

Course 428

Elliptic Curves II

Dr Timothy Murphy

Joly Theatre Friday, 5 April 2002 16:15-17:45

Attempt 5 questions. (If you attempt more, only the best 5 will be counted.) All questions carry the same number of marks.

1. Prove Fermat's Last Theorem either for $n=3$ or for $n=4$.

Answer:

$n=3$ We work in the field

$$
K=\mathbb{Q}(\omega),
$$

where $\omega=e^{2 \pi / 3}$, so that $\omega^{3}=1$ and $1+\omega+\omega^{2}=0$.
The integers in this field are the numbers

$$
a+b \omega \quad(a, b \in \mathbb{Z})
$$

and the units are $\pm 1, \pm \omega, \pm \omega^{2}$. The ring of integers $A=\mathbb{Z}[\omega]$, is a unique factorisation domain.
Each number

$$
\alpha=x+y \omega \in K
$$

has conjugate

$$
\bar{\alpha}=x+y \omega^{2},
$$

and

$$
N(\alpha)=\alpha \bar{\alpha}=x^{2}-x y+y^{2} .
$$

Let

$$
\pi=1-\omega
$$

Then

$$
\bar{\pi}=1-\omega^{2}=-\omega^{2} \pi .
$$

Since

$$
N(\pi)=3,
$$

it follows that 3 ramifies:

$$
3=\epsilon \pi^{2}
$$

where $\epsilon=-\omega^{2}$.
The residues $\bmod \pi$ are represented by $0, \pm 1$.
Lemma 1. If

$$
\alpha \equiv \pm 1 \bmod \pi
$$

then

$$
\alpha^{3} \equiv \pm 1 \bmod \pi^{3}
$$

Proof. It is sufficient to prove the result if $\alpha \equiv 1 \bmod \pi$, ie

$$
\alpha=1+\pi \beta .
$$

Then

$$
\alpha^{3} \equiv 1+3 \pi \beta+3 \pi^{2} \beta^{2} \bmod \pi^{3}
$$

Since

$$
\pi^{2} \mid 3
$$

the result follows.
We want to show that

$$
x^{3}+y^{3}+z^{3}=0
$$

has no solution with $x, y, z \in \mathbb{Z}$ and $x y z \neq 0$. We shall prove the more general result that for any unit $\epsilon \in A$ the equation

$$
x^{3}+y^{3}+\epsilon z^{3}=0
$$

has no solution in A with $x y z \neq 0$.
Suppose we have such a solution. We may assume that $\operatorname{gcd}(x, y, z)=$ 1. Then

$$
(x+y)(x+\omega y)\left(x+\omega^{2} y\right)=-\epsilon z^{3} .
$$

$n=4$ We have to show that the equation

$$
x^{4}+y^{4}=z^{4}
$$

has no non-trivial solution in \mathbb{Z} (ie with $x y z \neq 0$). In fact we prove the stronger result that

$$
x^{4}+y^{4}=z^{2}
$$

has no non-trivial solution. We may assume without loss of generality that $x, y, z>0$ and that

$$
\operatorname{gcd}(x, y, z)=1
$$

Recall that the integers $x, y, z>0$ are said to form a Pythagorean triple if $\operatorname{gcd}(x, y, z)=1$ and

$$
x^{2}+y^{2}=z^{2} .
$$

Lemma 2. If x, y, z is Pythagorean triple then one of x, y is even and one is odd. The general Pythagorean triple with y even takes the form

$$
x=u^{2}-v^{2}, y=2 u v, z=u^{2}+v^{2},
$$

with $u, v \geq 0$ and $\operatorname{gcd}(u, v)=1$.
In our case x^{2}, y^{2}, z is a Pythagorean triple. If y is even then

$$
x^{2}=u^{2}-v^{2}, y^{2}=2 u v, z=u^{2}+v^{2} .
$$

Since x is odd, one of u, v is odd and one is even. If u were even and v were odd then

$$
x^{2}=u^{2}-v^{2} \equiv-1 \quad \bmod 4,
$$

which is impossible. Hence u is odd and v is even.
Since $y^{2}=2 u v$ and $\operatorname{gcd}(u, v)=1$ it follows that

$$
u=s^{2}, v=2 t^{2}
$$

with $\operatorname{gcd}(s, t)=1$.
Thus

$$
x^{2}=s^{4}-4 t^{4},
$$

ie

$$
x^{2}+4 t^{4}=s^{4} .
$$

Now $x, 2 t^{2}, s^{2}$ is a Pythagorean triple. It follows that

$$
x=a^{2}-b^{2}, 2 t^{2}=2 a b, s^{2}=a^{2}+b^{2}
$$

with $\operatorname{gcd}(a, b)=1$.
Since $t^{2}=a b$ and $\operatorname{gcd}(a, b)=1$, it follows that

$$
a=X^{2}, b=Y^{2}
$$

with $\operatorname{gcd}(X, Y)=1$.
If we set $s=Z$ then

$$
X^{4}+Y^{4}=Z^{2}
$$

Thus one solution x, y, z of our equation leads to a second solution X, Y, Z. Also

$$
Z^{4}=s^{4}=u^{2}<z
$$

since $v \neq 0$.
Thus each solution gives rise to a new solution with strictly smaller z, which is evidently impossible.
2. (a) Solve the equation

$$
x^{3}+3 x-1=0
$$

(b) Solve the equation

$$
x^{4}+4 x-1=0 .
$$

Answer:

(a) Set

$$
x=u+v .
$$

Then

$$
x^{3}=u^{3}+v^{3}+3 u v(u+v) .
$$

Thus

$$
x^{3}+3 x-1=u^{3}+v^{3}+3(u+v)(u v+1)+1 .
$$

Let

$$
u v+1=0 .
$$

Then

$$
u^{3}+v^{3}=-1,
$$

while

$$
u v=-1 \Longrightarrow u^{3} v^{3}=-1
$$

Thus u^{3}, v^{3} are roots of the equation

$$
t^{2}+t-1=0
$$

Hence

$$
u^{3}, v^{3}=\frac{-1 \pm \sqrt{5}}{2}
$$

We conclude that the equation has the real solution

$$
x=\left(\frac{-1+\sqrt{5}}{2}\right)^{1 / 3}+\left(\frac{-1-\sqrt{5}}{2}\right)^{1 / 3},
$$

together with the complex solutions

$$
\begin{aligned}
& x=\left(\frac{-1+\sqrt{5}}{2}\right)^{1 / 3} \omega+\left(\frac{-1-\sqrt{5}}{2}\right)^{1 / 3} \omega^{2} \\
& x=\left(\frac{-1+\sqrt{5}}{2}\right)^{1 / 3} \omega^{2}+\left(\frac{-1-\sqrt{5}}{2}\right)^{1 / 3} \omega
\end{aligned}
$$

(b) We can write

$$
x^{4}+4 x-1=\left(x^{2}+\lambda\right)^{2}-2 \lambda x^{2}+4 x-\left(1+\lambda^{2}\right)
$$

The quadratic on the right will be a perfect square if

$$
2^{2}=2 \lambda\left(1+\lambda^{2}\right),
$$

ie

$$
\lambda^{3}+\lambda=2 .
$$

One solution of this is $\lambda=1$. Setting $\lambda=1$, our equation reads:

$$
\left(x^{2}+1\right)^{2}=2(x+1)^{2} .
$$

Thus

$$
x^{2}+1= \pm \sqrt{2}(x+1)
$$

ie

$$
x^{2}-\sqrt{2} x+(1-\sqrt{2}), x^{2}+\sqrt{2} x+(1+\sqrt{2})
$$

Solving these two quadratic equations,

$$
\begin{aligned}
& x=\frac{-\sqrt{2} \pm \sqrt{2} \sqrt{2 \sqrt{2}-1}}{2} \\
& x=\frac{\sqrt{2} \pm i \sqrt{2} \sqrt{2 \sqrt{2}+1}}{2}
\end{aligned}
$$

3. Show that a torsion-free finitely-generated abelian group A is free, ie

$$
A \cong \mathbb{Z} \oplus \cdots \oplus \mathbb{Z}
$$

Find a Z-basis e_{1}, \ldots, e_{r} for the group

$$
A=\left\{(x, y, z) \in \mathbb{Z}^{3}: x+2 y+3 z=0\right\}
$$

ie a set of elements such that each element $a \in A$ is uniquely expressible in the form

$$
a=n_{1} e_{1}+\cdots+n_{r} e_{r},
$$

with $n_{1}, \ldots, n_{r} \in \mathbb{Z}$.
4. State Mordell's Theorem, and sketch its derivation from the Weak Mordell Theorem (which states that if $\mathscr{E}=\mathscr{E}(\mathbb{Q})$ is an elliptic curve over the rationals then the quotient-group $\mathscr{E} / 2 \mathscr{E}$ is finite).
5. Determine the rank of the elliptic curve

$$
\mathscr{E}(\mathbb{Q}): y^{2}=x^{3}-x .
$$

Answer: Since the cubic $p(x)=x^{3}-x$ has 3 rational roots, we have two methods of attacking the problem.

Method 1 The associated elliptic curve is

$$
\tilde{\mathscr{E}}: y^{2}=x^{3}+4 x .
$$

Let the associated homomorphisms be

$$
\chi: \mathscr{E} \rightarrow \mathbb{Q}^{\times} / \mathbb{Q}^{\times 2}, \tilde{\chi}: \tilde{\mathscr{E}} \rightarrow \mathbb{Q}^{\times} / \mathbb{Q}^{\times 2} .
$$

Since $p(x)$ has 3 rational roots, and $\tilde{b}=4$ is a perfect square, the rank r is given by

$$
2^{r+2}=|\operatorname{im} \chi||\operatorname{im} \tilde{\chi}|
$$

Since $b=-1, \tilde{b}=4$,

$$
\operatorname{im} \chi \subset\{ \pm 1\}, \operatorname{im} \tilde{\chi} \subset\{ \pm 1, \pm 2\}
$$

Also

$$
\chi(0,0)=b=-1, \tilde{\chi}(0,0)=\tilde{b}=4 .
$$

It follows that

$$
\operatorname{im} \chi=\{ \pm 1\} .
$$

If $d \in \operatorname{im} \tilde{\chi}$ and $d d^{\prime}=\tilde{b}=4$ then the equation

$$
d u^{4}+d^{\prime} t^{4}=v^{2}
$$

has a solution with $\operatorname{gcd} u, t=1=\operatorname{gcd} v, t$. If $d<0$ then $d^{\prime}<0$ and the equation evidently has no solution. Hence

$$
\operatorname{im} \tilde{\chi} \subset\{1,2\} .
$$

It follows that

$$
2^{r+2} \leq 2 \cdot 2
$$

ie

$$
r=0 .
$$

Method 2 Let

$$
\chi_{0}, \chi_{1}, \chi_{-1}: \mathscr{E} \rightarrow \mathbb{Q}^{\times} / \mathbb{Q}^{\times 2}
$$

be the associated homomorphisms. Thus

$$
\begin{aligned}
& \chi_{0}(x, y)=x \bmod \mathbb{Q}^{\times 2}, \\
& \chi_{1}(x, y)=x-1 \bmod \mathbb{Q}^{\times 2}, \\
& \chi_{0}(x, y)=x+1 \bmod \mathbb{Q}^{\times 2},
\end{aligned}
$$

except that

$$
\begin{aligned}
\chi_{0}(0,0) & =p^{\prime}(0)=-1, \\
\chi_{1}(1,0) & =p^{\prime}(1)=2, \\
\chi_{-1}(-1,0) & =p^{\prime}(-1)=2
\end{aligned}
$$

By Mordell's Lemma,

$$
2 \mathscr{E}=\operatorname{ker}\left(\chi_{0} \times \chi_{1} \times \chi_{-1}\right),
$$

and so

$$
\mathscr{E} / 2 \mathscr{E}=\operatorname{im}\left(\chi_{0} \times \chi_{1} \times \chi_{-1}\right),
$$

Moreover, since $p(x)$ has 3 rational roots,

$$
2^{r+2}=|\mathscr{E} / 2 \mathscr{E}| .
$$

If $(x, y) \in \mathscr{E}$ then

$$
x=\frac{d u^{2}}{t^{2}}, y=\frac{v^{2}}{t^{2}}
$$

where d is square-free. Thus

$$
\begin{aligned}
& x-1=\frac{d u^{2}-t^{2}}{t^{2}}=\frac{e v^{2}}{t^{2}} \\
& x+1=\frac{d u^{2}+t^{2}}{t^{2}}=\frac{f w^{2}}{t^{2}}
\end{aligned}
$$

where e, f are square-free; and

$$
\left(\chi_{0} \times \chi_{1} \times \chi_{-1}\right)(x, y)=(d, e, f)
$$

if $x \neq 0, \pm 1$. Moreover def is a perfect square, since

$$
y^{2}=\frac{d e f u^{2} v^{2} w^{2}}{t^{6}}
$$

From above,

$$
e v^{2}=d u^{2}-t^{2}, f w^{2}=d u^{2}+t^{2}
$$

It follows from this that

$$
\begin{aligned}
& d>0 \Longrightarrow f>0 \Longrightarrow e>0, \\
& d<0 \Longrightarrow e<0 \Longrightarrow f>0 .
\end{aligned}
$$

In particular $f>0$ in all cases.
Also

$$
d|1, e| 2, f \mid 2 .
$$

It follows that

$$
\operatorname{im}\left(\chi_{0} \times \chi_{1} \times \chi_{-1}\right) \subset\{(1,1,1),(-1,-1,1),(1,2,2),(-1,-2,2)\}
$$

Hence

$$
2^{r+2} \leq 4 \Longrightarrow r=0 .
$$

6. Determine the group (ie the torsion group and rank) of the elliptic curve

$$
\mathscr{E}(\mathbb{Q}): y^{2}=x^{3}-1 .
$$

Answer: First we make the constant term vanish by setting $x=x^{\prime}+1$. The equation becomes

$$
\mathscr{E}: y^{2}=x^{\prime 3}+3 x^{\prime 2}+3 x^{\prime}
$$

The associated elliptic curve is given by

$$
\tilde{a}=-2 a, \tilde{b}=a^{2}-4 b .
$$

Thus the associated curve is

$$
\tilde{\mathscr{E}}: y^{2}=x^{3}-6 x^{2}-3 x .
$$

If the associated homomorphisms are

$$
\chi: \mathscr{E} \rightarrow \mathbb{Q}^{\times} / \mathbb{Q}^{\times 2}, \tilde{\chi}: \tilde{\mathscr{E}} \rightarrow \mathbb{Q}^{\times} / \mathbb{Q}^{\times 2}
$$

then the rank r is given by

$$
2^{r+1}=\frac{|\operatorname{im} \chi||\operatorname{im} \tilde{\chi}|}{2}
$$

since $\tilde{b}=-3$ is not a perfect square.
We have

$$
\operatorname{im} \chi \subset\{ \pm 1, \pm 3\}, \text { im } \tilde{\chi} \subset\{ \pm 1, \pm 3\}
$$

Also

$$
\chi(0,0)=3, \tilde{\chi}(0,0)=-3 .
$$

If $d \mid 3$ and $d d^{\prime}=3$ then $d \in \operatorname{im} \chi$ if and only if the equation

$$
d u^{4}+3 u^{2} t^{2}+d^{\prime} t^{4}=v^{2}
$$

has a solution with $\operatorname{gcd}(u, t)=1=\operatorname{gcd}(v, t)$.
If $d=-1$ then $d^{\prime}=3$, and the equation is

$$
-u^{4}+3 u^{2} t^{2}+3 t^{4}=v^{2} .
$$

Thus

$$
-u^{4} \equiv v^{2} \bmod 3 \Longrightarrow u \equiv v \equiv 0 \bmod 3
$$

Hence

$$
9\left|3 t^{4} \Longrightarrow 3\right| t
$$

so that $\operatorname{gcd}(t, u)>1$, contrary to hypothesis. It follows that

$$
\operatorname{im} \chi=\{1,3\}
$$

Similarly, if $d \mid 3$ and $d d^{\prime}=3$ then $d \in \operatorname{im} \tilde{\chi}$ if and only if the equation

$$
d u^{4}-6 u^{2} t^{2}+d^{\prime} t^{4}=v^{2}
$$

has a solution with $\operatorname{gcd}(u, t)=1=\operatorname{gcd}(v, t)$. If $d=-1$ then $d^{\prime}=3$, and the equation is

$$
-u^{4}-6 u^{2} t^{2}+3 t^{4}=v^{2}
$$

As before this implies that $3 \mid u$,t, contrary to hypothesis. Hence

$$
\operatorname{im} \tilde{\chi}=\{1,3\} .
$$

It follows that

$$
2^{r+2}=2 \cdot 2 \Longrightarrow r=0
$$

It remains to determine the torsion subgroup of \mathscr{E}. If $(x, y) \in \mathscr{E}$ then $x, y \in \mathbb{Z}$, and by Nagell-Lutz

$$
y=0 \text { or } y^{2} \mid \Delta=-4 b^{3}-27 c^{2}=-27
$$

Thus $y=0, \pm 1, \pm 3$.
If $y=0$ then

$$
x^{3}=1 \Longrightarrow x=1 .
$$

If $y= \pm 1$ then

$$
x^{3}=2,
$$

which has no rational solution.
If $y= \pm 3$ then

$$
x^{3}=10,
$$

which also has no rational solution.
We conclude that

$$
\mathscr{E}=\{0,(1,0)\} \cong \mathbb{Z} /(2)
$$

7. Determine the rank of the elliptic curve

$$
\mathscr{E}(\mathbb{Q}): y^{2}=x^{3}-5 x .
$$

Answer: We observe that

$$
P=(-1,2) \in \mathscr{E} .
$$

Let the tangent at P be

$$
y=m x+c .
$$

Then

$$
m=\frac{3 x^{2}-5}{2 y}=-\frac{1}{2} .
$$

The tangent meets the curve where

$$
(m x+c)^{2}=x^{3}-5 x
$$

Thus if the tangent meets the curve again at $Q=(x, y)$ then (by considering the coefficient of x^{2})

$$
-2+x=m^{2} .
$$

Thus x is non-integral, and so Q is of infinite order. Hence P is also of infinite order. In particular the rank

$$
r \geq 1
$$

The associated elliptic curve is

$$
\tilde{\mathscr{E}}: y^{2}=x^{3}+20 x .
$$

Since $p(x)=x^{3}-5 x$ has just one rational root, and 20 is not a perfect square,

$$
2^{r+2}=|\operatorname{im} \chi||\operatorname{im} \tilde{\chi}|
$$

where

$$
\chi: \mathscr{E} \rightarrow \mathbb{Q}^{\times} / \mathbb{Q}^{\times 2}, \tilde{\chi}: \tilde{\mathscr{E}} \rightarrow \mathbb{Q}^{\times} / \mathbb{Q}^{\times 2}
$$

are the auxiliary homomorphisms.
We have

$$
\operatorname{im} \chi \subset\{ \pm 1, \pm 5\}, \text { im } \tilde{\chi} \subset\{ \pm 1, \pm 2, \pm 5, \pm 10\} .
$$

Since

$$
\chi(0,0)=-5, \chi(-1,2)=-1,
$$

we have

$$
\operatorname{im} \chi=\{ \pm 1, \pm 5\}
$$

If $d \mid 20$ and $d d^{\prime}=20$ then $d \in \operatorname{im} \tilde{\chi}$ if and only if the equation

$$
d u^{4}+d^{\prime} t^{4}=v^{2}
$$

has a solution with $t>0$ and $\operatorname{gcd}(u, t)=1=\operatorname{gcd}(v, t)$. If $d<0$ then $d^{\prime}<0$ and this equation evidently has no solution. Hence

$$
\operatorname{im} \tilde{\chi} \subset\{1,2,5,10\} .
$$

Thus

$$
2^{r+2} \leq 2 \cdot 2^{2}
$$

ie

$$
r \leq 1 .
$$

Hence

$$
r=1 .
$$

