

Course 428

Elliptic Curves I

Dr Timothy Murphy

Maxwell Theatre Friday, 21 January 2000 10:15-11:45

Attempt 5 questions. (If you attempt more, only the best 5 will be counted.) All questions carry the same number of marks.

1. Explain informally how two points on an elliptic curve are added.

Find the sum $P+Q$ of the points $P=(-2,3), Q=(2,5)$ on the curve

$$
y^{2}=x^{3}+17
$$

over the rationals \mathbb{Q}. What is $2 P$?
Answer:
(a) The line $P Q$ meets the curve again in a point R. We have

$$
R=-(P+Q)
$$

Let $O R$ meet the curve again in the point S. Then

$$
S=-R=P+Q
$$

If $P=Q$ then we take the tangent at P in place of the line $P Q$.
(b) The line $P Q$ is given by

$$
\operatorname{det}\left(\begin{array}{ccc}
x & y & 1 \\
-2 & 3 & 1 \\
2 & 5 & 1
\end{array}\right)=0
$$

ie

$$
-2 x+4 y-16=0
$$

$$
y=\frac{1}{2} x+4 .
$$

This meets the curve where

$$
\left(\frac{1}{2} x+4\right)^{2}=x^{3}+17
$$

We know that two of the roots of this equation are $-2,2$; hence the third is given by

$$
-2+2+x=\frac{1}{4},
$$

ie

$$
x=\frac{1}{4} .
$$

From the equation of the tangent,

$$
y=\frac{1}{8}+4=\frac{33}{8} .
$$

Thus

$$
\begin{aligned}
P+Q & =-\left(\frac{1}{4}, \frac{33}{8}\right) \\
& =\left(\frac{1}{4},-\frac{33}{8}\right) .
\end{aligned}
$$

2. Express the 5 -adic integer $2 / 3 \in \mathbb{Z}_{5}$ in standard form

$$
1 / 3=a_{0}+a_{1} 5+a_{2} 5^{2}+\cdots \quad\left(0 \leq a_{i}<5\right)
$$

Does there exist a 5 -adic integer x such that $x^{2}=6$?
Answer: We have

$$
\frac{2}{3} \equiv 4 \bmod 5
$$

since $3 \cdot 4 \equiv 2 \bmod 5$.
Now

$$
\frac{2}{3}-4=\frac{-10}{3}=5 \frac{-2}{3}
$$

But

$$
\frac{-2}{3} \equiv 1 \bmod 5
$$

Thus

$$
\frac{2}{3} \equiv 4+1 \cdot 5 \bmod 5^{2}
$$

Furthermore,

$$
\frac{-2}{3}-1=\frac{-5}{3}=5 \frac{-1}{3}
$$

But

$$
\frac{-1}{3} \equiv 3 \bmod 5
$$

Thus

$$
\frac{2}{3} \equiv 4+1 \cdot 5+3 \cdot 5^{2} \bmod 5^{3}
$$

Continuing,

$$
\frac{-1}{3}-3=\frac{-10}{3}=5 \frac{-2}{3} .
$$

We have been here before;

$$
\frac{-2}{3} \equiv 1 \bmod 5
$$

Thus

$$
\frac{2}{3} \equiv 4+1 \cdot 5+3 \cdot 5^{2}+1 \cdot 5^{3} \bmod 5^{4}
$$

We have entered a loop; and the pattern will repeat itself indefinitely. We conclude that

$$
\frac{2}{3}=4+1 \cdot 5+3 \cdot 5^{2}+1 \cdot 5^{3}+3 \cdot 5^{4}+1 \cdot 5^{5}+3 \cdot 5^{6}+\cdots
$$

Let us verify this; the sum on the right is

$$
\begin{aligned}
4+\frac{5}{1-5^{2}}+\frac{3 \cdot 5^{2}}{1-5^{2}} & =4+5 \frac{1+15}{-24} \\
& =4-5 \frac{2}{3} \\
& =\frac{2}{3}
\end{aligned}
$$

There does exist a 5-adic integer x such that $x^{2}=6$? Here are two ways of seeing this.
(a) By the binomial theorem,

$$
\begin{aligned}
x & =(1+5)^{1 / 2} \\
& =1+\frac{1}{2} 5+\frac{(1 / 2)(-1 / 2)}{2!} 5^{2}+\frac{(1 / 2)(-1 / 2)(-3 / 2)}{3!} 5^{3}+\cdots
\end{aligned}
$$

A p-adic series $\sum a_{n}$ converges if and only if $a_{n} \rightarrow 0$. So we have to ensure that

$$
\left\|\binom{1 / 2}{n} 5^{n}\right\|_{5} \rightarrow 0
$$

It is sufficient to show that

$$
\left\|\frac{5^{n}}{n!}\right\|_{5} \rightarrow 0 .
$$

Let p be a prime. Suppose

$$
p^{e} \| n!
$$

ie $p^{e} \mid n!$ but $p^{e+1} \nmid n!$. Then

$$
e=\left[\frac{n}{p}\right]+\left[\frac{n}{p^{2}}\right]+\cdots .
$$

Thus

$$
\begin{aligned}
e & <\frac{n}{p}+\frac{n}{p^{2}}+\cdots \\
& =\frac{n}{p-1} .
\end{aligned}
$$

Hence

$$
\left\|\frac{5^{n}}{n!}\right\|_{5}<5^{-3 n / 4}
$$

and so our binomial series converges in \mathbb{Q}_{5}.
(b) Alternatively, we can appeal to Hensel's Lemma.

Lemma 1 Suppose $f(x) \in \mathbb{Z}[x]$; and suppose $a \in \mathbb{Z}$ satisfies

$$
f(a) \equiv 0 \bmod p^{r}
$$

where $r>0$. Suppose also that

$$
f^{\prime}(a) \not \equiv 0 \bmod p .
$$

Then a extends to a unique $\alpha \in \mathbb{Z}_{p}$ such that

$$
f(\alpha)=0,
$$

with $\alpha \equiv a \bmod p^{r}$.
[This is proved by showing that the solution $\bmod p^{r}$ extends to a unique solution $\bmod p^{r+1}$, on expanding

$$
f(x+y)=f(x)+f_{1}(x) y+f_{2}(x) y^{2}+\cdots
$$

Here $f_{1}(x)=f^{\prime}(x)$, and the result follows on setting $x=a, y=$ $c p^{r}$ where $c \bmod p$ is chosen so that

$$
\left.f(a)+f^{\prime}(a) c p^{r} \equiv 0 \bmod p^{r+1} .\right]
$$

This applies at once to the polynomial

$$
f(x)=x^{2}-6,
$$

taking $a=1$ with $r=1$.
3. Show that the group of the elliptic curve

$$
y^{2}=x^{3}-x^{2}+1
$$

over the finite field \mathcal{F}_{7} is cyclic, and find a generator.
Answer: Let us find the finite points on the curve. The quadratic residues $\bmod 7$ are: $0,1,2,4$. The following table is more-or-less selfexplanatory.

x	y^{2}	y
0	1	± 1
1	1	± 1
2	5	---
3	5	---
$4=-3$	0	0
$5=-2$	3	---
$6=-1$	6	---

Thus there are 5 finite points on the curve. Adding the point at infinity, we see that the curve is of order 6. But the only abelian group of order 6 is the cyclic group $\mathbb{Z} /(6)$.
There is just one element of order 2, namely $(4,0)$. There must be two elements of order 3, and two elements of order 6 .
Let $P=(0,1)$. The slope of the tangent at the point (x, y) is

$$
m=\frac{3 x^{2}-2 x}{2 y}
$$

Thus the slope at P is $m=0$, and so the tangent is

$$
y=1 .
$$

This meets the curve again at the point $(1,1)$. Hence

$$
2 P=-(1,1)=(1,-1) .
$$

Thus $2 P \neq-P=(0,-1)$. Hence P does not have order 3; so it must have order 6, ie it is a generator of the group.
4. Outline the proof that a point $P=(x, y)$ of finite order on the elliptic curve

$$
y^{2}=x^{3}+a x^{2}+b x+c \quad(a, b, c \in \mathbb{Z})
$$

necessarily has integral coordinates $x, y \in \mathbb{Z}$.
Answer: [The proof below does not use p-adic numbers explicitly, as I do in my notes. However, the idea is the same. In particular, we prove the result by showing that x, y are p-adic integers for each prime p, ie p does not divide the denominators of x and y.]
In homogeneous coordinates the curve has equation

$$
Y^{2} Z=X^{3}+a X^{2} Z+b X Z^{2}+c Z^{3}
$$

We work in the affine patch $Y \neq 0$, setting $Y=1$:

$$
Z=X^{3}+a X^{2} Z+b X Z^{2}+c Z^{3}
$$

Lemma 2 If $\|Z\|_{p}<1$ (ie $p \mid Z$) then $\|X\|_{p}<1$, and in fact

$$
\|Z\|_{p}=\|X\|_{p}^{3} .
$$

Proof of Lemma \triangleright If $\|X\|_{p} \geq 1$ then X^{3} dominates the equation, ie all other terms have smaller p-adic value, which is impossible.

So $\|X\|_{p}<1$; and then the terms a $X^{2} Z, b X Z^{2}, c Z^{3}$ all have p-adic value smaller then Z. Hence Z and X^{3} must have the same p-adic value. \triangleleft

We set

$$
\mathcal{E}_{p^{e}}=\left\{[X, 1, Z]:\|X\| \leq p^{-e},\|Z\|<1\right\} .
$$

Lemma 3 Suppose $P_{1}, P_{2} \in \mathcal{E}_{p^{e}}$. Then $P_{1}+P_{2} \in \mathcal{E}_{p^{e}}$. Moreover, if $P_{1}=\left[X_{1}, 1, Z_{1}\right], P_{2}=\left[X_{2}, 1, Z_{2}\right], P+1+P_{2}=\left[X_{3}, 1, Z_{3}\right]$ then

$$
X_{3} \equiv X_{1}+X_{2} \bmod p^{3 e}
$$

Proof of Lemma \triangleright Let the line $P_{1} P_{2}$ be

$$
Z=M X+C .
$$

Then

$$
M=\frac{Z_{2}-Z_{1}}{X_{2}-X_{1}} .
$$

Subtracting the equation for the two points,
$Z_{2}-Z_{1}=\left(X_{2}^{3}-X_{1}^{3}\right)+a\left(X_{2}^{2} Z_{2}-X_{1}^{2} Z_{1}\right)+b\left(X_{2} Z_{2}^{2}-X_{1} Z_{1}^{2}\right)+c\left(Z_{2}^{3}-Z_{1}^{3}\right)$.
Writing
$X_{2}^{2} Z_{2}-X_{1}^{2} Z_{1}=\left(X_{2}^{2}-X_{1}^{2}\right) Z_{2}+X_{1}^{2}\left(Z_{2}-Z_{1}\right), \quad X_{2} Z_{2}^{2}-X_{1} Z_{1}^{2}=\left(X_{2}-X_{1}\right) Z_{2}^{2}+X_{1}\left(Z_{2}^{2}-Z_{1}^{2}\right)$,
we derive

$$
\begin{aligned}
\frac{Z_{2}-Z_{1}}{X_{2}-X_{1}} & =\frac{\left(X_{1}^{2}+X_{1} X_{2}+X_{2}^{2}\right)+a\left(X_{1}+X_{2}\right) Z_{2}+b Z_{2}^{2}}{1-a X_{1}^{2}-b X_{1}\left(Z_{1}+Z_{2}\right)-c\left(Z_{1}^{2}+Z_{1} Z_{2}+Z_{2}^{2}\right)} \\
& =\frac{N}{D}
\end{aligned}
$$

say. Evidently

$$
\|N\|_{p} \leq p^{-2 e}, \quad\|D\|_{p}=1
$$

Hence

$$
\|M\|_{p} \leq p^{-2 e}
$$

Since

$$
C=Z_{1}-M X_{1},
$$

it follows that

$$
\|C\|_{p} l e p^{-3 e} .
$$

The line $P_{1} P_{2}$ meets the curve where

$$
M X+C=X^{3}+a X^{2}(M X+C)+b X(M X+C)^{2}+c(M X+C)^{3} .
$$

Since $-[X, 1, Z]=[-X, 1,-Z]$, The roots of this equation are $X_{1}, X_{2},-X_{3}$. Thus

$$
X_{1}+X_{2}-X_{3}=\frac{a+2 b M+3 c M^{2}}{1+a M+b M^{2}+c M^{3}} C
$$

We conclude that

$$
X_{3} \equiv X_{1}+X_{2} \bmod p^{3 e} .
$$

Corollary 1 If $P \in \mathcal{E}_{p^{e}}$ then

$$
X(n P) \equiv n X(P) \bmod p^{3 e} .
$$

Lemma 4 The only point of finite order in \mathcal{E}_{p} is $O=[0,1,0]$.

Proof of Lemma \triangleright Suppose P is of order n, and suppose q is a prime factor of n. Then $(n / q) P$ is of order q. Hence we may suppose that P is of prime order q.
But

$$
X(q P) \equiv q X(P) \bmod p^{3 e}
$$

It follows that

$$
\|X(q P)\|_{p}=p^{e}
$$

if $q \neq p$, while

$$
\|X(p P)\|_{p}=p^{e+1}
$$

In either case $q P \neq 0 . \quad \triangleleft$
Lemma 5 If (x, y) is of finite order then

$$
\|x\|_{p} \leq 1, \quad\|y\|_{p} \leq 1
$$

Proof of Lemma \triangleright Conversion from X, Z coordinates to x, y coordinates is given by

$$
[X, 1, Z]=[X / Z, 1 / Z, 1]=[x, 1, y] .
$$

Thus

$$
y=\frac{1}{Z} .
$$

Since $P \notin \mathcal{E}_{p}$,

$$
\|Z\|_{p} \geq 1
$$

Thus

$$
\|y\|_{p} \leq 1
$$

If $\|x\|_{p}>1$ then x^{3} dominates the equation. Hence

$$
\|x\|_{p} \leq 1
$$

\triangleleft
Since this is true for all primes p, we conclude that

$$
x, y \in \mathbb{Z}
$$

5. Find the order of the point $(0,0)$ on the elliptic curve

$$
y^{2}-y=x^{3}-x
$$

over the rationals \mathbb{Q}.
Answer: Let $P=(0,0)$. The tangent at the point (x, y) has slope

$$
m=\frac{3 x^{2}-1}{2 y-1} .
$$

In particular, the tangent at P has slope 1. Hence the tangent is

$$
y=x .
$$

This meets the curve again where

$$
x^{2}-x=x^{3}-x
$$

ie where

$$
x=1,
$$

and therefore

$$
y=1 .
$$

Thus

$$
2 P=-(1,1)=Q,
$$

say. The line $O Q$ (where O is the neutral element $[0,1,0]$) is $x=1$. This meets the curve again where

$$
y^{2}-y=0,
$$

ie where

$$
y=0 .
$$

Thus

$$
2 P=(1,0)=R,
$$

say.
The slope at R is

$$
m=\frac{2}{-1}=-2
$$

Thus the tangent is

$$
y=-2(x-1)
$$

ie

$$
y+2 x-2=0 .
$$

This meets the curve again where

$$
4(x-1)^{2}-2(x-1)=x^{3}-x
$$

ie

$$
x^{3}-4 x^{2}+9 x-6
$$

We know that this has roots 1,1. Hence the third root is given by

$$
1+1+x=4,
$$

ie

$$
x=2 .
$$

Thus the tangent meets the curve again at the point

$$
S=(2,-2) .
$$

The line $O S$, ie $x=2$, meets the curve again where

$$
y^{2}-y=6 .
$$

One solution is $y=-2$; so the other is given by

$$
-2+y=1,
$$

ie

$$
y=3 .
$$

Thus

$$
2 R=(2,3)=T,
$$

say.
The slope at T is

$$
m=\frac{11}{5} .
$$

Let the tangent at T be

$$
y=m x+c
$$

This meets the curve where

$$
(m x+c)^{2}-(m x+c)=x^{3}-x .
$$

Thus the tangent meets the curve again where

$$
2+2+x=m^{2} .
$$

Evidently x is not integral. Hence T is of infinite order, and so therefore is $P=(0,0)$, since $T=4 P$.
6. Find all points of finite order on the elliptic curve

$$
y^{2}=x^{3}-2
$$

over the rationals \mathbb{Q}.
Answer: We have

$$
\Delta=-4(-2)^{3}=2^{5}
$$

By the (strong) Nagel-Lutz Theorem, a point (x, y) on the curve of finite order has integer coordinates x, y, and either $y=0$ or else

$$
y^{2} \mid 2^{5}
$$

ie

$$
y=0, \pm 2, \pm 4
$$

There is no point with $y=0$, since 2 is not a cube.
Suppose $y= \pm 2$. Then

$$
x^{3}-2=4,
$$

ie

$$
x^{3}=6 \text {. }
$$

This has no rational solution.
Finally, suppose $y= \pm 4$. Then

$$
x^{3}-2=16,
$$

ie

$$
x^{3}=18,
$$

which again has no rational solution.
We conclude that the only point on the curve of finite order is the neutral element $0=[0,1,0]$, or order 1 .
7. Describe carefully (but without proof) the Structure Theorem for finitelygenerated abelian groups.
How many abelian groups of order 36 (up to isomorphism) are there?
Answer: Every finitely-generated abelian group A is expressible as the direct sum of cyclic subgroups of infinite or prime-power order:

$$
A=\mathbb{Z} \oplus \mathbb{Z} \oplus \cdots \oplus \mathbb{Z} \oplus \mathbb{Z} /\left(p_{1}^{e_{1}}\right) \oplus \mathbb{Z} /\left(p_{2}^{e_{2}}\right) \oplus \cdots \oplus \mathbb{Z} /\left(p_{r}^{e_{r}}\right)
$$

Moreover, the number of copies of \mathbb{Z}, and the prime-powers $p_{1}^{e_{1}}, \ldots, p_{r}^{e_{r}}$ occuring in this direct sum are uniquely determined (up to order) by A.

Suppose

$$
|A|=36=2^{2} \cdot 3^{2} .
$$

Then the 2-component A_{2} and the 3-component A_{3} of A have orders 4 and 9. Thus

$$
A_{2}=\mathbb{Z} /(4) \text { or } \mathbb{Z} /(2) \oplus \mathbb{Z} /(2),
$$

and

$$
A_{2}=\mathbb{Z} /(9) \text { or } \mathbb{Z} /(3) \oplus \mathbb{Z} /(3)
$$

It follows that there are just 4 abelian groups of order 36, namely

$$
\begin{aligned}
& \mathbb{Z} /(4) \oplus \mathbb{Z} /(9)=\mathbb{Z} /(36), \\
& \mathbb{Z} /(2) \oplus \mathbb{Z} /(2) \oplus \mathbb{Z} /(9)=\mathbb{Z} /(18) \oplus \mathbb{Z} /(2), \\
& \mathbb{Z} /(4) \oplus \mathbb{Z} /(3) \oplus \mathbb{Z} /(3)=\mathbb{Z} /(12) \oplus \mathbb{Z} /(3), \\
& \mathbb{Z} /(2) \oplus \mathbb{Z} /(2) \oplus \mathbb{Z} /(3) \oplus \mathbb{Z} /(3)=\mathbb{Z} /(6) \oplus \mathbb{Z} /(6)
\end{aligned}
$$

