. The p-adic value of x is given by

‖x‖p = p−e.

Note that all integers are quite small in the p-adic valuation:

x ∈ Z =⇒ ‖x‖p ≤ 1.
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High powers of p are very small:

pn → 0 as n→∞.

The following result is immediate.

Proposition 6.1 1. ‖x‖p ≥ 0; and ‖x‖p = 0⇐⇒ x = 0;

2. ‖xy‖p = ‖x‖p‖y‖p;

3. ‖x+ y‖p ≤ max(‖x‖p, ‖y‖p).

From (3) we at once deduce

Corollary 1 The p-adic valuation satisfies the triangle inequality:

3’ ‖x+ y‖p ≤ ‖x‖p + ‖y‖p.

A valuation on a field k is a map

x 7→ ‖x‖ : k → R

satisfying (1), (2) and (3’). A valuation defines a metric

d(x, y) = ‖x− y‖

on k; and this in turn defines a topology on k.

Corollary 2 If ‖x‖p 6= ‖y‖p then

‖x+ y‖p = max(‖x‖p, ‖y‖p).

Corollary 3 In a p-adic equation

x1 + · · ·+ xn = 0 (x1, . . . , xn ∈ Qp)

no term can dominate, ie at least two of the xi must attain max ‖xi‖p.

To emphasize the analogy between the p-adic valuation and the familiar
valuation |x| we sometimes write

‖x‖∞ = |x|.

6.2 p-adic numbers

The reals R can be constructed from the rationals Q by completing the latter
with respect to the valuation |x|. In this construction each Cauchy sequence

{xi ∈ Q : |xi − xj| → 0 as i, j →∞}

defines a real number, with 2 sequences defining the same number if |xi−yi| →
0.
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(There are 2 very different ways of constructing R from Q: by completing
Q, as above; or alternatively, by the use of Dedekind sections. In this each
real number corresponds to a partition of Q into 2 subsets L,R where

l ∈ L, r ∈ R =⇒ l < r.

The construction by completion is much more general, since it applies to
any metric space; while the alternative construction uses the fact that Q is
an ordered field. John Conway, in On Numbers and Games, has generalized
Dedekind sections to give an extraordinary construction of rationals, reals
and infinite and infinitesimal numbers, starting ‘from nothing’. Knuth has
given a popular account of Conway numbers in Surreal Numbers.)

We can complete Q with respect to the p-adic valuation in just the same
way. The resulting field is called the field of p-adic numbers, and is denoted
by Qp. We can identify x ∈ Q with the Cauchy sequence (x, x, x, . . . ). Thus

Q ⊂ Qp.

To bring out the parallel with the reals, we sometimes write

R = Q∞.

The numbers x ∈ Qp with ‖x‖p ≤ 1 are called p-adic integers. The p-adic
integers form a ring, denoted by Zp. For if x, y ∈ Zp then by property (3)
above,

‖x+ y‖p ≤ max(‖x‖p, ‖y‖p) ≤ 1,

and so x+ y ∈ Zp. Similarly, by property (1),

‖xy‖p = ‖x‖p‖y‖p ≤ 1,

and so xy ∈ Zp.
Evidently

Z ⊂ Zp.

More generally,

x =
m

n
∈ Zp

if p - n. (We sometimes say that a rational number x of this form is p-
integral.) In other words,

Q ∩ Zp = {m
n

: p - n}.

Evidently the p-integral numbers form a sub-ring of Q.
Concretely, each element x ∈ Zp is uniquely expressible in the form

x = c0 + c1p+ c2p
2 + · · · (0 ≤ ci < p).

More generally, each element x ∈ Qp is uniquely expressible in the form

x = c−ip
−i + c−i+1p

−i+1 + · · ·+ c0 + c1p+ · · · (0 ≤ ci < p).
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We can think of this as the p-adic analogue of the decimal expansion of a
real number x ∈ R.

Suppose for example p = 3. Let us express 1/2 ∈ Q3 in standard form.
The first step is to determine if

1

2
≡ 0, 1 or 2 mod 3.

In fact 22 ≡ 1 mod 3; and so

1

2
≡ 2 mod 3.

Next

1

3

(
1

2
− 2

)
= −1

2
≡ 1 mod 3

ie

1

2
− 2 ≡ 1 · 3 mod 32.

Thus

1

2
≡ 2 + 1 · 3 mod 32

For the next step,

1

3

(
−1

2
− 1

)
= −1

2
≡ 1 mod 3

giving

1

2
≡ 2 + 1 · 3 + 1 · 32 mod 33

It is clear that this pattern will be repeated indefinitely. Thus

1

2
= 2 + 3 + 32 + 33 + · · · .

To check this,

2 + 3 + 32 + · · · = 1 + (1 + 3 + 32 + · · · )

= 1 +
1

1− 3

= 1− 1

2

=
1

2
.
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As another illustration, let us expand 3/5 ∈ Q7. We have

3

5
≡ 2 mod 7

1

7

(
3

5
− 2

)
= −1

5
≡ 4 mod 7

1

7

(
−1

5
− 4

)
= −3

5
≡ 5 mod 7

1

7

(
−3

5
− 5

)
= −4

5
≡ 2 mod 7

1

7

(
−4

5
− 2

)
= −2

5
≡ 1 mod 7

1

7

(
−2

5
− 1

)
= −1

5
≡ 4 mod 7

We have entered a loop; and so (in Q7)

3

5
= 2 + 4 · 7 + 5 · 72 + 2 · 73 + 1 · 74 + 4 · 75 + 5 · 76 + · · ·

Checking,

1 +
(
1 + 4 · 7 + 5 · 72 + 2 · 7

) 1

1− 74
= 1− 960

2400

= 1− 2

5

=
3

5
.

It is not difficult to see that a number x ∈ Qp has a recurring p-adic
expansion if and only if it is rational (as is true of decimals).

Let x ∈ Zp. Suppose ‖x‖p = 1. Then

x = c+ yp,

where 0 < c < p and y ∈ Zp. Suppose first that c = 1, ie

x = 1 + yp.

Then x is invertible in Zp, with

x−1 = 1− yp+ y2p2 − y3p3 + · · · .

Even if c 6= 1 we can find d such that

dc ≡ 1 mod p.

Then

dx ≡ dc ≡ 1 mod p,
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say

dx = 1 + py,

and so x is again invertible in Zp, with

x−1 = d
(
1− yp+ y2p2 − · · ·

)
.

Thus the elements x ∈ Zp with ‖x‖p = 1 are all units in Zp, ie they have
inverses in Zp; and all such units are of this form. These units form the
multiplicative group

Z×p = {x ∈ Zp : ‖x‖p = 1}.

6.3 In the p-adic neighbourhood of 0

Recall that an elliptic curve E(k) can be brought to Weierstrassian form

y2 + c1xy + c3y = x3 + c2x
2 + c4x+ c6

if and only if it has a flex defined over k. This is not in general true for
elliptic curves over Qp. For example, the curve

X3 + pY 3 + p2Z3 = 0

has no points at all (let alone flexes) defined over Qp. For if [X, Y, Z] were a
point on this curve then

‖X3‖p = p3e, ‖pY 3‖p = p3f−1, ‖p2Z3‖p = p3g−2

for some integers e, f, g. But if a, b, c ∈ Qp and

a+ b+ c = 0

then two (at least) of a, b, c must have the same p-adic value, by Corollary 3
to Proposition F.1.

On the other hand, Qp is of characteristic 0; so if E(Qp) is Weierstrassian
— as we shall always assume, for reasons given earlier — then it can be
brought to standard form

y2 = x3 + bx+ c.

In spite of this, there is some advantage in working with the general Weier-
strassian equation, since — as we shall see in Chapter 6 — this allows us to
apply the results of this Chapter to study the integer points (that is, points
with integer coordinates) on elliptic curves over Q given in general Weier-
strassian form. Such an equation over Q can of course be reduced to standard
form; but the reduction may well transform integer to non-integer points.
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As in the real case, we study the curve in the neighbourhood of 0 = [0, 1, 0]
by taking coordinates X,Z, where

(X,Z) = [X, 1, Z].

In these coordinates the elliptic curve takes the form

E(Qp) : Z + c1XZ + c3Z
2 = X3 + c2X

2Z + c4XZ
2 + c6Z

3.

As in the real case, if Z(P ) is small then so is X(P ).

Proposition 6.2 If P ∈ E(Qp) then

‖Z‖p < 1 =⇒ ‖X‖p < 1;

and if this is so then
‖Z‖p = ‖X‖3p.

Proof I Suppose ‖Z‖p < 1. Let

‖X‖p = pe.

If e ≥ 0 then X3 will dominate; no other term can be as large, p-adically
speaking.

Thus e < 0, ie ‖X‖p < 1; and now each term

‖c1XZ‖p, ‖c3Z2‖p, ‖c2X2Z‖p, ‖c4XZ2‖p, ‖c6XZ‖p < ‖Z‖p.

Only X3 is left to balance Z. Hence

‖Z‖p = ‖X3‖p = ‖X‖3p.

J

Definition 6.2 For each e > 0 we set

E(pe) = {(X,Z) ∈ E : ‖X‖p ≤ p−e, ‖Z‖p ≤ p−3e}.

Recall that in the real case, we showed that Z could be expressed as a
power-series in X,

Z = X3 − c1X4 + (c21 + c2)X
5 + · · · .

valid in a neighbourhood of O = [0, 1, 0]. It follows that

F (X,Z(X)) = 0

identically, where

F (X,Z) = Z + c1XZ + c3Z
2 − (X3 + c2X

2Z + c4XZ
2 + c6Z

3).
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This identity must hold in any field, in particular in Qp.
Note that in the p-adic case, convergence is much simpler than in the real

case. A series in Qp converges if and only if its terms tend to 0:∑
ar convergent ⇐⇒ ar → 0.

Remember too that in the p-adic valuation integers are small,

x ∈ Z =⇒ ‖x‖p ≤ 1.

Thus a power-series
a0 + a1x+ a2x

2 + · · ·
where ai ∈ Z—or more generally, ai ∈ Zp—will converge for all x with
‖x‖p < 1.

Proposition 6.3 Suppose ‖Z‖p < 1. Then we can express Z as a power-
series in X,

Z = X3 + a1X
4 + a2X

5 + · · ·
where

1. a1 = −c1, a2 = c21 + c2, c3 = −(c31 + 2c1c3 + c3);

2. each coefficient ai is a polynomial in c1, c2, c3, c4, c6 with integer coeffi-
cients;

3. the coefficient ai has weight i, given that ci is ascribed weight i for
(i = 1− 4, 6.

Proof I By repeatedly substituting for Z on the right-hand side of the equa-
tion

Z = X3 + c2X
2Z + c4XZ

2 + c6Z
3 − (c1XZ + c3Z

2)

we can successively determine more and more terms in the power series. Thus
suppose we have shown that

Z = X3
(
1 + a1X + · · ·+ an−1X

n−1) .
On substituting for Z on the right-hand side of the equation and comparing
coefficients of Xn+3,

an = c2an−2 + c4
∑

i+j=n−4

aiaj + c6
∑

i+j+k=n−6

aiajak − c1an−1 − c3
∑

i+j=n−3

aiaj,

from which the result follows. J

Corollary If the elliptic curve is given in standard form

y2 = x3 + ax2 + bx+ c

then
Z = X3 + d2X

5 + d4X
7 + · · · ,

where
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1. only odd powers of X appear, ie di = 0 for i odd;

2. d2 = a, d4 = a2 + b, d6 = a3 + 3ab+ c;

3. each coefficient d2i is a polynomial in a, b, c with integer coefficients;

4. the coefficient d2i has weight i, given that a, b, c are ascribed weights
2,4,6 respectively;

Proof I We note that in the standard case the (X,Z)-equation

Z = X3 + aX2Z + bXZ2 + cZ3

is invariant under the reflection (X,Z) 7→ (−X,−Z) (corresponding to P 7→
−P ). Thus

Z(−X) = −Z(X),

from which the absence of terms of even degree X2i follows. J

As in the real case, the sum of 2 points near O is defined by a function
S(X1, X2), where

X(P1 + P2) = S(X(P1), X(P2)).

Proposition 6.4 Suppose ‖X1‖p, ‖X2‖p < 1. Then we can express S(X1, X2)
as a double power-series in X1, X2,

S(X1, X2) = X1 +X2 + c1X1X2 + · · ·

=
∑
i

Si(X1, X2)

=
∑
i,j

sijX
i
1X

j
2

where

1. Si(X1, X2) is a symmetric polynomial in X1, X2 of degree i;

2. S1(X1, X2) = X1 +X2, S2(X1, X2) = c1X1X2;

3. the coefficient sjk of XjXk is a polynomial in c1, c2, c3, c4, c6 with inte-
gral coefficients.

4. all the coefficients in Si(X1, X2) have weight i.

Proof I As in the real case, let the line

P1P2 : Z = MX +D

meet E again in P3 = (X3, Z3), ie

P3 = P1 ∗ P2.
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Then X1, X2, X3 are the roots of the equation

X3 + c2X
2(MX +D) + c4X(MX +D)2 + c6(MX +D)3

− (MX +D)− c1X(MX +D)− c3(MX +D)2 = 0.

Hence

X1 +X2 +X3 = −coeff of X2

coeff of X3

=
c1M + 2c3M

2 − (c2 + c4M + c6M
2)D

1 + c2M + c4M2 + c6M3

Now

M =
Z2 − Z1

X2 −X1

=
X3

2 −X3
1

X2 −X1

− c1
X4

2 −X4
1

X2 −X1

+ · · ·

= X2
1 +X1X2 +X2

2 − c1(X3
1 +X2

1X2 +X1X
2
2 +X3

2 ) + · · · ,

D =
X2Z1 −X1Z2

X2 −X1

= X1X2

(
X2

2 −X2
1

X2 −X1

− c1
X3

2 −X3
1

X2 −X1

+ · · ·
)

= X1X2

(
X1 +X2 − c1(X2

2 +X1X2 +X2
2 ) + · · ·

)
.

Thus M,D are both expressible as symmetric power-series in X1, X2; and

‖M‖p ≤ p−2, ‖D‖p ≤ p−3,

or more precisely,

M ≡ X2
1 +X1X2 +X2

2 mod p3

D ≡ X1X2(X1 +X2) mod p4.

Hence
X1 +X2 +X3 ≡ 0 mod p2.

More precisely,

X1 +X2 +X3 ≡ c1(X
2
1 +X1X2 +X2

2 ) mod p3,

ie

X3 ≡ −(X1 +X2) + c1(X
2
1 +X1X2 +X2

2 ) mod p3.
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In particular,

‖X3‖p ≤ p−1,

and so

‖Z3‖p = ‖MX3 +D‖ ≤ p−3,

ie

P1, P2 ∈ E(p) =⇒ P3 ∈ E(p).

Recall that
P1 + P2 = O ∗ (P1 ∗ P2) = O ∗ P3.

By our formulae above, with O,X3 in place of X1, X2,

X(O ∗ P3) ≡= −X3 mod p2,

or more precisely

X(O ∗ P3) ≡= −X3 + c1X
2
3 mod p3,

Hence
X(P1 + P2) = X1 +X2 mod p2,

or more precisely

X(P1 + P2) = X1 +X2 − c1(X2
1 +X1X2 +X2

2 ) + c1(X1 +X2)
2 mod p3

= X1 +X2 + c1X1X2 mod p3

J

Finally, we turn to the normal coordinate function θ(X), defined as in
the real case by

dθ

dX
=

1

∂F/∂Z

=
1

1 + c1X + 2c3Z − c2X2 − 2c4XZ − 3c6Z2

Proposition 6.5 Suppose ‖X‖p < 1. Then we can express θ as a power-
series in X,

θ = X +
c

2
X2 + · · ·

=
∑

tnX
n+1

where
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1. t1 = 1, t2 = −c1/2;

2. for each i, iti is a polynomial in c1, c2, c3, c4, c6 with integral coefficients;

3. ti is of weight i.

Proof I Since

dθ

dX
=

1

1 + c1X + 2c3Z − c2X2 − 2c4XZ − 3c6Z2

= 1− (c1X + 2c3Z − c2X2 − 2c4XZ − 3c6Z
2)

+ (c1X + 2c3Z − c2X2 − 2c4XZ − 3c6Z
2)2 + · · ·

the coefficients in the power-series for dθ/dX are integral polynomials in the
ci. It follows on integration that the coefficients ti in the power-series for
θ(X) have at worst denominator i.

It remains to show that this power series converges for ‖X‖p < 1.

Lemma 6 For all i,
‖1/i‖p ≤ i.

Proof of Lemma B Suppose

‖i‖p = p−e.

Then

pe | i =⇒ pe ≤ i

=⇒ ‖1/i‖ ≤ i.

C

If now ‖X‖p < 1 then

‖X‖p ≤
1

p
;

and so

‖tiX i‖p ≤
i

pi
,

which tends to 0 as i→∞. The power-series is therefore convergent. J

Note that
pi ≥ 2i = (1 + 1)i > i2/2

if i ≥ 2, while if p is odd, ‖1/2‖p = 1. Thus

‖X‖p ≤ p−1 =⇒ ‖X i/i‖p ≤ p−2 for i ≥ 2 (p odd)

‖X‖2 ≤ 2−2 =⇒ ‖X i/i‖2 ≤ 2−3 for i ≥ 2 (p = 2).

So if p is odd,

θ(X) = X +O(p2) if ‖X‖p ≤ p−1;
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while if p = 2,

θ(X) = X +O(23) if ‖X‖2 ≤ 2−2.

That is why in our discussion below the argument often applies to P ∈ E(p)
if p is odd, while if p = 2 we have to restrict P to E22 .

Theorem 6.1 For each power pe, where e ≥ 1,

E(pe)(Qp)

is a subgroup of E(Qp). Moreover the map

θ : E(pe)(Qp)→ peZp

is an isomorphism (of topological abelian groups), provided e ≥ 2 if p = 2.

Proof I The identity

θ(S(X1, X2) = θ(X1) + θ(X2),

which we established in the real case, must still hold; and we conclude from
it, as before, that

θ(P1 + P2) = θ(P1) + θ(P2)

whenever
P1, P2 ∈ E(pe)(Qp).

It follows from this that E(pe) is a subgroup; and that

θ : E(pe) → peZp

is a homomorphism, provided e ≥ 2 if p = 2.
Since

θ(X) = X − c1X2/2 + · · · ,

we have
‖θ(X)‖p = ‖X‖p

for all ‖X‖p ≤ p−e. In particular

θ(X) = 0⇐⇒ X = 0.

Hence θ is injective.
It is also surjective, as the following Lemma will show.

Lemma 7 The only closed subgroups of Zp are the subgroups

pnZp (n = 0, 1, 2, . . . ),

together with {0}. In particular, every closed subgroup of Zp, apart from {0},
is in fact open.
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Proof of Lemma B Z is a dense subset of Zp:

Z = Zp.

For the p-adic integer

x = c0 + c1p+ c2p
2 + · · · (ci ∈ {0, 1, . . . , p− 1})

is approached arbitrarily closely by the (rational) integers

xr = c0 + c1p+ · · ·+ crp
r.

Now suppose S is a closed subgroup of Zp. Let s ∈ S be an element of
maximal p-adic valuation, say

‖s‖ = p−e.

Then
s = peu

where u is a unit in Zp, with inverse v, say. Given any ε > 0, we can find
n ∈ Z such that

‖v − n‖ < ε.

Then

ns− pe = pe(nu− 1)

= peu(n− v);

and so
‖ns− pe‖ < ε.

Since ns ∈ S and S is closed, it follows that

pe ∈ S.
Hence

peZ = peZp ⊂ S.

Since s was a maximal element in S, it follows that

S = peZp.

C

It follows from this Lemma that im θ is one of the subgroups pmZp. But
since

‖X‖ = p−e =⇒ ‖θ(X)‖ = p−e,

im θ must in fact be peZp, ie θ is surjective.
A continuous bijective map from a compact space to a hausdorff space is

necessarily a homeomorphism. (This follows from the fact that the image of
every closed, and therefore compact, subset is compact, and therefore closed.)
In particular, θ establishes an isomorphism

E(pe) ∼= peZp
∼= Zp.

J

It follows from this Theorem that E(pe) is torsion-free, since Zp is torsion-
free. Thus there are no points of finite order on E close to O, a result which
we shall exploit in the next Chapter.
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6.4 The Structure of E(Qp)

We shall not use the following result, but include it for the sake of complete-
ness.

Theorem 6.2 Let F ⊂ E(Qp) be the torsion subgroup of the elliptic curve
E(Qp). Then

E(Qp) ∼= F⊕ Zp.

Proof I The torsion subgroup F splits (uniquely) into its p-component Fp

and the sum Fp′ of all components Fq with q 6= p:

F = Fp ⊕ Fp′ .

(See Appendix A for details.) Explicitly,

Fp = {P ∈ E : pnP = 0 for some n},
Fp′ = {P ∈ E : mP = 0 for some d with gcd(m, p) = 1}.

(We write E for E(Qp)).
We also set

Ep = {P ∈ E : pnP → O as n→∞}.

Evidently
Ep ⊃ E(p).

Since E(p) is an open (and therefore closed) subgroup of E , it follows that the
same is true of Ep.

Lemma 8 pnEp = E(pe) for some n, e > 0.

Proof of Lemma B For each P ∈ Ep,

pnP ∈ E(p)

for some n > 0 since pnP → O and E(p) is an open neighbourhood of O.
Hence the open subgroups p−nE(p) cover Ep. Since Ep is compact, it follows
that p−nE(p) ⊃ Ep for some n, ie

pnEp ⊂ E(p) ∼= Zp.

But by Lemma 7 to Theorem 6.1, the only closed subgroups of Zp are the
peZp, which correspond under this isomorphism to the subgroups E(pe) of E(p).

We conclude that
pnEp = E(pe)

for some e. C

MA342P–2016 6–15



Lemma 9 Suppose A is a finite p-group; and suppose gcd(m, p) = 1. Then
the map ψ : A→ A under which

a 7→ ma

is an isomorphism.

Proof of Lemma B Suppose a ∈ kerA, ie

ma = 0.

Then order(a) | m. But by Lagrange’s Theorem, order(a) = pe for some e.
Hence order(a) = 1, ie a = 0.

Thus ψ is injective; and it is therefore surjective, by the Pigeon-Hole
Principle. Hence ψ is an isomorphism. C

It is not difficult to extend this result to Ep, which is in effect a kind of
topological p-group.

Lemma 10 Suppose gcd(m, p) = 1. Then the map ψ : Ep → Ep under which

a 7→ ma

is an isomorphism.

Proof of Lemma B Suppose P ∈ kerψ, ie

mP = 0.

By Lemma 1,
pnEp ⊂ E(p2) ∼= Zp

for some n.
But Zp is torsion-free. Thus

mP = 0 =⇒ m(pnP = 0) =⇒ pnP = 0.

Hence
m, pn | order(P ) =⇒ order(P ) = 1 =⇒ P = 0

since gcd(m, pn) = 1. Thus
kerψ = 0,

ie ψ is injective.
Now suppose P ∈ Ep. We have to show that P = mQ for some Q ∈ Ep.
Since Ep/pnEp is a finite p-group we can find Q ∈ Ep such that

mQ ≡ P mod pnEp

ie

mQ = P +R,
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where
R ∈ pnEp ∼= Zp.

Now the map
P 7→ mP : Zp → Zp

is certainly an isomorphism, since m is a unit in Zp with inverse m−1 ∈ Zp.
In particular we can find S ∈ pnEp with

mS = R.

Putting all this together,

P = mQ+R = mQ+mS = m(Q+ S).

Thus the map ψ is surjective, and so an isomorphism. C

Lemma 11 E(Qp) = Fp′ ⊕ Ep.

Proof of Lemma B Suppose

P ∈ Fp′ ∩ Ep,

say
mP = O,

where gcd(m, p) = 1.
On considering p mod m as an element of the finite group

(Z/m)× = {r mod m : gcd(r,m) = 1},

it follows by Lagrange’s Theorem that

pr ≡ 1 mod m

for some n > 0. But then
prP = P ;

and so
pnP → O =⇒ P = O.

Now suppose P ∈ E . Since E is compact, and Ep is open, E/Ep is finite
(eg since E must be covered by a finite number of Ep-cosets). Let the order
of this finite group be mpe, where gcd(m, p) = 1.

We can find u, v ∈ Z such that

um+ vpe = 1;

and then
P = Q+R,
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where
Q = u(mP ), R = v(peP ).

Now
peQ = u(mpeP ) ∈ Ep.

Hence

pnQ→ 0 as n→∞

ie

Q ∈ Ep.

On the other hand,
mR = v(mpeP ) ∈ Ep.

Hence by Lemma 10, there is a point S ∈ Ep such that

mR = mS,

and so

T = R− S ∈ Fp′ .

Putting these results together,

P = T + (Q+ S),

with T ∈ Fp′ and Q+ S ∈ Ep. C

Lemma 12 Fp ⊂ Ep.

Proof of Lemma B Suppose

P = Q+R ∈ Fp,

where Q ∈ Fp′ , R ∈ Ep. Then

pnP = 0 =⇒ pnQ = 0, pnR = 0,

since the sum is direct. But

pnQ = 0 =⇒ order(Q) | pn =⇒ order(Q) = 1 =⇒ Q = 0,

since the order of Q is coprime to p by the definition of Fp′ . Thus

P = R ∈ Ep.

C

It remains to split Ep into Fp and a subgroup isomorphic to Zp.
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Consider the surjection

ψ : Ep → E(pe) ∼= Zp.

Let us choose a point
P0 ∈ Epe \ E(pe+1),

eg if we identify E(pe) with Zp we might take the point corresponding to
1 ∈ Zp. Now choose a point P1 such that

ψ(P1) = P0;

and let
E1 = 〈P1〉

be the closure in Ep of the subgroup generated by P1. We shall show that
the restriction

ψ1 = ψ | E1 : E1 → E(pe)
is an isomorphism, so that

E1 ∼= E(pe) ∼= Zp.

Certainly ψ1 is surjective. For E1 is compact, and so its image is closed;
while 〈P0〉 > is dense in E(pe) ∼= Zp.

Suppose
Q ∈ kerψ1 = kerψ ∩ E1.

By definition, Q is the limit of points in 〈P1〉, say

niP1 → Q,

where ni ∈ Z. But then, since ψ is continuous,

niP0 → ψ(Q) = 0.

Hence
ni → 0

in Zp. But then it follows that

niP1 → 0

in Ep, since ⋂
pnEp = 0.

Hence Q = 0, ie kerψ1 = 0.
It remains to show that

Ep = Fp ⊕ E1.

Suppose P ∈ Ep. Then
ψ(P ) = ψ(Q),
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for some Q ∈ E1. In other words,

pn(P −Q) = 0.

Thus

R = P −Q ∈ Fp

On the other hand, if
Fp ∩ E1 = 0,

since as we have seen,
E1 ∼= E(pe) ∼= Zp,

and Zp is torsion-free.
We have shown therefore that

E = Fp′ ⊕ Ep
= Fp′ ⊕ (Fp ⊕ E1)
= (Fp′ ⊕ Fp)⊕ E1
= F⊕ E1
∼= F⊕ Zp.

J

Remark: We can regard Ep as a Zp-module; for since pnP → O we can define
xP unambiguously for x ∈ Zp:

ni → x =⇒ niP → xP.

Moreover, Ep is a finitely-generated Zp-module; that follows readily from
the fact that E(p) ∼= Zp is of finite index in Ep.

The Structure Theorem for finitely-generated abelian groups, ie Z-modules,
extends easily to Zp-modules; such a module is the direct sum of copies of
Zp and cyclic groups Z/(pe). (This can be proved in much the same way as
the corresponding result for abelian groups.)

Effectively, therefore, all we proved above was that the factor Zp oc-
curred just once, which simply reflects the fact that we are dealing with a
1-dimensional curve.
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