## Course 428

# Elliptic Curves I

### Dr Timothy Murphy

Maxwell Theatre Friday, 21 January 2000 10:15–11:45

Attempt 5 questions. (If you attempt more, only the best 5 will be counted.) All questions carry the same number of marks.

1. Explain informally how two points on an elliptic curve are added. Find the sum P+Q of the points  $P=(-2,3),\ Q=(2,5)$  on the curve

$$y^2 = x^3 + 17$$

over the rationals  $\mathbb{Q}$ . What is 2P?

#### **Answer:**

(a) Let the line PQ meets the curve again in the point R. Then

$$R = -(P + Q).$$

Let OR meet the curve again in the point S. Then

$$S = -R = P + Q.$$

If P = Q then we take the tangent at P in place of the line PQ.

(b) The line PQ is given by

$$\det \begin{pmatrix} x & y & 1 \\ -2 & 3 & 1 \\ 2 & 5 & 1 \end{pmatrix} = 0,$$

ie

$$-2x + 4y - 16 = 0$$
,

ie

$$y = \frac{1}{2}x + 4.$$

This meets the curve where

$$(\frac{1}{2}x+4)^2 = x^3 + 17.$$

We know that two of the roots of this equation are -2, 2; hence the third is given by

$$-2 + 2 + x = \frac{1}{4},$$

ie

$$x = \frac{1}{4}.$$

From the equation of the line

$$y = \frac{1}{8} + 4 = \frac{33}{8}.$$

Thus

$$P + Q = -\left(\frac{1}{4}, \frac{33}{8}\right)$$
$$= \left(\frac{1}{4}, -\frac{33}{8}\right).$$

(c) We have

$$2y\frac{dy}{dx} = 3x^2,$$

ie

$$\frac{dy}{dx} = \frac{3x^2}{2y}.$$

Thus the tangent at P has slope

$$m = \frac{12}{6} = 2.$$

Hence the tangent is

$$y-3=2(x+2),$$

$$y = 2x + 7.$$

This meets the curve where

$$(2x+7)^2 = x^3 + 17.$$

We know that two of the roots of this equation are 2,2; hence the third is given by

$$2 + 2 + x = 4$$

ie

$$x = 0$$
.

From the equation of the tangent,

$$y = 7.$$

Thus

$$2P = -(0,7)$$
  
=  $(0,-7)$ .

2. Express the 5-adic integer  $2/3 \in \mathbb{Z}_5$  in standard form

$$1/3 = a_0 + a_1 \dots + a_2 \dots = (0 \le a_i < 1).$$

Does there exist a 5-adic integer x such that  $x^2 = 6$ ?

#### Answer:

(a) We have

$$\frac{2}{3} \equiv 4 \bmod 5$$

since  $3 \cdot 4 \equiv 2 \mod 5$ .

Now

$$\frac{2}{3} - 4 = \frac{-10}{3} = 5\frac{-2}{3},$$

while

$$\frac{-2}{3} \equiv 1 \bmod 5.$$

$$\frac{2}{3} \equiv 4 + 1 \cdot 5 \bmod 5^2.$$

Furthermore,

$$\frac{-2}{3} - 1 = \frac{-5}{3} = 5\frac{-1}{3}$$

while

$$\frac{-1}{3} \equiv 3 \bmod 5.$$

Thus

$$\frac{2}{3} \equiv 4 + 1 \cdot 5 + 3 \cdot 5^2 \bmod 5^3.$$

Continuing,

$$\frac{-1}{3} - 3 = \frac{-10}{3} = 5\frac{-2}{3}$$
.

We have been here before;

$$\frac{-2}{3} \equiv 1 \bmod 5.$$

Thus

$$\frac{2}{3} \equiv 4 + 1 \cdot 5 + 3 \cdot 5^2 + 1 \cdot 5^3 \bmod 5^4.$$

We have entered a loop; and the pattern will repeat itself indefinitely. We conclude that

$$\frac{2}{3} = 4 + 1 \cdot 5 + 3 \cdot 5^2 + 1 \cdot 5^3 + 3 \cdot 5^4 + 1 \cdot 5^5 + 3 \cdot 5^6 + \cdots$$

Let us verify this; the sum on the right is

$$4 + \frac{5}{1 - 5^2} + \frac{3 \cdot 5^2}{1 - 5^2} = 4 + 5\frac{1 + 15}{-24}$$
$$= 4 - 5\frac{2}{3}$$
$$= \frac{2}{3}.$$

#### (b) The equation

$$x^2 = 6 = 1 + 5$$

has just two solutions  $\pm x$  in  $Z_5$ .

Note first what this means: we can find a sequence  $x_0, x_1, \dots \in \mathbb{Z}$  such that

$$x_n^2 \equiv 6 \bmod 5^n;$$

while if  $m \leq n$  then

$$x_m \equiv x_n \bmod 5^m$$
.

We shall show that if we have a solution  $x_n$  we can always extend it to a solution  $x_{n+1}$ .

Since

$$x^2 \equiv 1 \mod 5 \implies x \equiv \pm 1 \mod 5$$
,

any solution must be  $\equiv \pm 1 \mod 5$ . If x is a solution so is -x, so we may assume that  $x \equiv 1 \mod 5$ .

By hypothesis,

$$x_n^2 \equiv 6 \bmod 5^n$$
,

ie

$$x_n^2 = 6 + a5^n,$$

for some  $a \in \mathbb{Z}$ .

Now set

$$x_{n+1} = x_n + z5^n.$$

Then

$$x_{n+1}^2 = x_n^2 + 2zx_n 5^n + z^2 5^{2n}$$
  
= 6 + (a + 2zx\_n)5^n + z^2 5^{2n}  
\(\equiv 6 + (a + 2zx\_n)5^n \text{ mod } 5^{n+1},\)

assuming  $n \geq 1$ .

Thus

$$x_{n+1}^2 \equiv 6 \bmod 5^{n+1}$$

if z satisfies the equation

$$a + 2zx_n \equiv 0 \mod 5.$$

But this equation has a unique solution, since  $x_n \equiv 1 \mod 5$ , namely

$$z = -2^{-1}a \mod 5$$
$$= 2a \mod 5.$$

We conclude that we can always extend our solution to an arbitrarily high power  $\text{mod}5^n$ , and so construct a solution in  $\mathbb{Z}_5$ .

This argument is a standard one in p-adic theory. There may or may not be solutions to an equation  $\operatorname{mod} p, \operatorname{mod} p^2, \ldots$  But at a certain point one finds that a solution  $\operatorname{mod} p^n$  can be extended uniquely to a solution  $\operatorname{mod} p^{n+1}$ , and then to a solution  $\operatorname{mod} p^{n+2}$ , and so on.

This is expressed formally in Hensel's Lemma, a simple form of which states that if we are given a polynomial  $f(x) \in \mathbb{Z}[x]$  then any solution

$$f(x_0) \equiv 0 \bmod p$$

for which

$$f'(x_0) \not\equiv 0 \bmod p$$

(where f'(x) is the derivative of f(x)) extends uniquely to a solution  $x \in \mathbb{Z}_p$  of the p-adic equation

$$f(x) = 0.$$

This follows on considering the binomial expansion

$$f(x_n + zp^n) \equiv f(x_n) + zf'(x_n)p^n \bmod p^{n+1}.$$

An alternative way of solving the original equation is to imitate real analysis, using the binomial expansion of  $(1+x)^{1/2}$ . Thus

$$6^{1/2} = (1+5)^{1/2}$$

$$= 1 + \frac{1}{2}5 + \frac{\frac{1}{2} \cdot -\frac{1}{2}}{1 \cdot 2}5^2 + \frac{\frac{1}{2} \cdot -\frac{1}{2} \cdot -\frac{3}{2}}{1 \cdot 2 \cdot 3}5^3 + \cdots$$

$$= 1 + 2^{-1}5 + \frac{1}{1 \cdot 2}2^{-2}5^2 + \frac{1 \cdot 3}{1 \cdot 2 \cdot 3}2^{-3}5^3 + \cdots$$

To show that this series converges in  $\mathbb{Z}_5$ , we need to show that the coefficients do not get large (in p-adic terms) quicker than the powers  $5^n$  get small.

As it happens, in this case the coefficients do not get large at all, as they are all 5-adic integers. For

$$\frac{1 \cdot 3 \cdots (2n-1)}{1 \cdot 2 \cdots n} = \frac{1 \cdot 2 \cdot 3 \cdots 2n}{(2 \cdot 4 \cdots 2n)(1 \cdot 2 \cdots n)}$$
$$= 2^{-n} \frac{(2n)!}{n!n!}$$
$$= 2^{-n} \binom{2n}{n},$$

and we know of course that this binomial coefficient is an integer. Even if we weren't so fortunate, it is not hard to see that n! gets small (in p-adic terms) slower than  $p^n$ . For suppose

$$p^e \parallel n$$
,

 $ie p^e \mid n \ but \ p^{e+1} \nmid n. \ Then$ 

$$e = [n/p] + [n/p^2] + \cdots$$

$$< n/p + n/p^2 + \cdots$$

$$= \frac{n}{p} \cdot \frac{1}{1 - 1/p}$$

$$= \frac{n}{p - 1}$$

ie

$$||n!||_p > p^{-n/(p-1)} \ge p^{-n/2},$$

while

$$||p^n||_p = p^{-n},$$

3. Show that the group of the elliptic curve

$$y^2 = x^3 - x^2 + 1$$

over the finite field  $\mathbb{F}_7$  is cyclic, and find a generator.

**Answer:** Let us find the 'finite' points on the curve. The quadratic residues mod7 are: 0, 1, 2, 4. The following table is more-or-less self-explanatory.

| x               | $y^2$ | y       |
|-----------------|-------|---------|
| 0               | 1     | $\pm 1$ |
| 1               | 1     | $\pm 1$ |
| 2               | 5     | X       |
| 3               | 5     | X       |
| 4 = -3          | 0     | 0       |
| 4 = -3 $5 = -2$ | 3     | X       |
| 6 = -1          | 6     | X       |

Thus there are 5 finite points on the curve. Adding the point at infinity, we see that the curve is of order 6. But the only abelian group of order 6 is the cyclic group  $\mathbb{Z}/(6)$ .

There is just one element of order 2, namely (4,0). There must be two elements of order 3, and two elements of order 6.

Let P = (0,1). The slope of the tangent at the point (x,y) is

$$m = \frac{3x^2 - 2x}{2y}.$$

Thus the slope at P is m = 0, and so the tangent is

$$y = 1.$$

This meets the curve again at the point (1,1). Hence

$$2P = -(1,1) = (1,-1).$$

Thus  $2P \neq -P = (0, -1)$ . Hence P does not have order 3; so it must have order 6, ie P is a generator of the group.

4. Outline the proof that a point P = (x, y) of finite order on the elliptic curve

$$y^2 = x^3 + ax^2 + bx + c$$
  $(a, b, c \in \mathbb{Z})$ 

necessarily has integral coordinates  $x, y \in \mathbb{Z}$ .

**Answer:** [The proof below does not use p-adic numbers explicitly, as I do in my notes. However, the idea is the same. In particular, we prove the result by showing that x, y are p-adic integers for each prime p, ie p does not divide the denominators of x and y.]

In homogeneous coordinates the curve has equation

$$Y^2Z = X^3 + aX^2Z + bXZ^2 + cZ^3.$$

We work in the affine patch  $Y \neq 0$ , setting Y = 1:

$$Z = X^3 + aX^2Z + bXZ^2 + cZ^3.$$

Lemma: If  $||Z||_p < 1$  (ie p | Z) then  $||X||_p < 1$ , and in fact

$$||Z||_p = ||X||_p^3$$

Proof: If  $||X||_p \ge 1$  then  $X^3$  dominates the equation, ie all other terms have smaller p-adic value, which is impossible.

So  $||X||_p < 1$ ; and then the terms  $aX^2Z, bXZ^2, cZ^3$  all have p-adic value smaller then Z. Hence Z and  $X^3$  must have the same p-adic value.

We set

$$\mathscr{E}_{p^e} = \{ [X, 1, Z] : \|X\| \le p^{-e}, \|Z\| < 1 \}.$$

Lemma: Suppose  $P_1, P_2 \in \mathscr{E}_{p^e}$ . Then  $P_1 + P_2 \in \mathscr{E}_{p^e}$ . Moreover, if  $P_1 = [X_1, 1, Z_1], P_2 = [X_2, 1, Z_2], P + 1 + P_2 = [X_3, 1, Z_3]$  then

$$X_3 \equiv X_1 + X_2 \bmod p^{3e}.$$

Proof: Let the line  $P_1P_2$  be

$$Z = MX + C$$
.

Then

$$M = \frac{Z_2 - Z_1}{X_2 - X_1}.$$

Subtracting the equation for the two points,

$$Z_2 - Z_1 = (X_2^3 - X_1^3) + a(X_2^2 Z_2 - X_1^2 Z_1) + b(X_2 Z_2^2 - X_1 Z_1^2) + c(Z_2^3 - Z_1^3).$$

Writing

$$X_2^2 Z_2 - X_1^2 Z_1 = (X_2^2 - X_1^2) Z_2 + X_1^2 (Z_2 - Z_1), \quad X_2 Z_2^2 - X_1 Z_1^2 = (X_2 - X_1) Z_2^2 + X_1 (Z_2^2 - Z_1^2),$$

we derive

$$\frac{Z_2 - Z_1}{X_2 - X_1} = \frac{(X_1^2 + X_1 X_2 + X_2^2) + a(X_1 + X_2) Z_2 + b Z_2^2}{1 - a X_1^2 - b X_1 (Z_1 + Z_2) - c(Z_1^2 + Z_1 Z_2 + Z_2^2)}$$
$$= \frac{N}{D},$$

say. Evidently

$$||N||_p \le p^{-2e}, \quad ||D||_p = 1.$$

Thus

$$||M||_p \le p^{-2e}.$$

Since

$$C = Z_1 - MX_1,$$

it follows that

$$||C||_p \le p^{-3e}.$$

The line  $P_1P_2$  meets the curve where

$$MX + C = X^{3} + aX^{2}(MX + C) + bX(MX + C)^{2} + c(MX + C)^{3}.$$

Since -[X, 1, Z] = [-X, 1, -Z], the roots of this equation are  $X_1, X_2, -X_3$ . Thus

$$X_1 + X_2 - X_3 = \frac{a + 2bM + 3cM^2}{1 + aM + bM^2 + cM^3}C.$$

We conclude that

$$X_3 \equiv X_1 + X_2 \bmod p^{3e}.$$

Corollary: If  $P \in \mathscr{E}_{p^e}$  then

$$X(nP) \equiv nX(P) \bmod p^{3e}$$
.

Lemma: The only point of finite order in  $\mathscr{E}_p$  is O = [0, 1, 0].

Proof: Suppose P is of order n, and suppose q is a prime factor of n. Then (n/q)P is of order q. Hence we may suppose that P is of prime order q.

But

$$X(qP) \equiv qX(P) \bmod p^{3e}$$

It follows that

$$||X(qP)||_p = p^e$$

if  $q \neq p$ , while

$$||X(pP)||_p = p^{e+1}.$$

if q = p. In either case  $qP \neq 0$ .

Lemma: If (x, y) is of finite order then

$$||x||_p \le 1, \quad ||y||_p \le 1.$$

Proof: Conversion from X, Z coordinates to x, y coordinates is given by

$$[X, 1, Z] = [X/Z, 1/Z, 1] = [x, 1, y].$$

Thus

$$y = \frac{1}{Z}.$$

Since  $P \notin \mathcal{E}_p$ ,

$$||Z||_p \ge 1.$$

Thus

$$||y||_p \le 1.$$

If  $||x||_p > 1$  then  $x^3$  dominates the equation. Hence

$$||x||_p \leq 1.$$

Since this is true for all primes p, we conclude that

$$x, y \in \mathbb{Z}$$
.

5. Find the order of the point (0,0) on the elliptic curve

$$y^2 - y = x^3 - x$$

over the rationals  $\mathbb{Q}$ .

**Answer:** Let P = (0,0). The tangent at the point (x,y) has slope

$$m = \frac{3x^2 - 1}{2y - 1}.$$

In particular, the tangent at P has slope 1. Hence the tangent is

$$y = x$$
.

This meets the curve again where

$$x^2 - x = x^3 - x$$

 $ie\ where$ 

$$x = 1$$
,

and therefore

$$y = 1$$
.

Thus

$$2P = -(1,1) = Q,$$

say. The line OQ (where O is the neutral element [0,1,0]) is x=1. This meets the curve again where

$$y^2 - y = 0,$$

ie where

$$y = 0$$
.

Thus

$$2P = (1,0) = R,$$

say.

The slope at R is

$$m = \frac{2}{-1} = -2.$$

Thus the tangent is

$$y = -2(x-1),$$

ie

$$y + 2x - 2 = 0.$$

This meets the curve again where

$$4(x-1)^2 - 2(x-1) = x^3 - x,$$

ie

$$x^3 - 4x^2 + 9x - 6$$
.

We know that this has roots 1, 1. Hence the third root is given by

$$1 + 1 + x = 4$$
,

ie

$$x = 2$$
.

Thus the tangent meets the curve again at the point

$$S = (2, -2).$$

The line OS, ie x = 2, meets the curve again where

$$y^2 - y = 6.$$

One solution is y = -2; so the other is given by

$$-2 + y = 1$$
,

ie

$$y = 3$$
.

Thus

$$2R = 4P = (2,3) = T,$$

say.

The slope at T is

$$m = \frac{11}{5}.$$

Let the tangent at T be

$$y = mx + c$$
.

This meets the curve where

$$(mx + c)^2 - (mx + c) = x^3 - x.$$

Thus the tangent meets the curve again where

$$2 + 2 + x = m^2$$
.

Evidently x is not integral. Hence T is of infinite order, and so therefore is P = (0,0), since T = 4P.

6. Find all points of finite order on the elliptic curve

$$y^2 = x^3 - 2$$

over the rationals  $\mathbb{Q}$ .

**Answer:** We have

$$\Delta = -4(-2)^3 = 2^5.$$

By the (strong) Nagel-Lutz Theorem, a point (x, y) on the curve of finite order has integer coordinates x, y, with either y = 0 or else

$$y^2 \mid 2^5$$
,

$$y = 0, \pm 2, \pm 4.$$

There is no point with y = 0, since 2 is not a cube.

Suppose  $y = \pm 2$ . Then

$$x^3 - 2 = 4,$$

ie

$$x^3 = 6.$$

This has no rational solution.

Finally, suppose  $y = \pm 4$ . Then

$$x^3 - 2 = 16,$$

ie

$$x^3 = 18,$$

which again has no rational solution.

We conclude that the only point on the curve of finite order is the neutral element 0 = [0, 1, 0], or order 1.

7. Describe carefully (but without proof) the Structure Theorem for finitely-generated abelian groups.

How many abelian groups of order 36 (up to isomorphism) are there?

#### Answer:

(a) Every finitely-generated abelian group A is expressible as the direct sum of cyclic subgroups of infinite or prime-power order:

$$A = \mathbb{Z} \oplus \mathbb{Z} \oplus \cdots \oplus \mathbb{Z} \oplus \mathbb{Z}/(p_1^{e_1}) \oplus \mathbb{Z}/(p_2^{e_2}) \oplus \cdots \oplus \mathbb{Z}/(p_r^{e_r}).$$

Moreover, the number of copies of  $\mathbb{Z}$ , and the prime-powers  $p_1^{e_1}, \ldots, p_r^{e_r}$  occurring in this direct sum are uniquely determined (up to order) by A.

(b) Suppose

$$|A| = 36 = 2^2 \cdot 3^2.$$

Then the 2-component  $A_2$  and the 3-component  $A_3$  of A have orders 4 and 9. Thus

$$A_2 = \mathbb{Z}/(4)$$
 or  $\mathbb{Z}/(2) \oplus \mathbb{Z}/(2)$ ,

and

$$A_3 = \mathbb{Z}/(9) \text{ or } \mathbb{Z}/(3) \oplus \mathbb{Z}/(3).$$

It follows that there are just 4 abelian groups of order 36, namely

$$\mathbb{Z}/(4) \oplus \mathbb{Z}/(9) = \mathbb{Z}/(36),$$

$$\mathbb{Z}/(2) \oplus \mathbb{Z}/(2) \oplus \mathbb{Z}/(9) = \mathbb{Z}/(18) \oplus \mathbb{Z}/(2),$$

$$\mathbb{Z}/(4) \oplus \mathbb{Z}/(3) \oplus \mathbb{Z}/(3) = \mathbb{Z}/(12) \oplus \mathbb{Z}/(3),$$

$$\mathbb{Z}/(2) \oplus \mathbb{Z}/(2) \oplus \mathbb{Z}/(3) \oplus \mathbb{Z}/(3) = \mathbb{Z}/(6) \oplus \mathbb{Z}/(6).$$