Chapter 6

The p-adic Case

6.1 The p-adic valuation on \mathbb{Q}

The absolute value $|x|$ on \mathbb{Q} defines the metric, or distance function,

$$
d(x, y)=|x-y| .
$$

Surprisingly perhaps, there are other metrics on \mathbb{Q} just as worthy of study.
Definition 6.1 Let p be a prime. Suppose

$$
x=\frac{m}{n} \in \mathbb{Q},
$$

where $m, n \in \mathbb{Z}$ with $\operatorname{gcd}(m, n)=1$. Then we set

$$
\|x\|_{p}= \begin{cases}0 & \text { if } x=0 \\ p^{-e} & \text { if } p^{e} \| m \\ p^{e} & \text { if } p^{e} \| n\end{cases}
$$

We call the function $x \mapsto\|x\|_{p}$ the p-adic valuation on \mathbb{Q}.
Another way of putting this is: If $x \in \mathbb{Q}, x \neq 0$, then we can write

$$
x=\frac{m}{n} p^{e}
$$

where $p \nmid m, n$. The p-adic value of x is given by

$$
\|x\|_{p}=p^{-e}
$$

Note that all integers are quite small in the p-adic valuation:

$$
\begin{aligned}
& x \in \mathbb{Z} \Longrightarrow\|x\|_{p} \leq 1 . \\
& \text { MA342P-2016 }
\end{aligned}
$$

High powers of p are very small:

$$
p^{n} \rightarrow 0 \text { as } n \rightarrow \infty .
$$

The following result is immediate.
Proposition 6.1 1. $\|x\|_{p} \geq 0$; and $\|x\|_{p}=0 \Longleftrightarrow x=0$;
2. $\|x y\|_{p}=\|x\|_{p}\|y\|_{p}$;
3. $\|x+y\|_{p} \leq \max \left(\|x\|_{p},\|y\|_{p}\right)$.

From (3) we at once deduce
Corollary 1 The p-adic valuation satisfies the triangle inequality:
$3^{\prime}\|x+y\|_{p} \leq\|x\|_{p}+\|y\|_{p}$.
A valuation on a field k is a map

$$
x \mapsto\|x\|: k \rightarrow \mathbb{R}
$$

satisfying (1), (2) and (3'). A valuation defines a metric

$$
d(x, y)=\|x-y\|
$$

on k; and this in turn defines a topology on k.
Corollary 2 If $\|x\|_{p} \neq\|y\|_{p}$ then

$$
\|x+y\|_{p}=\max \left(\|x\|_{p},\|y\|_{p}\right) .
$$

Corollary 3 In a p-adic equation

$$
x_{1}+\cdots+x_{n}=0 \quad\left(x_{1}, \ldots, x_{n} \in \mathbb{Q}_{p}\right)
$$

no term can dominate, ie at least two of the x_{i} must attain $\max \left\|x_{i}\right\|_{p}$.
To emphasize the analogy between the p-adic valuation and the familiar valuation $|x|$ we sometimes write

$$
\|x\|_{\infty}=|x| .
$$

$6.2 \quad p$-adic numbers

The reals \mathbb{R} can be constructed from the rationals \mathbb{Q} by completing the latter with respect to the valuation $|x|$. In this construction each Cauchy sequence

$$
\left\{x_{i} \in \mathbb{Q}:\left|x_{i}-x_{j}\right| \rightarrow 0 \text { as } i, j \rightarrow \infty\right\}
$$

defines a real number, with 2 sequences defining the same number if $\left|x_{i}-y_{i}\right| \rightarrow$ 0 .
(There are 2 very different ways of constructing \mathbb{R} from \mathbb{Q} : by completing \mathbb{Q}, as above; or alternatively, by the use of Dedekind sections. In this each real number corresponds to a partition of \mathbb{Q} into 2 subsets L, R where

$$
l \in L, r \in R \Longrightarrow l<r
$$

The construction by completion is much more general, since it applies to any metric space; while the alternative construction uses the fact that \mathbb{Q} is an ordered field. John Conway, in On Numbers and Games, has generalized Dedekind sections to give an extraordinary construction of rationals, reals and infinite and infinitesimal numbers, starting 'from nothing'. Knuth has given a popular account of Conway numbers in Surreal Numbers.)

We can complete \mathbb{Q} with respect to the p-adic valuation in just the same way. The resulting field is called the field of p-adic numbers, and is denoted by \mathbb{Q}_{p}. We can identify $x \in \mathbb{Q}$ with the Cauchy sequence (x, x, x, \ldots). Thus

$$
\mathbb{Q} \subset \mathbb{Q}_{p}
$$

To bring out the parallel with the reals, we sometimes write

$$
\mathbb{R}=\mathbb{Q}_{\infty}
$$

The numbers $x \in \mathbb{Q}_{p}$ with $\|x\|_{p} \leq 1$ are called p-adic integers. The p-adic integers form a ring, denoted by \mathbb{Z}_{p}. For if $x, y \in \mathbb{Z}_{p}$ then by property (3) above,

$$
\|x+y\|_{p} \leq \max \left(\|x\|_{p},\|y\|_{p}\right) \leq 1
$$

and so $x+y \in \mathbb{Z}_{p}$. Similarly, by property (1),

$$
\|x y\|_{p}=\|x\|_{p}\|y\|_{p} \leq 1,
$$

and so $x y \in \mathbb{Z}_{p}$.
Evidently

$$
\mathbb{Z} \subset \mathbb{Z}_{p}
$$

More generally,

$$
x=\frac{m}{n} \in \mathbb{Z}_{p}
$$

if $p \nmid n$. (We sometimes say that a rational number x of this form is p integral.) In other words,

$$
\mathbb{Q} \cap \mathbb{Z}_{p}=\left\{\frac{m}{n}: p \nmid n\right\} .
$$

Evidently the p-integral numbers form a sub-ring of \mathbb{Q}.
Concretely, each element $x \in \mathbb{Z}_{p}$ is uniquely expressible in the form

$$
x=c_{0}+c_{1} p+c_{2} p^{2}+\cdots \quad\left(0 \leq c_{i}<p\right) .
$$

More generally, each element $x \in \mathbb{Q}_{p}$ is uniquely expressible in the form

$$
x=c_{-i} p^{-i}+c_{-i+1} p^{-i+1}+\cdots+c_{0}+c_{1} p+\cdots \quad\left(0 \leq c_{i}<p\right) .
$$

We can think of this as the p-adic analogue of the decimal expansion of a real number $x \in \mathbb{R}$.

Suppose for example $p=3$. Let us express $1 / 2 \in \mathbb{Q}_{3}$ in standard form. The first step is to determine if

$$
\frac{1}{2} \equiv 0,1 \text { or } 2 \bmod 3
$$

In fact $2^{2} \equiv 1 \bmod 3$; and so

$$
\frac{1}{2} \equiv 2 \bmod 3
$$

Next

$$
\frac{1}{3}\left(\frac{1}{2}-2\right)=-\frac{1}{2} \equiv 1 \bmod 3
$$

ie

$$
\frac{1}{2}-2 \equiv 1 \cdot 3 \bmod 3^{2}
$$

Thus

$$
\frac{1}{2} \equiv 2+1 \cdot 3 \bmod 3^{2}
$$

For the next step,

$$
\frac{1}{3}\left(-\frac{1}{2}-1\right)=-\frac{1}{2} \equiv 1 \bmod 3
$$

giving

$$
\frac{1}{2} \equiv 2+1 \cdot 3+1 \cdot 3^{2} \bmod 3^{3}
$$

It is clear that this pattern will be repeated indefinitely. Thus

$$
\frac{1}{2}=2+3+3^{2}+3^{3}+\cdots
$$

To check this,

$$
\begin{aligned}
2+3+3^{2}+\cdots & =1+\left(1+3+3^{2}+\cdots\right) \\
& =1+\frac{1}{1-3} \\
& =1-\frac{1}{2} \\
& =\frac{1}{2} .
\end{aligned}
$$

As another illustration, let us expand $3 / 5 \in \mathbb{Q}_{7}$. We have

$$
\begin{gathered}
\frac{3}{5} \equiv 2 \bmod 7 \\
\frac{1}{7}\left(\frac{3}{5}-2\right)=-\frac{1}{5} \equiv 4 \bmod 7 \\
\frac{1}{7}\left(-\frac{1}{5}-4\right)=-\frac{3}{5} \equiv 5 \bmod 7 \\
\frac{1}{7}\left(-\frac{3}{5}-5\right)=-\frac{4}{5} \equiv 2 \bmod 7 \\
\frac{1}{7}\left(-\frac{4}{5}-2\right)=-\frac{2}{5} \equiv 1 \bmod 7 \\
\frac{1}{7}\left(-\frac{2}{5}-1\right)=-\frac{1}{5} \equiv 4 \bmod 7
\end{gathered}
$$

We have entered a loop; and so (in \mathbb{Q}_{7})

$$
\frac{3}{5}=2+4 \cdot 7+5 \cdot 7^{2}+2 \cdot 7^{3}+1 \cdot 7^{4}+4 \cdot 7^{5}+5 \cdot 7^{6}+\cdots
$$

Checking,

$$
\begin{aligned}
1+\left(1+4 \cdot 7+5 \cdot 7^{2}+2 \cdot 7\right) \frac{1}{1-7^{4}} & =1-\frac{960}{2400} \\
& =1-\frac{2}{5} \\
& =\frac{3}{5} .
\end{aligned}
$$

It is not difficult to see that a number $x \in \mathbb{Q}_{p}$ has a recurring p-adic expansion if and only if it is rational (as is true of decimals).

Let $x \in \mathbb{Z}_{p}$. Suppose $\|x\|_{p}=1$. Then

$$
x=c+y p,
$$

where $0<c<p$ and $y \in \mathbb{Z}_{p}$. Suppose first that $c=1$, ie

$$
x=1+y p
$$

Then x is invertible in \mathbb{Z}_{p}, with

$$
x^{-1}=1-y p+y^{2} p^{2}-y^{3} p^{3}+\cdots
$$

Even if $c \neq 1$ we can find d such that

$$
d c \equiv 1 \bmod p
$$

Then

$$
\begin{gathered}
d x \equiv d c \equiv 1 \bmod p, \\
\text { MA342P-2016 } 6-5
\end{gathered}
$$

$$
d x=1+p y,
$$

and so x is again invertible in \mathbb{Z}_{p}, with

$$
x^{-1}=d\left(1-y p+y^{2} p^{2}-\cdots\right) .
$$

Thus the elements $x \in \mathbb{Z}_{p}$ with $\|x\|_{p}=1$ are all units in \mathbb{Z}_{p}, ie they have inverses in \mathbb{Z}_{p}; and all such units are of this form. These units form the multiplicative group

$$
\mathbb{Z}_{p}^{\times}=\left\{x \in \mathbb{Z}_{p}:\|x\|_{p}=1\right\} .
$$

6.3 In the p-adic neighbourhood of 0

Recall that an elliptic curve $\mathcal{E}(k)$ can be brought to Weierstrassian form

$$
y^{2}+c_{1} x y+c_{3} y=x^{3}+c_{2} x^{2}+c_{4} x+c_{6}
$$

if and only if it has a flex defined over k. This is not in general true for elliptic curves over \mathbb{Q}_{p}. For example, the curve

$$
X^{3}+p Y^{3}+p^{2} Z^{3}=0
$$

has no points at all (let alone flexes) defined over \mathbb{Q}_{p}. For if $[X, Y, Z]$ were a point on this curve then

$$
\left\|X^{3}\right\|_{p}=p^{3 e},\left\|p Y^{3}\right\|_{p}=p^{3 f-1},\left\|p^{2} Z^{3}\right\|_{p}=p^{3 g-2}
$$

for some integers e, f, g. But if $a, b, c \in \mathbb{Q}_{p}$ and

$$
a+b+c=0
$$

then two (at least) of a, b, c must have the same p-adic value, by Corollary 3 to Proposition F. 1.

On the other hand, \mathbb{Q}_{p} is of characteristic 0 ; so if $\mathcal{E}\left(\mathbb{Q}_{p}\right)$ is Weierstrassian - as we shall always assume, for reasons given earlier - then it can be brought to standard form

$$
y^{2}=x^{3}+b x+c .
$$

In spite of this, there is some advantage in working with the general Weierstrassian equation, since - as we shall see in Chapter 6 - this allows us to apply the results of this Chapter to study the integer points (that is, points with integer coordinates) on elliptic curves over \mathbb{Q} given in general Weierstrassian form. Such an equation over \mathbb{Q} can of course be reduced to standard form; but the reduction may well transform integer to non-integer points.

As in the real case, we study the curve in the neighbourhood of $0=[0,1,0]$ by taking coordinates X, Z, where

$$
(X, Z)=[X, 1, Z] .
$$

In these coordinates the elliptic curve takes the form

$$
\mathcal{E}\left(\mathbb{Q}_{p}\right): Z+c_{1} X Z+c_{3} Z^{2}=X^{3}+c_{2} X^{2} Z+c_{4} X Z^{2}+c_{6} Z^{3} .
$$

As in the real case, if $Z(P)$ is small then so is $X(P)$.
Proposition 6.2 If $P \in \mathcal{E}\left(\mathbb{Q}_{p}\right)$ then

$$
\|Z\|_{p}<1 \Longrightarrow\|X\|_{p}<1
$$

and if this is so then

$$
\|Z\|_{p}=\|X\|_{p}^{3} .
$$

Proof \bullet Suppose $\|Z\|_{p}<1$. Let

$$
\|X\|_{p}=p^{e}
$$

If $e \geq 0$ then X^{3} will dominate; no other term can be as large, p-adically speaking.

Thus $e<0$, ie $\|X\|_{p}<1$; and now each term

$$
\left\|c_{1} X Z\right\|_{p},\left\|c_{3} Z^{2}\right\|_{p},\left\|c_{2} X^{2} Z\right\|_{p},\left\|c_{4} X Z^{2}\right\|_{p},\left\|c_{6} X Z\right\|_{p}<\|Z\|_{p} .
$$

Only X^{3} is left to balance Z. Hence

$$
\|Z\|_{p}=\left\|X^{3}\right\|_{p}=\|X\|_{p}^{3}
$$

Definition 6.2 For each $e>0$ we set

$$
\mathcal{E}_{\left(p^{e}\right)}=\left\{(X, Z) \in \mathcal{E}:\|X\|_{p} \leq p^{-e},\|Z\|_{p} \leq p^{-3 e}\right\} .
$$

Recall that in the real case, we showed that Z could be expressed as a power-series in X,

$$
Z=X^{3}-c_{1} X^{4}+\left(c_{1}^{2}+c_{2}\right) X^{5}+\cdots .
$$

valid in a neighbourhood of $O=[0,1,0]$. It follows that

$$
F(X, Z(X))=0
$$

identically, where

$$
F(X, Z)=Z+c_{1} X Z+c_{3} Z^{2}-\left(X^{3}+c_{2} X^{2} Z+c_{4} X Z^{2}+c_{6} Z^{3}\right)
$$

This identity must hold in any field, in particular in \mathbb{Q}_{p}.
Note that in the p-adic case, convergence is much simpler than in the real case. A series in \mathbb{Q}_{p} converges if and only if its terms tend to 0 :

$$
\sum a_{r} \text { convergent } \Longleftrightarrow a_{r} \rightarrow 0
$$

Remember too that in the p-adic valuation integers are small,

$$
x \in \mathbb{Z} \Longrightarrow\|x\|_{p} \leq 1
$$

Thus a power-series

$$
a_{0}+a_{1} x+a_{2} x^{2}+\cdots
$$

where $a_{i} \in \mathbb{Z}$-or more generally, $a_{i} \in \mathbb{Z}_{p}$-will converge for all x with $\|x\|_{p}<1$.

Proposition 6.3 Suppose $\|Z\|_{p}<1$. Then we can express Z as a powerseries in X,

$$
Z=X^{3}+a_{1} X^{4}+a_{2} X^{5}+\cdots
$$

where

1. $a_{1}=-c_{1}, a_{2}=c_{1}^{2}+c_{2}, c_{3}=-\left(c_{1}^{3}+2 c_{1} c_{3}+c_{3}\right)$;
2. each coefficient a_{i} is a polynomial in $c_{1}, c_{2}, c_{3}, c_{4}, c_{6}$ with integer coefficients;
3. the coefficient a_{i} has weight i, given that c_{i} is ascribed weight i for ($i=1-4,6$.

Proof \bullet By repeatedly substituting for Z on the right-hand side of the equation

$$
Z=X^{3}+c_{2} X^{2} Z+c_{4} X Z^{2}+c_{6} Z^{3}-\left(c_{1} X Z+c_{3} Z^{2}\right)
$$

we can successively determine more and more terms in the power series. Thus suppose we have shown that

$$
Z=X^{3}\left(1+a_{1} X+\cdots+a_{n-1} X^{n-1}\right) .
$$

On substituting for Z on the right-hand side of the equation and comparing coefficients of X^{n+3},
$a_{n}=c_{2} a_{n-2}+c_{4} \sum_{i+j=n-4} a_{i} a_{j}+c_{6} \sum_{i+j+k=n-6} a_{i} a_{j} a_{k}-c_{1} a_{n-1}-c_{3} \sum_{i+j=n-3} a_{i} a_{j}$,
from which the result follows.
Corollary If the elliptic curve is given in standard form

$$
y^{2}=x^{3}+a x^{2}+b x+c
$$

then

$$
Z=X^{3}+d_{2} X^{5}+d_{4} X^{7}+\cdots
$$

where

1. only odd powers of X appear, ie $d_{i}=0$ for i odd;
2. $d_{2}=a, d_{4}=a^{2}+b, d_{6}=a^{3}+3 a b+c$;
3. each coefficient $d_{2 i}$ is a polynomial in a, b, c with integer coefficients;
4. the coefficient $d_{2 i}$ has weight i, given that a, b, c are ascribed weights 2,4,6 respectively;

Proof \bullet We note that in the standard case the (X, Z)-equation

$$
Z=X^{3}+a X^{2} Z+b X Z^{2}+c Z^{3}
$$

is invariant under the reflection $(X, Z) \mapsto(-X,-Z)$ (corresponding to $P \mapsto$ $-P)$. Thus

$$
Z(-X)=-Z(X),
$$

from which the absence of terms of even degree $X^{2 i}$ follows.
As in the real case, the sum of 2 points near O is defined by a function $S\left(X_{1}, X_{2}\right)$, where

$$
X\left(P_{1}+P_{2}\right)=S\left(X\left(P_{1}\right), X\left(P_{2}\right)\right)
$$

Proposition 6.4 Suppose $\left\|X_{1}\right\|_{p},\left\|X_{2}\right\|_{p}<1$. Then we can express $S\left(X_{1}, X_{2}\right)$ as a double power-series in X_{1}, X_{2},

$$
\begin{aligned}
S\left(X_{1}, X_{2}\right) & =X_{1}+X_{2}+c_{1} X_{1} X_{2}+\cdots \\
& =\sum_{i} S_{i}\left(X_{1}, X_{2}\right) \\
& =\sum_{i, j} s_{i j} X_{1}^{i} X_{2}^{j}
\end{aligned}
$$

where

1. $S_{i}\left(X_{1}, X_{2}\right)$ is a symmetric polynomial in X_{1}, X_{2} of degree i;
2. $S_{1}\left(X_{1}, X_{2}\right)=X_{1}+X_{2}, S_{2}\left(X_{1}, X_{2}\right)=c_{1} X_{1} X_{2}$;
3. the coefficient $s_{j k}$ of $X^{j} X^{k}$ is a polynomial in $c_{1}, c_{2}, c_{3}, c_{4}, c_{6}$ with integral coefficients.
4. all the coefficients in $S_{i}\left(X_{1}, X_{2}\right)$ have weight i.

Proof \downarrow As in the real case, let the line

$$
P_{1} P_{2}: Z=M X+D
$$

meet \mathcal{E} again in $P_{3}=\left(X_{3}, Z_{3}\right)$, ie

$$
P_{3}=P_{1} * P_{2} .
$$

Then X_{1}, X_{2}, X_{3} are the roots of the equation

$$
\begin{aligned}
& X^{3}+c_{2} X^{2}(M X+D)+c_{4} X(M X+D)^{2}+c_{6}(M X+D)^{3} \\
&-(M X+D)-c_{1} X(M X+D)-c_{3}(M X+D)^{2}=0
\end{aligned}
$$

Hence

$$
\begin{aligned}
X_{1}+X_{2}+X_{3} & =-\frac{\text { coeff of } X^{2}}{\text { coeff of } X^{3}} \\
& =\frac{c_{1} M+2 c_{3} M^{2}-\left(c_{2}+c_{4} M+c_{6} M^{2}\right) D}{1+c_{2} M+c_{4} M^{2}+c_{6} M^{3}}
\end{aligned}
$$

Now

$$
\begin{aligned}
M & =\frac{Z_{2}-Z_{1}}{X_{2}-X_{1}} \\
& =\frac{X_{2}^{3}-X_{1}^{3}}{X_{2}-X_{1}}-c_{1} \frac{X_{2}^{4}-X_{1}^{4}}{X_{2}-X_{1}}+\cdots \\
& =X_{1}^{2}+X_{1} X_{2}+X_{2}^{2}-c_{1}\left(X_{1}^{3}+X_{1}^{2} X_{2}+X_{1} X_{2}^{2}+X_{2}^{3}\right)+\cdots \\
D & =\frac{X_{2} Z_{1}-X_{1} Z_{2}}{X_{2}-X_{1}} \\
& =X_{1} X_{2}\left(\frac{X_{2}^{2}-X_{1}^{2}}{X_{2}-X_{1}}-c_{1} \frac{X_{2}^{3}-X_{1}^{3}}{X_{2}-X_{1}}+\cdots\right) \\
& =X_{1} X_{2}\left(X_{1}+X_{2}-c_{1}\left(X_{2}^{2}+X_{1} X_{2}+X_{2}^{2}\right)+\cdots\right)
\end{aligned}
$$

Thus M, D are both expressible as symmetric power-series in X_{1}, X_{2}; and

$$
\|M\|_{p} \leq p^{-2},\|D\|_{p} \leq p^{-3}
$$

or more precisely,

$$
\begin{aligned}
M & \equiv X_{1}^{2}+X_{1} X_{2}+X_{2}^{2} \bmod p^{3} \\
D & \equiv X_{1} X_{2}\left(X_{1}+X_{2}\right) \bmod p^{4}
\end{aligned}
$$

Hence

$$
X_{1}+X_{2}+X_{3} \equiv 0 \bmod p^{2}
$$

More precisely,

$$
X_{1}+X_{2}+X_{3} \equiv c_{1}\left(X_{1}^{2}+X_{1} X_{2}+X_{2}^{2}\right) \bmod p^{3}
$$

ie

$$
X_{3} \equiv-\left(X_{1}+X_{2}\right)+c_{1}\left(X_{1}^{2}+X_{1} X_{2}+X_{2}^{2}\right) \bmod p^{3}
$$

In particular,

$$
\left\|X_{3}\right\|_{p} \leq p^{-1}
$$

and so

$$
\left\|Z_{3}\right\|_{p}=\left\|M X_{3}+D\right\| \leq p^{-3}
$$

ie

$$
P_{1}, P_{2} \in \mathcal{E}_{(p)} \Longrightarrow P_{3} \in \mathcal{E}_{(p)}
$$

Recall that

$$
P_{1}+P_{2}=O *\left(P_{1} * P_{2}\right)=O * P_{3} .
$$

By our formulae above, with O, X_{3} in place of X_{1}, X_{2},

$$
X\left(O * P_{3}\right) \equiv=-X_{3} \bmod p^{2}
$$

or more precisely

$$
X\left(O * P_{3}\right) \equiv=-X_{3}+c_{1} X_{3}^{2} \bmod p^{3},
$$

Hence

$$
X\left(P_{1}+P_{2}\right)=X_{1}+X_{2} \bmod p^{2}
$$

or more precisely

$$
\begin{aligned}
X\left(P_{1}+P_{2}\right) & =X_{1}+X_{2}-c_{1}\left(X_{1}^{2}+X_{1} X_{2}+X_{2}^{2}\right)+c_{1}\left(X_{1}+X_{2}\right)^{2} \bmod p^{3} \\
& =X_{1}+X_{2}+c_{1} X_{1} X_{2} \bmod p^{3}
\end{aligned}
$$

Finally, we turn to the normal coordinate function $\theta(X)$, defined as in the real case by

$$
\begin{aligned}
\frac{d \theta}{d X} & =\frac{1}{\partial F / \partial Z} \\
& =\frac{1}{1+c_{1} X+2 c_{3} Z-c_{2} X^{2}-2 c_{4} X Z-3 c_{6} Z^{2}}
\end{aligned}
$$

Proposition 6.5 Suppose $\|X\|_{p}<1$. Then we can express θ as a powerseries in X,

$$
\begin{aligned}
\theta=X+\frac{c}{2} X^{2}+\cdots & \\
& =\sum t_{n} X^{n+1}
\end{aligned}
$$

where

1. $t_{1}=1, t_{2}=-c_{1} / 2$;
2. for each i, i_{i} is a polynomial in $c_{1}, c_{2}, c_{3}, c_{4}, c_{6}$ with integral coefficients;
3. t_{i} is of weight i.

Proof \bullet Since

$$
\begin{aligned}
\frac{d \theta}{d X}= & \frac{1}{1+c_{1} X+2 c_{3} Z-c_{2} X^{2}-2 c_{4} X Z-3 c_{6} Z^{2}} \\
= & 1-\left(c_{1} X+2 c_{3} Z-c_{2} X^{2}-2 c_{4} X Z-3 c_{6} Z^{2}\right) \\
& \quad+\left(c_{1} X+2 c_{3} Z-c_{2} X^{2}-2 c_{4} X Z-3 c_{6} Z^{2}\right)^{2}+\cdots
\end{aligned}
$$

the coefficients in the power-series for $d \theta / d X$ are integral polynomials in the c_{i}. It follows on integration that the coefficients t_{i} in the power-series for $\theta(X)$ have at worst denominator i.

It remains to show that this power series converges for $\|X\|_{p}<1$.
Lemma 6 For all i,

$$
\|1 / i\|_{p} \leq i
$$

Proof of Lemma \triangleright Suppose

$$
\|i\|_{p}=p^{-e}
$$

Then

$$
\begin{aligned}
p^{e} \mid i & \Longrightarrow p^{e} \leq i \\
& \Longrightarrow\|1 / i\| \leq i .
\end{aligned}
$$

\triangleleft
If now $\|X\|_{p}<1$ then

$$
\|X\|_{p} \leq \frac{1}{p}
$$

and so

$$
\left\|t_{i} X^{i}\right\|_{p} \leq \frac{i}{p^{i}}
$$

which tends to 0 as $i \rightarrow \infty$. The power-series is therefore convergent.
Note that

$$
p^{i} \geq 2^{i}=(1+1)^{i}>i^{2} / 2
$$

if $i \geq 2$, while if p is odd, $\|1 / 2\|_{p}=1$. Thus

$$
\begin{aligned}
& \|X\|_{p} \leq p^{-1} \Longrightarrow\left\|X^{i} / i\right\|_{p} \leq p^{-2} \text { for } i \geq 2 \quad(p \text { odd }) \\
& \|X\|_{2} \leq 2^{-2} \Longrightarrow\left\|X^{i} / i\right\|_{2} \leq 2^{-3} \text { for } i \geq 2 \quad(p=2)
\end{aligned}
$$

So if p is odd,

$$
\theta(X)=X+O\left(p^{2}\right) \text { if }\|X\|_{p} \leq p^{-1}
$$

while if $p=2$,

$$
\theta(X)=X+O\left(2^{3}\right) \text { if }\|X\|_{2} \leq 2^{-2}
$$

That is why in our discussion below the argument often applies to $P \in \mathcal{E}_{(p)}$ if p is odd, while if $p=2$ we have to restrict P to $\mathcal{E}_{2^{2}}$.

Theorem 6.1 For each power p^{e}, where $e \geq 1$,

$$
\mathcal{E}_{\left(p^{e}\right)}\left(\mathbb{Q}_{p}\right)
$$

is a subgroup of $\mathcal{E}\left(\mathbb{Q}_{p}\right)$. Moreover the map

$$
\theta: \mathcal{E}_{\left(p^{e}\right)}\left(\mathbb{Q}_{p}\right) \rightarrow p^{e} \mathbb{Z}_{p}
$$

is an isomorphism (of topological abelian groups), provided $e \geq 2$ if $p=2$.
Proof - The identity

$$
\theta\left(S\left(X_{1}, X_{2}\right)=\theta\left(X_{1}\right)+\theta\left(X_{2}\right)\right.
$$

which we established in the real case, must still hold; and we conclude from it, as before, that

$$
\theta\left(P_{1}+P_{2}\right)=\theta\left(P_{1}\right)+\theta\left(P_{2}\right)
$$

whenever

$$
P_{1}, P_{2} \in \mathcal{E}_{\left(p^{e}\right)}\left(\mathbb{Q}_{p}\right)
$$

It follows from this that $\mathcal{E}_{\left(p^{e}\right)}$ is a subgroup; and that

$$
\theta: \mathcal{E}_{\left(p^{e}\right)} \rightarrow p^{e} \mathbb{Z}_{p}
$$

is a homomorphism, provided $e \geq 2$ if $p=2$.
Since

$$
\theta(X)=X-c_{1} X^{2} / 2+\cdots,
$$

we have

$$
\|\theta(X)\|_{p}=\|X\|_{p}
$$

for all $\|X\|_{p} \leq p^{-e}$. In particular

$$
\theta(X)=0 \Longleftrightarrow X=0
$$

Hence θ is injective.
It is also surjective, as the following Lemma will show.
Lemma 7 The only closed subgroups of \mathbb{Z}_{p} are the subgroups

$$
p^{n} \mathbb{Z}_{p} \quad(n=0,1,2, \ldots),
$$

together with $\{0\}$. In particular, every closed subgroup of \mathbb{Z}_{p}, apart from $\{0\}$, is in fact open.

Proof of Lemma $\triangleright \mathbb{Z}$ is a dense subset of \mathbb{Z}_{p} :

$$
\overline{\mathbb{Z}}=\mathbb{Z}_{p} .
$$

For the p-adic integer

$$
x=c_{0}+c_{1} p+c_{2} p^{2}+\cdots \quad\left(c_{i} \in\{0,1, \ldots, p-1\}\right)
$$

is approached arbitrarily closely by the (rational) integers

$$
x_{r}=c_{0}+c_{1} p+\cdots+c_{r} p^{r} .
$$

Now suppose S is a closed subgroup of \mathbb{Z}_{p}. Let $s \in S$ be an element of maximal p-adic valuation, say

$$
\|s\|=p^{-e} .
$$

Then

$$
s=p^{e} u
$$

where u is a unit in \mathbb{Z}_{p}, with inverse v, say. Given any $\epsilon>0$, we can find $n \in \mathbb{Z}$ such that

$$
\|v-n\|<\epsilon
$$

Then

$$
\begin{aligned}
n s-p^{e} & =p^{e}(n u-1) \\
& =p^{e} u(n-v) ;
\end{aligned}
$$

and so

$$
\left\|n s-p^{e}\right\|<\epsilon .
$$

Since $n s \in S$ and S is closed, it follows that

$$
p^{e} \in S
$$

Hence

$$
p^{e} \overline{\mathbb{Z}}=p^{e} \mathbb{Z}_{p} \subset S
$$

Since s was a maximal element in S, it follows that

$$
S=p^{e} \mathbb{Z}_{p}
$$

\triangleleft
It follows from this Lemma that $\operatorname{im} \theta$ is one of the subgroups $p^{m} \mathbb{Z}_{p}$. But since

$$
\|X\|=p^{-e} \Longrightarrow\|\theta(X)\|=p^{-e}
$$

$\operatorname{im} \theta$ must in fact be $p^{e} \mathbb{Z}_{p}$, ie θ is surjective.
A continuous bijective map from a compact space to a hausdorff space is necessarily a homeomorphism. (This follows from the fact that the image of every closed, and therefore compact, subset is compact, and therefore closed.) In particular, θ establishes an isomorphism

$$
\mathcal{E}_{\left(p^{e}\right)} \cong p^{e} \mathbb{Z}_{p} \cong \mathbb{Z}_{p}
$$

It follows from this Theorem that $\mathcal{E}_{\left(p^{e}\right)}$ is torsion-free, since \mathbb{Z}_{p} is torsionfree. Thus there are no points of finite order on \mathcal{E} close to O, a result which we shall exploit in the next Chapter.

6.4 The Structure of $\mathcal{E}\left(\mathbb{Q}_{p}\right)$

We shall not use the following result, but include it for the sake of completeness.

Theorem 6.2 Let $\mathbb{F} \subset \mathcal{E}\left(\mathbb{Q}_{p}\right)$ be the torsion subgroup of the elliptic curve $\mathcal{E}\left(\mathbb{Q}_{p}\right)$. Then

$$
\mathcal{E}\left(\mathbb{Q}_{p}\right) \cong \mathbb{F} \oplus \mathbb{Z}_{p}
$$

Proof \downarrow The torsion subgroup \mathbb{F} splits (uniquely) into its p-component \mathbb{F}_{p} and the sum $\mathbb{F}_{p^{\prime}}$ of all components \mathbb{F}_{q} with $q \neq p$:

$$
\mathbb{F}=\mathbb{F}_{p} \oplus \mathbb{F}_{p^{\prime}}
$$

(See Appendix A for details.) Explicitly,

$$
\begin{aligned}
\mathbb{F}_{p} & =\left\{P \in \mathcal{E}: p^{n} P=0 \text { for some } n\right\} \\
\mathbb{F}_{p^{\prime}} & =\{P \in \mathcal{E}: m P=0 \text { for some } d \text { with } \operatorname{gcd}(m, p)=1\}
\end{aligned}
$$

(We write \mathcal{E} for $\mathcal{E}\left(\mathbb{Q}_{p}\right)$).
We also set

$$
\mathcal{E}_{p}=\left\{P \in \mathcal{E}: p^{n} P \rightarrow O \text { as } n \rightarrow \infty\right\} .
$$

Evidently

$$
\mathcal{E}_{p} \supset \mathcal{E}_{(p)} .
$$

Since $E_{(p)}$ is an open (and therefore closed) subgroup of \mathcal{E}, it follows that the same is true of \mathcal{E}_{p}.

Lemma $8 p^{n} \mathcal{E}_{p}=\mathcal{E}_{\left(p^{e}\right)}$ for some $n, e>0$.
Proof of Lemma \triangleright For each $P \in \mathcal{E}_{p}$,

$$
p^{n} P \in \mathcal{E}_{(p)}
$$

for some $n>0$ since $p^{n} P \rightarrow O$ and $\mathcal{E}_{(p)}$ is an open neighbourhood of O. Hence the open subgroups $p^{-n} \mathcal{E}_{(p)}$ cover \mathcal{E}_{p}. Since \mathcal{E}_{p} is compact, it follows that $p^{-n} \mathcal{E}_{(p)} \supset \mathcal{E}_{p}$ for some n, ie

$$
p^{n} \mathcal{E}_{p} \subset \mathcal{E}_{(p)} \cong \mathbb{Z}_{p}
$$

But by Lemma 7 to Theorem 6.1, the only closed subgroups of \mathbb{Z}_{p} are the $p^{e} Z_{p}$, which correspond under this isomorphism to the subgroups $\mathcal{E}_{\left(p^{e}\right)}$ of $\mathcal{E}_{(p)}$.

We conclude that

$$
p^{n} \mathcal{E}_{p}=\mathcal{E}_{\left(p^{e}\right)}
$$

for some e. \triangleleft

Lemma 9 Suppose A is a finite p-group; and suppose $\operatorname{gcd}(m, p)=1$. Then the map $\psi: A \rightarrow A$ under which

$$
a \mapsto m a
$$

is an isomorphism.
Proof of Lemma \triangleright Suppose $a \in \operatorname{ker} A$, ie

$$
m a=0 .
$$

Then $\operatorname{order}(a) \mid m$. But by Lagrange's Theorem, $\operatorname{order}(a)=p^{e}$ for some e. Hence $\operatorname{order}(a)=1$, ie $a=0$.

Thus ψ is injective; and it is therefore surjective, by the Pigeon-Hole Principle. Hence ψ is an isomorphism. \triangleleft

It is not difficult to extend this result to \mathcal{E}_{p}, which is in effect a kind of topological p-group.

Lemma 10 Suppose $\operatorname{gcd}(m, p)=1$. Then the map $\psi: \mathcal{E}_{p} \rightarrow \mathcal{E}_{p}$ under which

$$
a \mapsto m a
$$

is an isomorphism.
Proof of Lemma \triangleright Suppose $P \in \operatorname{ker} \psi$, ie

$$
m P=0
$$

By Lemma 1,

$$
p^{n} \mathcal{E}_{p} \subset \mathcal{E}_{\left(p^{2}\right)} \cong \mathbb{Z}_{p}
$$

for some n.
But \mathbb{Z}_{p} is torsion-free. Thus

$$
m P=0 \Longrightarrow m\left(p^{n} P=0\right) \Longrightarrow p^{n} P=0
$$

Hence

$$
m, p^{n} \mid \operatorname{order}(P) \Longrightarrow \operatorname{order}(P)=1 \Longrightarrow P=0
$$

since $\operatorname{gcd}\left(m, p^{n}\right)=1$. Thus

$$
\operatorname{ker} \psi=0,
$$

ie ψ is injective.
Now suppose $P \in \mathcal{E}_{p}$. We have to show that $P=m Q$ for some $Q \in \mathcal{E}_{p}$.
Since $\mathcal{E}_{p} / p^{n} \mathcal{E}_{p}$ is a finite p-group we can find $Q \in \mathcal{E}_{p}$ such that

$$
m Q \equiv P \bmod p^{n} \mathcal{E}_{p}
$$

ie

$$
m Q=P+R,
$$

where

$$
R \in p^{n} \mathcal{E}_{p} \cong \mathbb{Z}_{p} .
$$

Now the map

$$
P \mapsto m P: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}
$$

is certainly an isomorphism, since m is a unit in \mathbb{Z}_{p} with inverse $m^{-1} \in \mathbb{Z}_{p}$. In particular we can find $S \in p^{n} \mathcal{E}_{p}$ with

$$
m S=R
$$

Putting all this together,

$$
P=m Q+R=m Q+m S=m(Q+S)
$$

Thus the map ψ is surjective, and so an isomorphism. \triangleleft
Lemma $11 \mathcal{E}\left(\mathbb{Q}_{p}\right)=\mathbb{F}_{p^{\prime}} \oplus \mathcal{E}_{p}$.
Proof of Lemma \triangleright Suppose

$$
P \in \mathbb{F}_{p^{\prime}} \cap \mathcal{E}_{p},
$$

say

$$
m P=O,
$$

where $\operatorname{gcd}(m, p)=1$.
On considering $p \bmod m$ as an element of the finite group

$$
(\mathbb{Z} / m)^{\times}=\{r \bmod m: \operatorname{gcd}(r, m)=1\},
$$

it follows by Lagrange's Theorem that

$$
p^{r} \equiv 1 \bmod m
$$

for some $n>0$. But then

$$
p^{r} P=P
$$

and so

$$
p^{n} P \rightarrow O \Longrightarrow P=O .
$$

Now suppose $P \in \mathcal{E}$. Since \mathcal{E} is compact, and \mathcal{E}_{p} is open, $\mathcal{E} / \mathcal{E}_{p}$ is finite (eg since \mathcal{E} must be covered by a finite number of \mathcal{E}_{p}-cosets). Let the order of this finite group be $m p^{e}$, where $\operatorname{gcd}(m, p)=1$.

We can find $u, v \in \mathbb{Z}$ such that

$$
u m+v p^{e}=1 ;
$$

and then

$$
P=Q+R,
$$

where

$$
Q=u(m P), R=v\left(p^{e} P\right)
$$

Now

$$
p^{e} Q=u\left(m p^{e} P\right) \in \mathcal{E}_{p} .
$$

Hence

$$
p^{n} Q \rightarrow 0 \text { as } n \rightarrow \infty
$$

ie

$$
Q \in \mathcal{E}_{p} .
$$

On the other hand,

$$
m R=v\left(m p^{e} P\right) \in \mathcal{E}_{p} .
$$

Hence by Lemma 10, there is a point $S \in \mathcal{E}_{p}$ such that

$$
m R=m S
$$

and so

$$
T=R-S \in \mathbb{F}_{p^{\prime}}
$$

Putting these results together,

$$
P=T+(Q+S)
$$

with $T \in \mathbb{F}_{p^{\prime}}$ and $Q+S \in \mathcal{E}_{p} . \quad \triangleleft$
Lemma $12 \mathbb{F}_{p} \subset \mathcal{E}_{p}$.
Proof of Lemma \triangleright Suppose

$$
P=Q+R \in \mathbb{F}_{p},
$$

where $Q \in \mathbb{F}_{p^{\prime}}, R \in \mathcal{E}_{p}$. Then

$$
p^{n} P=0 \Longrightarrow p^{n} Q=0, p^{n} R=0
$$

since the sum is direct. But

$$
p^{n} Q=0 \Longrightarrow \operatorname{order}(Q) \mid p^{n} \Longrightarrow \operatorname{order}(Q)=1 \Longrightarrow Q=0,
$$

since the order of Q is coprime to p by the definition of $\mathbb{F}_{p^{\prime}}$. Thus

$$
P=R \in \mathcal{E}_{p} .
$$

\triangleleft
It remains to split \mathcal{E}_{p} into \mathbb{F}_{p} and a subgroup isomorphic to \mathbb{Z}_{p}.

Consider the surjection

$$
\psi: \mathcal{E}_{p} \rightarrow \mathcal{E}_{\left(p^{e}\right)} \cong \mathbb{Z}_{p}
$$

Let us choose a point

$$
P_{0} \in \mathcal{E}_{p^{e}} \backslash \mathcal{E}_{\left(p^{e+1}\right)},
$$

eg if we identify $\mathcal{E}_{\left(p^{e}\right)}$ with \mathbb{Z}_{p} we might take the point corresponding to $1 \in \mathbb{Z}_{p}$. Now choose a point P_{1} such that

$$
\psi\left(P_{1}\right)=P_{0}
$$

and let

$$
\mathcal{E}_{1}=\overline{\left\langle P_{1}\right\rangle}
$$

be the closure in \mathcal{E}_{p} of the subgroup generated by P_{1}. We shall show that the restriction

$$
\psi_{1}=\psi \mid \mathcal{E}_{1}: \mathcal{E}_{1} \rightarrow \mathcal{E}_{\left(p^{e}\right)}
$$

is an isomorphism, so that

$$
\mathcal{E}_{1} \cong \mathcal{E}_{\left(p^{e}\right)} \cong \mathbb{Z}_{p}
$$

Certainly ψ_{1} is surjective. For \mathcal{E}_{1} is compact, and so its image is closed; while $\left\langle P_{0}\right\rangle>$ is dense in $\mathcal{E}_{\left(p^{e}\right)} \cong \mathbb{Z}_{p}$.

Suppose

$$
Q \in \operatorname{ker} \psi_{1}=\operatorname{ker} \psi \cap \mathcal{E}_{1} .
$$

By definition, Q is the limit of points in $\left\langle P_{1}\right\rangle$, say

$$
n_{i} P_{1} \rightarrow Q,
$$

where $n_{i} \in \mathbb{Z}$. But then, since ψ is continuous,

$$
n_{i} P_{0} \rightarrow \psi(Q)=0 .
$$

Hence

$$
n_{i} \rightarrow 0
$$

in \mathbb{Z}_{p}. But then it follows that

$$
n_{i} P_{1} \rightarrow 0
$$

in \mathcal{E}_{p}, since

$$
\bigcap p^{n} E_{p}=0
$$

Hence $Q=0$, ie $\operatorname{ker} \psi_{1}=0$.
It remains to show that

$$
\mathcal{E}_{p}=\mathbb{F}_{p} \oplus \mathcal{E}_{1} .
$$

Suppose $P \in \mathcal{E}_{p}$. Then

$$
\psi(P)=\psi(Q)
$$

for some $Q \in \mathcal{E}_{1}$. In other words,

$$
p^{n}(P-Q)=0 .
$$

Thus

$$
R=P-Q \in \mathbb{F}_{p}
$$

On the other hand, if

$$
F_{p} \cap \mathcal{E}_{1}=0
$$

since as we have seen,

$$
\mathcal{E}_{1} \cong \mathcal{E}_{\left(p^{e}\right)} \cong \mathbb{Z}_{p}
$$

and Z_{p} is torsion-free.
We have shown therefore that

$$
\begin{aligned}
\mathcal{E} & =\mathbb{F}_{p^{\prime}} \oplus \mathcal{E}_{p} \\
& =\mathbb{F}_{p^{\prime}} \oplus\left(\mathbb{F}_{p} \oplus \mathcal{E}_{1}\right) \\
& =\left(\mathbb{F}_{p^{\prime}} \oplus \mathbb{F}_{p}\right) \oplus \mathcal{E}_{1} \\
& =\mathbb{F} \oplus \mathcal{E}_{1} \\
& \cong \mathbb{F} \oplus \mathbb{Z}_{p} .
\end{aligned}
$$

Remark: We can regard \mathcal{E}_{p} as a \mathbb{Z}_{p}-module; for since $p^{n} P \rightarrow O$ we can define $x P$ unambiguously for $x \in \mathbb{Z}_{p}$:

$$
n_{i} \rightarrow x \Longrightarrow n_{i} P \rightarrow x P
$$

Moreover, \mathcal{E}_{p} is a finitely-generated \mathbb{Z}_{p}-module; that follows readily from the fact that $\mathcal{E}_{(p)} \cong \mathbb{Z}_{p}$ is of finite index in \mathcal{E}_{p}.

The Structure Theorem for finitely-generated abelian groups, ie Z-modules, extends easily to \mathbb{Z}_{p}-modules; such a module is the direct sum of copies of \mathbb{Z}_{p} and cyclic groups $\mathbb{Z} /\left(p^{e}\right)$. (This can be proved in much the same way as the corresponding result for abelian groups.)

Effectively, therefore, all we proved above was that the factor \mathbb{Z}_{p} occurred just once, which simply reflects the fact that we are dealing with a 1-dimensional curve.

