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Attempt 7 questions. (If you attempt more, only the best 7 will
be counted.) All questions carry the same number of marks.

1. Explain how two points on an elliptic curve are added.

Outline the proof that this operation is associative.

Answer:

2. Find the sum P +Q of the points P = (0, 0), Q = (1, 1) on the curve

E(Q) : y2 = x3 − x2 + x.

Determine the orders of P and Q.

Answer:

(a) Let PQ be the line
y = mx+ c.

Then

m =
1− 0

1− 0
= 1.

This meets the curve where

(mx+ c)2 = x3 − x2 + x.

Thus if P ∗Q = R = (x2, y2) then

0 + 1 + x2 = 1 +m2 = 2,



ie

x2 = 1.

Thus R = Q. Hence

P +Q = −Q
= (1,−1).

(b) P is of order 2, since

−(x, y) = (x,−y)

and so

−(0, 0) = (0, 0).

From above,

P +Q = −Q =⇒ 2Q = −P = P.

Hence Q is of order 4.

3. What is meant by saying that p is a good prime for an elliptic curve?

Show that 3, 5 and 7 are good primes for the elliptic curve

E : y2 = x3 − 2x,

and determine the corresponding groups over the finite fields F3, F5

and F7.

What can you deduce about the group of points of finite order on E(Q)?

Answer:

(a) Suppose

E(Q) : y2 + a1xy + a3y = x ∗ 3 + a2x
2 + a4x+ a6,

where ai ∈ Z. Then p is a good prime if the curve

E(Fp) : y2 + a1xy + a3y = x ∗ 3 + a2x
2 + a4x+ a6

is elliptic, ie non-singular.



(b) If p is an odd prime then it is good if and only if

p - D,

where D is the discriminant of the cubic.

In this case

D = −(4b3 + 27c2)

= −4 · 23.

Hence all odd primes are good.

(c) Suppose p = 3. The quadratic residues mod3 are 0, 1. Thus we
can draw up the table

x x3 − 2x points
0 0 (0, 0)
1 −1
−1 1 (−1,±1)

Thus E(F3) contains 4 points (including O), one of which, (0, 0),
of order 2. Hence

E(F2) = Z/(4).

(d) Suppose p = 5. The quadratic residues mod3 are 0,±1. Thus we
can draw up the table

x x3 − 2x points
0 0 (0, 0)
1 −1 (1,±2)
2 −1 (2,±2)
−2 1 (−2,±1)
−1 1 (−1,±1)

Thus E(F5) contains 10 points (including O), one of which, (0, 0),
of order 2. Hence

E(F2) = Z/(10) = Z/(2)⊕ Z/(5).

(e) Suppose p = 7. The quadratic residues mod 3 are 0, 1, 2,−3. Thus
we can draw up the table

x x3 − 2x points
0 0 (0, 0)
1 −1
2 −3 (2,±2)
3 0 (3, 0)
−3 0 (3, 0)
−2 3
−1 1 (−1,±1)



Thus E(F7) contains 8 points (including O), three of which, (0, 0), (3, 0), (−3, 0),
are of order 2. Hence

E(F2) = Z/(4)⊕ Z/(2).

(f) Since the torsion group

T ⊂ E(Q)

is isomorphic to a subgroup of E(Fp) for p = 3, 5, 7 it follows that

T = {0} or Z/(2).

Since (0, 0) ∈ E(Q), it follows that

T = Z/(2).

4. Express the 2-adic integer 1/3 ∈ Z2 in standard form

1/3 = a0 + a12 + a222 + · · · ,

where each ai is 0 or 1.

Does there exist a 2-adic integer x such that x2 = −3?

Answer:

(a) We have
1/3 ≡ 1 mod 2

since 1 ≡ 3 mod 2. Thus

1/3 = 1 +O(2).

Now
1/3− 1 = −2/3

Hence

2−1(1/3− 1) = −1/3

≡ 1 mod 3.

Thus
1/3 = 1 + 2 +O(22).

Now
−1/3− 1 = −4/3



Hence

2−2(−1/3− 1) = −1/3

≡ 1 mod 3.

Thus
1/3 = 1 + 2 + 23 +O(24).

But now we have the same remainder −1/3, so we have entered a
cyle, and will get the series

1/3 = 1 + 2 + 23 + 25 + 27 + · · · .

To check that this is correct, note that

1 + 2 + 23 + 25 + 27 + · · · = 1 + 2(1 + 22 + 24 + · · · )

= 1 +
2

1− 22

= 1− 2

3

=
1

3
.

(b) There does not exist a 2-adic integer

x = a0 + a12 + a222 + · · · (ai ∈ {0, 1}

such that
x2 = −3

since this would imply that

a = a0 + a12 + a222

would satisfy
a2 ≡ −3 ≡ 5 mod 8.

But the only quadratic residues mod8 are 0, 1, 4.

5. Prove that a point P = (x, y) of finite order on the elliptic curve

E(Q) : y2 = x3 + ax2 + bx+ c (a, b, c ∈ Z)

necessarily has integral coordinates x, y ∈ Z.

Answer: It is sufficient to show that

x, y ∈ Zp



for each prime p.

Let us fix the prime p, and write ‖ · ‖ for ‖ · ‖p.
Note that

‖x‖ > 1 ⇐⇒ ‖y‖ > 1,

since otherwise x3 or y2 would dominate; and it this is so then

‖y‖2 = ‖x‖3.

Suppose this is so. Let us change coordinates to X,Z where

(x, y) = [x, y, 1] = [X, 1, Z],

ie

X = x/y, Z = 1/y

or conversely

x = X/Z, y = 1/Z.

Suppose ‖x‖, ‖y‖ > 1. Then

‖Z‖ = 1/‖y‖ < 1,

and

‖X‖ = ‖x‖/‖y‖ = ‖x‖−1/2 < 1.

The equation of the curve in X,Z coordinates is

Z = X3 + aX2Z + bXZ2 + cZ3.

Substituting for Z in the right-hand side we get an expansion for Z as
a power-series in X,

Z = X3 + aX2(X3 + · · · ) + bX(X3 + · · · )2 + c(X3 + · · · )3

= X3 + aX5 +O(X7).

In particular,
‖Z‖ = ‖X‖3.

Let
E(pr) = {[X, 1, Z] ∈ E : ‖X‖ ≤ p−r, ‖Z‖ ≤ p−3r}.



Lemma 1. E(pr) is a subgroup for each r ≥ 1.

Proof. Suppose

P1 = [X1, 1, Z1], P2 = [X2, 1, Z2] ∈ E(pr).

Let
P3 = [X3, 1, Z3] = P1 + P2.

Suppose P1P2 is the line

Z = mX + d.

Then

m =
Z2 − Z1

X2 −X1

But

Z2 − Z1 = (X3
2 + aX5

2 + · · · )− (X3
1 + aX5

1 + · · · )
= (X3

2 −X3
1 ) + a(X5

2 −X5
1 ) + · · ·

Thus
m = X2

1 +X1X2 +X2
2 +O((X1 +X2)4)

Hence

m ≡ 0 mod p2r,

ie

‖m‖ ≤ p−2r.

Moreover, since d = Z1 −mX1,

‖d‖ ≤ p−3r.

Since −(x, y) = (x,−y) it follows that

−[X, 1, Z] = −[X/Z, 1/Z, 1] = [X/Z,−1/Z, 1] = [−X, 1,−Z].

In particular,
−P3 = [−X3, 1,−Z3].

Thus X1, X2,−X3 are the roots of

mX + d = X3 + aX2(mX + d) + bX(mX + d)2 + c(mX + d)3.



Hence

X1 +X2 −X3 = − ad+ 2bmd+ 3cm2d

1 + am+ bm2 + cm3
.

Hence
X3 ≡ X1 +X2 mod p3r.

Lemma 2. There is no point P 6= O of finite order in E(p).

Proof. It is sufficient to show there is no point of prime order q.

6. Find all points of finite order on the elliptic curve

E(Q) : y2 = x3 + 17.

Answer: According to the Nagell-Lütz theorem, a point P = (x, y) of
finite order must have x, y ∈ Z with y = 0 or y2|D, where D is the
discriminant of the cubic.

In this case

D = −(4b2 + 27c2)

= −27 · 172.

Thus y = 0 or
y = 3a17b

where a, b ∈ {0, 1}. In other words,

y ∈ {0,±1,±3,±17,±3 · 17}.

There is no integer solution with y = 0.

If y = ±1 then
x3 = 1− 17 = −16

which again has no integer solution.

If y = ±3 then

x3 = 9− 17 = −8 =⇒ x = −2.

If y = ±17 then
x3 = 172 − 17 = 17 · 16,

with no integer solution.



Finally, if y = ±3 · 17 then

x3 = 17(3217− 1)

with no integer solution.

Hence the only possible points of finite order are (−2,±3). [Recall that
Nagell-Lütz gives a necessary but not sufficient condition for a point to
be of finite order.] Let P = (−2, 3).

The tangent at P has slope

m =
3x2

2y

=
12

6
= 2.

If the tangent at P meets the curve again at −2P = (x2, y2) then

−2− 2 + x2 = m2 = 4,

ie

x2 = −8.

Since we have seen that there is no point of finite order with x2 = −8
it follows that −2P is of infinite order, and so therefore is P .

Hence the only point of finite order on E is O = [0, 1, 0].

7. Define the Weierstrass elliptic function ϕ(z) with respect to a lattice
Λ ⊂ C, and establish the functional equation linking ϕ′(z) and ϕ(z).

Show that any even function which is elliptic (doubly-periodic) with
respect to Λ is expressible as a rational function in ϕ(z).

Express the Weierstrass elliptic function ϕ2L(z) with respect to the
lattice 2Λ = {2ω : ω ∈ Λ} in terms of ϕΛ(z).

Answer:

(a) We define

ϕ(z) =
1

z2
+

∑
ω∈L, ω 6=0

(
1

(z − ω)2
− 1

ω2

)
.

(b) We assume that



i. ϕ(z) is L-periodic;

ii. An L-periodic function without poles is constant (since it is
bounded in the whole of C).

iii. An L-periodic function has the same number of zeros and poles
in a fundamental parallelogram.

In the neighbourhood of z = 0,

1

(z − ω)2
− 1

ω2
=

1

ω2(1− z/ω)2
− 1

ω2

=
1

ω2

(
(1− z/ω)−2 − 1

)
=

2z

ω3
+

3z2

ω4
+ · · · .

Thus

ϕ(z) =
1

z2
+ 2G3z + 3G4z

2 + · · · ,

where

Gr =
∑

ω∈L,ω 6=0

1

ωr
.

If r is odd,
Gr = 0

since the terms arising from ±ω cancel. Hence

ϕ(z) =
1

z2
+ 3G4z

2 + 5G6z
4 + · · · .

Thus

ϕ′(z) = − 2

z3
+ 6G4z + 20G6z

3 + · · · ;

and so

ϕ′(z)2 =
4

z6
− 24G4

z2
− 80G6 +O(z2).

But

ϕ(z)3 =
1

z6
+

9G4

z2
+ 15G6 +O(z2).

Hence

ϕ′(z)2 − 4ϕ(z)3 = −60G4

z2
− 140G6 +O(z2)

= −60G4ϕ(z)− 140G6 +O(z2);

and so

F (z) = ϕ′(z)2 − 4ϕ(z)3 + 60G4ϕ(z) + 140G6 = O(z2).



Thus F (z) is an L-periodic function without poles, which is van-
ishingly small close to z = 0. Hence

F (z) = 0,

ie

ϕ′(z)2 = 4ϕ(z)3 − 60G4ϕ(z)− 140G6.

(c) Suppose f(z) is an even L-periodic function. If a is a zero of f(z)
of multiplicity d then so is −a. Thus the zeros in a fundamental
parallelogram can be paired off as

±a1,±a2, . . . ,±ar mod L.

(This is still true if −a ≡ a mod L. For f ′(z) is odd, and therefore
has a zero of odd order at a, so that f(z) has a zero of even order
at a.)

Similarly, the poles in a fundamental parallelogram can be paired
off as

±b1,±b2, . . . ,±br mod L.

(The number of poles and zeros must be equal.)

Now
fi(z) = ϕ(z)− ϕ(ai)

has a double pole at ω ∈ L, and so has just two zeros ±ai mod L
in each fundamental region.

It follows that the function

F (z) =
(ϕ(z)− ϕ(a1)) · · · (ϕ(z)− ϕ(ar)

(ϕ(z)− ϕ(b1)) · · · (ϕ(z)− ϕ(br)

has the same zeros and poles as f(z). Hence

f(z)

F (z)

has no poles or zeros and so is constant. Thus

f(z) = CF (z) = R(ϕ(z)),

where R is the rational function

R(w) =
(w − ϕ(a1) · · · (w − ϕ(ar)

(w − ϕ(b1) · · · (w − ϕ(br)
.



(d) Since

ϕ2L(2z) =
1

4z2
+

′∑(
1

2z − 2ω)2
− 1

(2ω)2

)
=

1

4
ϕ(z).

Thus

ϕ2L(z) =
1

4
ϕ(z/2).

8. Find the rank of the curve

E(Q) : y2 = x3 − x.

Answer: There are 3 points of order 2 on E:

(0, 0), (1, 0), (−1, 0).

The associated elliptic curve is

Ẽ(Q) : y2 = x3 − 2ax2 + (a2 − 4b)x,

ie

Ẽ : y2 = x3 + 4x.

Let the rank be r. Then

2r+2 = |imχ| ·
∣∣∣im ˜chi

∣∣∣ ,
where

χ : E → Q
×2/Q×, χ̃ : Ẽ → Q

×2/Q×

are the auxiliary homomorphisms.

We have
imχ ⊂ {±1}.

Since −1 ∈ imχ [as χ(0, 0) = −1],

imχ = {±1}.

On the other hand,
im χ̃ ⊂ {±1,±2}.



[Recall that e ∈ imχ where ef = b if and only if the auxiliary equation

u2 = es4 + as2t2 + ft4

has a solution with gcd(s, t) = gcd(u, t) = 1.]

If e = −1 then f = −4, and −1 ∈ im χ̃ if and only if

s2 = −s4 − 4t4,

which is clearly impossible.

It follows that
|im χ̃| ≤ 2,

and so
2r+2 ≤ 2 · 2.

Hence
r = 0.

[One might recall that the n is a congruent number — ie there exists a
right-angle triangle with rational sides and area n — if and only if the
elliptic curve

y2 = x3 − n2x

has rank > 0. Thus our result is equivalent to the well-known result
that 1 is not a congruent number.]

9. Find all rational points on the curve

E(Q) : y2 = x3 + 1.

Answer: Let us first determine the points of finite order. By Nagell-
Lütz, if P = (x, y) is such a point then x, y ∈ Z and either y = 0
or

y2 | D,

where
D = −(4b3 + 27c2) = −33.

Hence
y ∈ {0,±1,±3}.

If y = 0 then x = −1, giving just one point (−1, 0) of order 2.

If y = ±1 then x3 = 0, giving the two points (0,±1).

If y = ±3 then x3 = −8, giving the two points (−2,±3).

It remains to determine if these points are of finite order.



The slope at (x, y) is

m =
3x2

2y
,

and the tangent
y = mx+ c

meets the curve again at (x2, y2), where

2x+ x2 = m2.

Let
P = (0, 1).

The slope at P is m = 0, and the tangent

y = 1

meets the curve again where x2 = 0, ie P is a point of inflexion satis-
fying

3P = 0.

Since there are points of orders 2 and 3, and there are ≤ 6 points of
finite order, the torsion group must be Z/(6), and the points (−2,±3)
must be of order 6.

Now we must determine the rank of the curve. First we bring the root
x = −1 of the cubic to 0, by the transformation x′ = x + 1. Dropping
the ′ss the curve is now

E = E(Q) : y2 = x3 − 3x2 + 3x.

The associated curve is

Ẽ : y2 = x3 + 6x2 − 3x.

The rank r is given by

2r+2 = |imχ| · |im χ̃| ,

where
χ : E → Q

×2/Q×, χ̃ : Ẽ → Q
×2/Q×

are the auxiliary homomorphisms.

We have
{1, 3} ⊂ imχ ⊂ {±1,±3}

(working always modQ×2).



If e = −1 then ef = b = 3 =⇒ f = −3; and e ∈ imχ if and only if
the auxiliary equation

u2 = es4 + ft4

has a solution with gcd(s, t) = gcd(u, t) = 1. This is evidenly impossible
with e, f < 0. Hence −1 /∈ imχ, and so

imχ = {1, 3}.

Turning to the χ̃,

{1,−3} ⊂ im χ̃ ⊂ {±1,±3}.

If e = −1 then ef = b̃ = −3 =⇒ f = 3. Thus −1 ∈ im χ̃ if and only
if the auxiliary equation

u2 = −s4 + 3t4

has a solution with gcd(s, t) = gcd(u, t) = 1. If s, t are both odd then

u2 ≡ −1 + 3 = 2 mod 8,

which is impossible. If s is even and t is odd then

u2 ≡ 3 mod 8,

which is again impossible. Finally, if s is odd and t is even then

u2 ≡ −1 mod 8,

which is still impossible.

We conclude that
−1 /∈ im χ̃.

Hence
im χ̃ = {1,−3},

and so
r = 0.

Hence the only rational points on the curve are the points of finite order:
(−1, 0), (0,±1), (2,±3).

10. Solve the equation
x4 + 4x+ 1 = 0.

Answer: We can write the equation as

(x2 + λ)2 = 2λx2 − 4x+ (λ2 − 1).



The right-hand side will be a perfect square if

22 = 2λ(λ2 − 1),

ie

λ3 − λ− 2 = 0.

To solve this equation, let

λ = u+ v.

Then
u3 + v3 + (u+ v)(3uv − 1)− 2 = 0.

Let us choose u, v so that
3uv = 1.

Then
u3 + v3 = 2.

On the other hand,
u3v3 = 1/27.

Thus u3, v3 are the roots of

t2 − 2t+ 1/27 = 0.

Hence
u3, v3 = 1±

√
1− 1/27 = 1±

√
26/27.

Thus

u, v =
3

√
1±

√
26/27,

and so

λ =
3

√
1 +

√
26/27 +

3

√
1−

√
26/27.

With this value of λ the original equation reduces to

x2 + λ = ±
√

2λ(x−
√

2/λ),

ie

x2 ∓
√

2/λx+ (λ± 1/
√
λ).

The solutions of these 2 quadratics give the 4 roots of the original poly-
nomial.


