

Course 428

Elliptic Curves I

Dr Timothy Murphy

Joly Theatre Friday, 11 January 2002 16:15-17:45

Attempt 5 questions. (If you attempt more, only the best 5 will be counted.) All questions carry the same number of marks.

1. Explain informally how two points on an elliptic curve are added.

Find the sum $P+Q$ of the points $P=(-1,0), Q=(2,3)$ on the curve

$$
y^{2}=x^{3}+1
$$

over the rationals \mathbb{Q}. What are $2 P$ and $2 Q$?
Answer:
(a) The line $P Q$ meets the curve again in a point R. We have

$$
R=-(P+Q)
$$

Let $O R$ meet the curve again in the point S. Then

$$
S=-R=P+Q
$$

If $P=Q$ then we take the tangent at P in place of the line $P Q$.
(b) The line $P Q$ is given by

$$
\operatorname{det}\left(\begin{array}{ccc}
x & y & 1 \\
0 & -1 & 1 \\
2 & 3 & 1
\end{array}\right)=0
$$

ie

$$
-4 x+2 y+2=0
$$

$$
y=2 x-1 .
$$

This meets the curve where

$$
(2 x-1)^{2}=x^{3}+17
$$

We know that two of the roots of this equation are 0,2 ; hence the third is given by

$$
0+2+x=4
$$

ie

$$
x=2 .
$$

From the equation of the line,

$$
y=3 .
$$

In other words, this line touches the curve at Q. Thus

$$
\begin{aligned}
P+Q & =-Q \\
& =(2,-3) .
\end{aligned}
$$

To compute $2 P$ we must find the tangent at P. Differentiating the equation of the curve,

$$
2 y \frac{d y}{d x}=3 x^{2}
$$

ie

$$
\frac{d y}{d x}=\frac{3 x^{2}}{2 y}
$$

2. Define the discriminant Δ of a monic polynomial

$$
f(x)=x^{n}+c_{1} x^{n-1}+\cdots+c_{n},
$$

and show that $f(x)$ has a multiple root if and only if $\Delta=0$.
Determine the discriminant of the polynomial

$$
p(x)=x^{3}+a x^{2}+c .
$$

Show that the curve

$$
y^{2}+x y=x^{3}+3
$$

over the rationals \mathbb{Q} is non-singular.
Answer:
3. Express the 2-adic integer $1 / 3 \in \mathbb{Z}_{2}$ in standard form

$$
1 / 3=a_{0}+a_{1} 2+a_{2} 2^{2}+\cdots \quad\left(a_{i} \in\{0,1\}\right) .
$$

Does there exist a 2 -adic integer x such that $x^{2}=-1$?
Answer: We have

$$
\frac{1}{3} \equiv 1 \bmod 2
$$

since $3 \cdot 1 \equiv 1 \bmod 2$.
Now

$$
\frac{1}{3}-1=\frac{-2}{3}=2 \frac{-1}{3}
$$

But

$$
\frac{-1}{3} \equiv 1 \bmod 2
$$

Thus

$$
\frac{1}{3} \equiv 1+1 \cdot 2 \bmod 2^{2}
$$

Furthermore,

$$
\frac{-1}{3}-1=\frac{-4}{3}=2^{2} \frac{-1}{3}
$$

Thus

$$
\begin{aligned}
\frac{-1}{3} & =1+2^{2} \frac{-1}{3} \\
& =1+2^{2}+2^{4} \frac{-1}{3} \\
& =1+2^{2}+2^{4}+2^{6}+\cdots
\end{aligned}
$$

and so

$$
\begin{aligned}
\frac{1}{3} & =1+2 \cdot \frac{-1}{3} \\
\frac{-1}{3} & =1+2+2^{3}+2^{5}+2^{7}+\cdots
\end{aligned}
$$

There does not exist a 2-adic integer x such that $x^{2}=-1$? For there is no integer n such that

$$
n^{2} \equiv-1 \bmod 4
$$

[If

$$
x=a_{0}+a_{1} 2+a_{2} 2^{2}+\cdots
$$

satisfied $x^{2}=-1$ then

$$
n=a_{0}+a_{1} 2
$$

would satisfy $n^{2} \equiv-1 \bmod 2^{2}$.]
4. Find the order of the point $(0,0)$ on the elliptic curve

$$
y^{2}+y=x^{3}+x
$$

over the rationals \mathbb{Q}.
Answer: Let $P=(0,0)$. The tangent at the point (x, y) has slope

$$
m=\frac{3 x^{2}-1}{2 y-1}
$$

In particular, the tangent at P has slope 1. Hence the tangent is

$$
y=x .
$$

This meets the curve again where

$$
x^{2}-x=x^{3}-x
$$

ie where

$$
x=1,
$$

and therefore

$$
y=1 .
$$

Thus

$$
2 P=-(1,1)=Q,
$$

say. The line $O Q$ (where O is the neutral element $[0,1,0]$) is $x=1$. This meets the curve again where

$$
y^{2}-y=0,
$$

ie where

$$
y=0 .
$$

Thus

$$
2 P=(1,0)=R,
$$

say.
The slope at R is

$$
m=\frac{2}{-1}=-2
$$

Thus the tangent is

$$
y=-2(x-1)
$$

ie

$$
y+2 x-2=0 .
$$

This meets the curve again where

$$
4(x-1)^{2}-2(x-1)=x^{3}-x
$$

ie

$$
x^{3}-4 x^{2}+9 x-6
$$

We know that this has roots 1,1. Hence the third root is given by

$$
1+1+x=4,
$$

ie

$$
x=2 .
$$

Thus the tangent meets the curve again at the point

$$
S=(2,-2) .
$$

The line $O S$, ie $x=2$, meets the curve again where

$$
y^{2}-y=6 .
$$

One solution is $y=-2$; so the other is given by

$$
-2+y=1,
$$

ie

$$
y=3 .
$$

Thus

$$
2 R=(2,3)=T,
$$

say.
The slope at T is

$$
m=\frac{11}{5} .
$$

Let the tangent at T be

$$
y=m x+c .
$$

This meets the curve where

$$
(m x+c)^{2}-(m x+c)=x^{3}-x .
$$

Thus the tangent meets the curve again where

$$
2+2+x=m^{2} .
$$

Evidently x is not integral. Hence T is of infinite order, and so therefore is $P=(0,0)$, since $T=4 P$.
5. Show that the curve

$$
y^{2}+x y=x^{3}+x
$$

over the finite field \mathbb{F}_{2} is elliptic, and determine its group.
Hence or otherwise, find all points of finite order on the curve

$$
y^{2}+x y=x^{3}+x
$$

over the rationals \mathbb{Q}.

Answer:

(a) In homogeneous coordinates the curve takes the form

$$
F(X, Y, Z) \equiv Y^{2} Z+X Y Z+X^{3}+X Z^{2}=0
$$

(since $2=0$).
At a singular point,

$$
\begin{aligned}
& \frac{\partial F}{\partial X}=Y Z+X^{2}+Z^{2}=0 \\
& \frac{\partial F}{\partial Y}=X Z=0 \\
& \frac{\partial F}{\partial X}=Y^{2}+X Y=0
\end{aligned}
$$

From the second equation, $X=0$ or $Z=0$. If $X=0$ then $Y=0$ from the third equation, and $Z=0$ from the first. If $Z=0$ then $X=0$ from the first equation, and $Y=0$ from the third. Thus in either case $X=Y=Z=0$. Since this does not define a point in the projective plane, the curve is non-singular, ie elliptic.
If $x=0$ then $y^{2}=0$ and so $y=0$. If $x=1$ then $y^{2}+y=0$ and so $y=0$ or $y=1$. We conclude that there are just 4 points on $\mathscr{E}\left(\mathbb{F}_{2}\right)$, namely $(0,0),(1,0),(1,1)$ and $O=[0,1,0]$.

It follows that the group is either $\mathbb{Z} /(2) \oplus \mathbb{Z} /(2)$ or $\mathbb{Z} /(4)$.
If $P+Q=0$ then the line $P Q$ goes through $O=[0,1,0]$, and so is of the form $x=c$. Thus

$$
\begin{aligned}
& -(0,0)=(0,0), \\
& -(1,0)=(1,1) .
\end{aligned}
$$

Since there is just one point of order 2, the group must be $\mathbb{Z} /(4)$.
(b) Reduction modulo 2 defines a homomorphism

$$
\mathscr{E}(\mathbb{Q}) \rightarrow \mathscr{E}\left(\mathbb{F}_{2}\right)
$$

which is injective on the torsion group

$$
T \subset \mathscr{E}(\mathbb{Q}) .
$$

It follows that in this case $T \subset \mathbb{Z} /(4)$, ie $T=\{0\}, \mathbb{Z} /(2)$ or $\mathbb{Z} /(4)$. Since

$$
x=0 \Longrightarrow y=0
$$

there is just one point on the line $x=0$, and so

$$
-(0,0)=(0,0),
$$

ie $P=(0,0$ is of order 2. Thus $T=\mathbb{Z} /(2)$ or $\mathbb{Z} /(4)$.
If there are any more points of finite order, they must be two points $\pm Q$ of order 4, with

$$
2 Q=P .
$$

Thus the tangent at Q must pass through P, and so is of the form

$$
y=t x
$$

for some constant $t \in \mathbb{Q}$. This line meets the curve where

$$
t^{2} x^{2}+t x^{2}=x^{3}+x
$$

ie at $x=0$ and where

$$
x^{2}-t(1+t) x+1=0
$$

If the line is a tangent this will have a double root, and so

$$
t^{2}(t+1)^{2}=4
$$

ie

$$
t^{4}+2 t^{3}+t^{2}-4=0
$$

A rational solution must in fact be integral (since the equation is monic) and so $t \mid 4$, ie

$$
t \in\{ \pm 1, \pm 2, \pm 4\}
$$

Now we observe that $t=1$ is a solution. [We might have seen this earlier.] So the line $y=x$ is a tangent. This meets the curve where

$$
x^{2}-2 x+1=0
$$

ie at the point $Q=(1,1)$. Thus $2 Q=P$, and $T=\mathbb{Z} /(4)$, with

$$
T=\{O, P, \pm Q\}
$$

Finally, $-Q$ is the other point of the curve on the line $x=1$, with

$$
y^{2}+y=2
$$

Thus $-Q=(1,-2)$, and

$$
T=\{O,(0,0),(1,1),(1,-2)\} .
$$

6. Suppose $P=(x, y)$ is a point of finite order on the elliptic curve

$$
y^{2}=x^{3}+a x^{2}+b x+c \quad(a, b, c \in \mathbb{Z})
$$

Given that $x, y \in \mathbb{Z}$ show that

$$
y=0 \text { or } y \mid \Delta,
$$

where Δ is the discriminant of the polynomial

$$
p(x)=x^{3}+a x^{2}+b x+c .
$$

Find all points of finite order on the elliptic curve

$$
y^{2}=x^{3}+4 x
$$

over the rationals \mathbb{Q}.

Answer:

(a)
(b) We have

$$
\Delta=-4(-2)^{3}=2^{5} .
$$

By the (strong) Nagel-Lutz Theorem, a point (x, y) on the curve of finite order has integer coordinates x, y, and either $y=0$ or else

$$
y^{2} \mid 2^{5}
$$

ie

$$
y=0, \pm 2, \pm 4 .
$$

There is no point with $y=0$, since 2 is not a cube.
Suppose $y= \pm 2$. Then

$$
x^{3}-2=4,
$$

ie

$$
x^{3}=6 .
$$

This has no rational solution.
Finally, suppose $y= \pm 4$. Then

$$
x^{3}-2=16,
$$

ie

$$
x^{3}=18
$$

which again has no rational solution.
We conclude that the only point on the curve of finite order is the neutral element $0=[0,1,0]$, or order 1 .
7. Describe carefully (but without proof) the Structure Theorem for Finite Abelian Groups.
How many abelian groups of order 24 (up to isomorphism) are there?
Answer: Every finitely-generated abelian group A is expressible as the direct sum of cyclic subgroups of infinite or prime-power order:

$$
A=\mathbb{Z} \oplus \mathbb{Z} \oplus \cdots \oplus \mathbb{Z} \oplus \mathbb{Z} /\left(p_{1}^{e_{1}}\right) \oplus \mathbb{Z} /\left(p_{2}^{e_{2}}\right) \oplus \cdots \oplus \mathbb{Z} /\left(p_{r}^{e_{r}}\right)
$$

Moreover, the number of copies of \mathbb{Z}, and the prime-powers $p_{1}^{e_{1}}, \ldots, p_{r}^{e_{r}}$ occuring in this direct sum are uniquely determined (up to order) by A.
Suppose

$$
|A|=36=2^{2} \cdot 3^{2} .
$$

Then the 2-component A_{2} and the 3-component A_{3} of A have orders 4 and 9. Thus

$$
A_{2}=\mathbb{Z} /(4) \text { or } \mathbb{Z} /(2) \oplus \mathbb{Z} /(2),
$$

and

$$
A_{2}=\mathbb{Z} /(9) \text { or } \mathbb{Z} /(3) \oplus \mathbb{Z} /(3) .
$$

It follows that there are just 4 abelian groups of order 36, namely

$$
\begin{aligned}
& \mathbb{Z} /(4) \oplus \mathbb{Z} /(9)=\mathbb{Z} /(36), \\
& \mathbb{Z} /(2) \oplus \mathbb{Z} /(2) \oplus \mathbb{Z} /(9)=\mathbb{Z} /(18) \oplus \mathbb{Z} /(2), \\
& \mathbb{Z} /(4) \oplus \mathbb{Z} /(3) \oplus \mathbb{Z} /(3)=\mathbb{Z} /(12) \oplus \mathbb{Z} /(3), \\
& \mathbb{Z} /(2) \oplus \mathbb{Z} /(2) \oplus \mathbb{Z} /(3) \oplus \mathbb{Z} /(3)=\mathbb{Z} /(6) \oplus \mathbb{Z} /(6)
\end{aligned}
$$

