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Dr Timothy Murphy
Maxwell Theatre Friday, 21 January 2000 10:15-11:45

Attempt 5 questions. (If you attempt more, only the best 5 will
be counted.) All questions carry the same number of marks.

1. Explain informally how two points on an elliptic curve are added.
Find the sum P+ @ of the points P = (—2,3), @ = (2,5) on the curve

y? =a® 4+ 17

over the rationals Q. What is 2P?

Answer:

(a) Let the line PQ meets the curve again in the point R. Then
R=—-(P+Q).
Let OR meet the curve again in the point S. Then
S=—-R=P+Q.
If P =@ then we take the tangent at P in place of the line PQ).
(b) The line PQ is given by

Yy
det | =2 3
5

e
—2x +4y — 16 =0,
1€

y=—-x+4.



(¢)

This meets the curve where

1
(§x +4)? = 2%+ 17.

We know that two of the roots of this equation are —2,2; hence
the third is given by

1
—2+2 = -
+2+x 1
1€
1
r=-.
4

1 33
V=317 3
Thus
1 33
P =—(-, —
1 33
—(17—§)-
We have
dy 2
7 _3
ydx a”’?
1€
ay_ae
de 2y’

Thus the tangent at P has slope
m=—=2.

Hence the tangent is



e
y=2zr+7.
This meets the curve where
(22 4+ 7)* = 2% + 17.

We know that two of the roots of this equation are 2,2; hence the
third 1s given by

24+2+z2=4
1€
x = 0.
From the equation of the tangent,
y="1.
Thus

2P = —(0,7)
= (0, 7).

2. Express the 5-adic integer 2/3 € Zs in standard form

1/3 = ag + ay5 + axb* + - - - (0<a; <5).

Does there exist a 5-adic integer x such that z? = 67

Answer:
(a) We have
2
3 =4 mod5
since 3 -4 =2 mod 5.
Now 2 10 2
S 4=_—_—"=5_2"2
3 3 3
while



Thus

2

§E4+1-5mod52.
Furthermore,

-2 =5 -1

3 3 737
while

— = 3 mod 5.
Thus 5
§E4+1~5—|—3-52m0d53

Continuing,

-1 _—10  _-2

3 3 73

We have been here before;
-2
3 = 1 mod 5.

Thus 5
§;4+1-5+3-52+1-53mod54.

We have entered a loop; and the pattern will repeat itself indefi-
nitely. We conclude that

2
g:4+1-5+3'52+1~53+3'54+1~55+3-56+--~.
Let us verify this; the sum on the right is

> 352 1+15
4 =44+5———
+1—52+1—52 + —24

(b) The equation
> =6=145

has just two solutions £x in Zs.

Note first what this means: we can find a sequence xg,x1,--- € Z
such that
22 = 6 mod 5";



while if m <n then
Ty = Ty, mod 5.

We shall show that if we have a solution x, we can always extend
it to a solution x, 1.

Since
r*=1mod5 = z = =+1mod 5,

any solution must be = £1 mod 5. If x is a solution so is —x, so
we may assume that x =1 mod 5.

By hypothesis,

22 = 6 mod 5",
1€

22 =6+ ab",

for some a € Z.

Now set
Tpi1 = Tp + 25",

Then
T2 = xh 4 22x,5" + 257"
=6+ (a + 2z1,)5" + 225%"
=6+ (a+ 2z7,)5" mod 5",

assuming n > 1.

Thus
:L'ZH = 6 mod 5"}

if z satisfies the equation
a+ 2zx, = 0 mod 5.

But this equation has a unique solution, since x, = 1 mod 5,
namely

2=—-2"tamod5

= 2a mod 5.



We conclude that we can always extend our solution to an arbi-
trarily high power mod5™, and so construct a solution in Zs.
This argument is a standard one in p-adic theory. There may
or may not be solutions to an equation modp,modp?,.... But
at a certain point one finds that a solution modp™ can be ex-
tended uniquely to a solution modp™*t, and then to a solution
modp"*?, and so on.
This is expressed formally in Hensel’s Lemma, a simple form of
which states that if we are given a polynomial f(x) € Zlx| then
any solution

f(zo) =0 mod p
for which

f'(x9) # 0 mod p

(where f'(x) is the derivative of f(x)) extends uniquely to a solu-
tion x € Z,, of the p-adic equation

f(z)=0.

This follows on considering the binomial expansion
flan+2p") = flzn) + 2f'(2,)p" mod p"*'.

An alternative way of solving the original equation is to imitate
real analysis, using the binomial expansion of (1 + x)'/2. Thus

61/2 — (1 + 5)1/2
1, 1 1

1 1,1 1 1,
-1 Z5 2 252 2 2 253
Jr2 + 1-2 T 1-2-3 +
1 1-3
=14+2154 —27252 4 — = 97353 4 ...
+ +1-2 +1-2-3 +

To show that this series converges in Zs, we need to show that
the coefficients do not get large (in p-adic terms) quicker than the
powers 5" get small.

As it happens, in this case the coefficients do not get large at all,
as they are all 5-adic integers. For

1-3---(2n—1) 1-2-3---2n
1-2--on  (2-4---2n)(1-2---n)
_ g-n(20)
nn



and we know of course that this binomial coefficient is an integer.

Even if we weren’t so fortunate, it is not hard to see that n! gets
small (in p-adic terms) slower than p™. For suppose

e |l n,
ie p° | n but p°™ ¥ n. Then

e=[n/pl+[n/p’]+ -
<n/p+n/p*+ -

n 1
p 1-1/p
_on
— o
1€
Hn!Hp > pfn/(pfl) > pfn/2’
while

n

"I, =",
3. Show that the group of the elliptic curve
=2 —a*+1

over the finite field F7 is cyclic, and find a generator.

Answer: Let us find the ‘finite’ points on the curve. The quadratic
residues mod7 are: 0,1,2,4. The following table is more-or-less self-
explanatory.

x|y
0 |1 =+1
1 1 +1
2 |5 X
3 15 X
4=-310 0
5=-2|3 X
6=-16 X

Thus there are 5 finite points on the curve. Adding the point at infinity,
we see that the curve is of order 6. But the only abelian group of order
6 is the cyclic group 7./(6).



There is just one element of order 2, namely (4,0). There must be two
elements of order 3, and two elements of order 6.

Let P = (0,1). The slope of the tangent at the point (x,y) is

3x? — 2x

m =
2y

Thus the slope at P is m =0, and so the tangent is
y =1
This meets the curve again at the point (1,1). Hence
2P = —(1,1) = (1,—1).

Thus 2P # —P = (0,—1). Hence P does not have order 3; so it must
have order 6, ie P is a generator of the group.

. Outline the proof that a point P = (z,y) of finite order on the elliptic
curve
Y =2°+ax® +br+c (a,b,c € Z)

necessarily has integral coordinates x,y € Z.

Answer: [The proof below does not use p-adic numbers explicitly, as I
do in my notes. However, the idea is the same. In particular, we prove
the result by showing that x,y are p-adic integers for each prime p, ie
p does not divide the denominators of x and y.]

In homogeneous coordinates the curve has equation
Y27 = X3 +aX?Z +bXZ%+ cZ°.
We work in the affine patch'Y # 0, setting Y = 1:

7 =X*+aX*Z +bX7Z*+ cZ°

Lemma: If ||Z||, <1 (iep| Z) then | X||, <1, and in fact

1Z]l, = 11X 1]5-

Proof: If || X||, > 1 then X* dominates the equation, ie all other terms
have smaller p-adic value, which is impossible.



So | X|l, < 1; and then the terms aX*Z,bXZ* c¢Z* all have p-adic
value smaller then Z. Hence Z and X? must have the same p-adic
value.

We set
Spe =X, 1, 2] - | X <p~5 |1 2] < 1}.

Lemma:  Suppose Py, Py € &,c. Then Py + P, € &,. Moreover, if
Pl = [le 1,21],]32 = [Xg, 1,Z2],P—|— 1 + P2 = [Xg, 1,Z3] then

X3 = X1 -+ X2 mod p3e'

Proof: Let the line P, P> be

Z=MX+C.

Then 7 _ 7
M=22_“1

Xo— X,y

Subtracting the equation for the two points,

Zy— 71 = (X3 — X +a(X3Z:— X7 20) +b(XoZ5 — X1 Z) +c(Z5— Z3).

Writing

X32,= X2y = (X3-X7) 204+ X} (Zo=21),  XoZ3—=X1Z7 = (Xo—X1) Z3+ X1 (25— 27),

we derive

Zy—7Zy (X7 +XiXo+ X3)+a(Xy+ X5) 2 + bZ3
Xo— X, 1—aX} =X (Zi+ Zy) — c(Z}+ 212y + Z3)
N

=5

say. FEuvidently
INll, <p~*, DI, = 1.

Thus
M|, < p~>.
Since
C - Zl - ]\4-)(17

it follows that
ICl, <p~.



The line P, Py, meets the curve where
MX +C=X>4+aX*(MX+C)+bX(MX +C)* +c(MX +C)>.

Since —[X, 1, Z] = [ X, 1, —Z], the roots of this equation are X1, Xo, —X3.

Thus
a + 2bM + 3cM?

1+aM + bM?2 + cM3

X+ Xy — Xy =

We conclude that
X3 = X1 -+ X2 mod p3e.

Corollary: If P € &, then

X (nP) =nX(P) mod p*.

Lemma: The only point of finite order in &, is O = [0, 1,0].

Proof:  Suppose P is of order n, and suppose q is a prime factor of n.
Then (n/q)P is of order q. Hence we may suppose that P is of prime
order q.

But
X(gP) = ¢X(P) mod ]D36

It follows that
1 X (aP)lp = p°

if ¢ # p, while
1X(P)|, = ™

if ¢ = p. In either case qP # 0.
Lemma: If (x,y) is of finite order then

el <1, lylly < 1.

Proof:  Conversion from X, Z coordinates to x,y coordinates is given

by
(X, 1,7 =[X/Z,1/Z,1] = [z,1,y].

Thus

1
y_Z'



Since P ¢ &,
1Z]lp = 1.

Thus
lyll, < 1.

If |||, > 1 then x® dominates the equation. Hence

2, < 1.

Since this is true for all primes p, we conclude that

x,y € Z.

5. Find the order of the point (0,0) on the elliptic curve

Yy —y=a"—u

over the rationals Q.

Answer: Let P = (0,0). The tangent at the point (x,y) has slope

_3x2—1
2y —1

In particular, the tangent at P has slope 1. Hence the tangent is

Y=
This meets the curve again where

LU2—.CC:I3—ZE

1e where

and therefore

Thus



say. The line OQ (where O is the neutral element [0,1,0]) is x = 1.
This meets the curve again where

Yy —y=0,
e where
y=0.
Thus
2P = (1,0) = R,
say.
The slope at R s
2
m=—=—2
-1
Thus the tangent is
y=—2(x—1),
e
y+2zx—2=0.

This meets the curve again where
Y r—1)° =2 —1)=2° -2z,
1€
o — 42* + 97 — 6.
We know that this has roots 1,1. Hence the third root is given by
1+142 =4,
e
r = 2.
Thus the tangent meets the curve again at the point

S =(2,-2).



The line OS, ie x = 2, meets the curve again where

y* —y =6.
One solution is y = —2; so the other is given by
e
y = 3.
Thus
2R=4P = (2,3) =T,
say.
The slope at T s
11
m=—.
5
Let the tangent at T be
Yy =mx + c.

This meets the curve where

(mx +c)? — (mx +c¢) = 2° — .

Thus the tangent meets the curve again where
2

242+ x=m".

FEvidently x 1s not integral. Hence T is of infinite order, and so therefore
is P =(0,0), since T =4P.

. Find all points of finite order on the elliptic curve
y2 — x3 -9

over the rationals Q.

Answer: We have
A = —4(-2)% = 2°,

By the (strong) Nagel-Lutz Theorem, a point (x,y) on the curve of
finite order has integer coordinates x,y, with either y = 0 or else

y* 2%



1€
y=0,+2,+4.

There is no point with y = 0, since 2 is not a cube.

Suppose y = £2. Then

e

This has no rational solution.

Finally, suppose y = +4. Then
3 —2 =16,
1€
z® =18,

which again has no rational solution.

We conclude that the only point on the curve of finite order is the
neutral element 0 = [0, 1,0], or order 1.



7. Describe carefully (but without proof) the Structure Theorem for finitely-
generated abelian groups.

How many abelian groups of order 36 (up to isomorphism) are there?

Answer:

(a)

(b)

Every finitely-generated abelian group A is expressible as the direct
sum of cyclic subgroups of infinite or prime-power order:

A=702® - OLOL/(pT")DL/(p3’) @ --- DL/ (py).

Cr

Moreover, the number of copies of Z, and the prime-powers pi*, ..., ps
occuring in this direct sum are uniquely determined (up to order)
by A.

Suppose
|A| =36 = 2% 3%

Then the 2-component Ay and the 3-component Az of A have or-
ders 4 and 9. Thus

Ay = 2/(4) or Z/(2) ® Z/(2),

and
A3 =7/09) orZ/(3) ® Z/(3).

It follows that there are just 4 abelian groups of order 36, namely

Z/(4) @ Z/(9) = Z/(36),
Z/(2) ©Z/(2) D Z/(9) = Z/(18) © Z/(2),
Z)(4) ®Z/(3) ®Z/(3) = Z/(12) D Z/(3),
Z/(2)eZ/(2) e Z/(3) ®Z/3) = Z/(6) ®Z/(6)



