
Chapter 6

Points of Finite Order

6.1 The Torsion Subgroup

The elements of finite order in an abelian group A form a subgroup F ⊂ A,
since

a, b ∈ F =⇒ ma = 0, nb = 0 =⇒ mn(a+ b) = 0 =⇒ a+ b ∈ F.

This subgroup F is commonly called the torsion subgroup of A. (See Ap-
pendix A for further details.)

It turns out to be much easier to determine the torsion subgroup F ⊂
E(Q) of an elliptic curve than it is to determine the rank of the curve — that
is, the number of copies of Z in

E(Q) = F ⊕ Z⊕ · · · ⊕ Z.

In effect the discussion below provides a simple algorithm for determining F ,
while there is no known algorithm for determining the rank.

Proposition 6.1 The torsion subgroup of an elliptic curve E(Q) is finite, ie
E has only a finite number of points of finite order.

Proof I Suppose E has equation

y2 + c1xy + c3y = x3 + c2x
2 + c4x+ c6,

where ci ∈ Q. Choose any odd prime p not appearing in the denominators
of the ci, and consider the p-adic curve E(Qp). Any point P ∈ E(Q) of finite
order will still have finite order in E(Qp).

We know that E(Qp) has an open subgroup

E(p)(Qp) ∼= Zp.
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The only point of finite order in this subgroup is 0 (since Zp has no other
elements of finite order).

It follows that any coset

P + E(p)(Qp)

contains at most one element of finite order. For if there were two, say P,Q,
then P −Q would be a point of finite order in the subgroup.

But E(Qp) is compact, since it is a closed subspace of the compact space
P2(Qp). Hence it can be covered by a finite number of cosets

P1 + E(p)(Qp), . . . , Pr + E(p)(Qp).

Since each coset contains at most 1 point of finite order, the number of such
points is finite. J

Remarks:

1. The finiteness of the torsion group of E(Q) follows at once from the
Nagell-Lutz Theorem (Theorem 6.2), the most important result in this
Chapter.

2. We shall prove in Chapter 8 the much deeper result that the group
E(Q) of an elliptic curve over Q is finitely-generated (Mordell’s The-
orem), from which the finiteness of F follows (as shown in Appendix
A). However, it would be more realistic to describe the finiteness of
the torsion group as a small part of Mordell’s Theorem rather than a
consequence of it.

6.2 Lessons from the Real Case

Proposition 6.2 Suppose F is the torsion subgroup of the elliptic curve
E(Q). Then

F ∼= Z/(n) or F ∼= Z(2n)⊕ Z/(2).

Proof I We know that

E(R) ∼= T or T⊕ Z/(2).

Since
E(Q) ⊂ E(R),

it follows that
F ⊂ T or T⊕ Z/(2).
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Lemma Every finite subgroup of T is cyclic; and there is just one such
subgroup of each order n.

Proof of Lemma B The torsion subgroup of

T = R/Z

is
F = Q/Z.

For if t̄ ∈ T is of order n then nt ∈ Z, say nt = m, ie t = m/n ∈ Q.
Conversely, if t ∈ Q, say t = m/n, then nt̄ = 0, and so t̄ ∈ F .

Suppose
A ⊂ Q/Z

is a finite subgroup 6= 0. Since each t̄ ∈ T has a unique representative
t ∈ [−1/2, 1/2), A has a smallest representative t = m/n > 0, where we may
assume that m,n > 0, gcd(m,n) = 1.

In fact n = 1; for we can find u, v,∈ Z such that

um+ vn = 1,

and then

1

n
= u

m

n
+ v,

ie

1

n
≡ u

m

n
mod Z

Thus
1

n
∈ A.

Since 1/n ≤ m/n, this must be our minimal representative: n = 1.
Now every element t̄ ∈ A must be of the form m/n; for otherwise we

could find a representative

t−m/n ∈ (0, 1/n),

contradicting our choice of 1/n as minimal representative of A.
We conclude that

A =

{
0,

1

n
,

2

n
, . . . ,

n− 1

n

}
∼= Z/(n).
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Moreover, our argument shows that this is the only subgroup of A of order
n. C

Since this is the only subgroup of T of order n we can write

Z/(n) ⊂ T

without ambiguity, identifying

r mod n←→ r/n mod Z

This establishes the result if F ⊂ T. It remains to consider the case

A ⊂ T⊕ Z/(2).

By the Lemma, A ∩ T is cyclic, say

A ∩ T = Z/(n).

Thus
Z/(n) ⊂ A ⊂ Z/(n)⊕ Z/(2).

Since Z/(n) is of index 2 in Z/(n)⊕ Z/(n) it follows that

A = Z/(n) or A = Z/(n)⊕ Z/(2).

If n is odd then
Z/(n)⊕ Z/(2) ∼= Z/(2n)

by the Chinese Remainder Theorem. Thus either A is cyclic or else

A ∼= Z/(n)⊕ Z/(2)

with n even. J

Mazur has shown that in fact the torsion group of an elliptic curve can
only be one of a small number of groups, namely

Z/(n) (n = 1− 10, 12) and Z/(2n)⊕ Z/(2) (n = 1− 5).

6.2.1 Elements of order 2

We can distinguish between the two cases in Proposition 6.2 by considering
the number of points of order 2. For Z/(n) has no points of order 2 if
n is odd, and just one point if n is even, say n = 2m, namely m mod n;
while Z/(2n)⊕ Z/(2) has three points of order 2, namely (n mod 2n, 0 mod
2), (n mod 2n, 1 mod 2), (0 mod 2n, 1 mod 2).
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Proposition 6.3 The point P = (x, y) on the elliptic curve

E(Q) : y2 = x3 + ax2 + bx+ c (a, b, c ∈ Q)

has order 2 if and only if y = 0. There are either 0, 1 or 3 points of order 2.

Proof I If P = (x, y) then −P = (x,−y). Thus 2P = 0, ie −P = P , if and
only if y = 0.

Thus there are as many elements of order 2 as there are roots of f(x) =
x3 + ax2 + bx + c in Q. But if 2 roots α, β ∈ Q then the third root γ ∈ Q,
since

α + β + γ = −a.
J

In determining whether

f(x) = x3 + ax2 + bx+ c

has 0, 1 or 3 rational roots, one idea is very important: if a, b, c ∈ Z then
every rational root r of f(x) is in fact integral, and r | n. (For on substituting
r = m/n and multiplying by n3, each term is divisible by n except the first.)
This usually reduces the search for rational roots to a number of simple cases.

We may also note that if a, b, c ∈ Z then a necessary — but not sufficient
— condition for f(x) to have 3 rational roots is that the discriminant D
should be a perfect square: D = d2. For

D = [(α− β)(β − γ)(γ − α)]2 .

6.2.2 Elements of order 3

In any abelian group, the elements of order p (where p is a prime), together
with 0, form a subgroup; for

pa = 0, pb = 0 =⇒ p(a+ b) = 0.

We can consider this subgroup as a vector space over the finite field F(p).

Proposition 6.4 If p is an odd prime then there are either no points of order
p on the elliptic curve E(Q), or else there are exactly p − 1 such elements,
forming with 0 the group Z/(p).

Proof I An element of T ⊕ Z/(2) of odd order p is necessarily in T. Thus
the result follows from Proposition 6.2 and the Lemma in the proof of that
Proposition. J

The elements of order 3 have a particularly simple geometric description.
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Proposition 6.5 A point P 6= 0 on the elliptic curve E(Q) has order 3 if
and only if it is a point of inflexion. There are either 0 or 2 such points.

Proof I Suppose P has order 3, ie

P + P + P = 0.

From the definition of addition, this means that the tangent at P meets E in
3 coincident points P, P, P . In other words, P is a point of inflexion.

It follows from the previous Proposition that there are either 0 or 2 such
flexes. J

Remark: The point 0 is of course a flex (by choice); so there are either 1 or
3 flexes on the elliptic curve E(Q) given by a general Weierstrass equation.

6.3 Points of Finite Order are Integral

Theorem 6.1 Suppose P = (x, y) is a point of finite order on the elliptic
curve

E(Q) : y2 + c1xy + c3y = x3 + c2x
2 + c4x+ c6,

where c1, c2, c3, c4, c6 ∈ Z. Then x, y ∈ Z.

Proof I The following Lemma shows that it is sufficient to prove that y ∈ Z.

Lemma 1 Z is integrally closed in Q, ie if x ∈ Q satisfies an equation

xd + c1x
d−1 + · · ·+ cd = 0,

where c1, . . . , cd ∈ Z, then x ∈ Z.

Proof of Lemma B For each prime p,

‖x‖p ≤ 1;

for otherwise xd would dominate the equation.
Since this is true for all primes p.

x ∈ Z.

C

For an alternative — perhaps simpler — proof, suppose x = m/n, where
gcd(m,n) = 1. Multiplying out,

md + c1m
d−1n+ · · · cdnd = 0.
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Since n divides all the terms but the first,

n | md.

Since gcd(m,n) = 1, it follows that n = ±1, ie x ∈ Z.
Now suppose y ∈ Z. Then x satisfies the equation

x3 + ax2 + bx+ (c− y2) = 0.

Since all the coefficients of this cubic are integral, it follows by the Lemma
that x ∈ Z.

Suppose E(Qp) is an elliptic curve over the p-adic field. Recall that

E(p) = {[X, 1, Z] : ‖X‖p < 1, ‖Z‖p < 1}.

Lemma 2 If P = (x, y) ∈ E(Qp) then either x, y ∈ Zp or else P ∈ E(p).

Proof of Lemma B The equation of the curve in (X,Z)-coordinates is

Z + c1XZ + c3Z
2 = X3 + c2X

2Z + c4XZ
2 + c6Z

3.

Suppose P /∈ E(p), ie

‖X‖p ≥ 1 or ‖Z‖p ≥ 1.

In fact
‖X‖p ≥ 1 =⇒ ‖Z‖p ≥ 1;

for if ‖X‖p ≥ 1 but ‖Z‖p < 1 then X3 would dominate the equation. Thus

‖Z‖p ≥ 1

in either case.
Since y = 1/Z

‖Z‖p ≥ 1 =⇒ ‖y‖p ≤ 1.

Hence
x, y ∈ Zp

by Lemma ??. C

Lemma 3 1. If p is odd then E(p) is torsion-free (ie has no elements of
finite order except 0).

2. E(22) is torsion-free.
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Proof of Lemma B This follows at once from the fact that

E(p) ∼= Zp (p odd), E(22) ∼= Z2,

as we saw in Chapter 5. C

Lemma 4 If P ∈ E(2) then 2P ∈ E(22).

Proof of Lemma B Suppose P = (X,Z). Recall that although E(2) was

defined as
E(2) =

{
(X,Z) ∈ E : ‖X‖2, ‖Z‖2 < 2−1

}
,

in fact it follows from the equation

Z(1 + c1X + c2Z) = X3 + c2X
2Z + c4XZ

2 + C6Z
3

that
(X,Z) ∈ E(2) =⇒ ‖Z‖2 ≤ 2−3.

(More generally, although E(pe) is defined as

E(pe) =
{

(X,Z) ∈ E : ‖X‖p < p−e, ‖Z‖ < 1
}
,

in fact
(X,Z) ∈ E(pe) =⇒ ‖Z‖p ≤ p−3e

by induction on e.)
The tangent at P is

Z = MX +D

where

M =
∂F/∂X

∂F/∂Z

=
c1Z − (3X2 + 2c2XZ + 3c4Z

2)

1 + c1X + 2c3Z − (c2X2 + 2c4XZ + 3c6Z2)
.

The term 3X2 dominates the numerator, while the term 1 dominates the
numerator. It follows that

‖M‖2 ≤ 2−2.

Hence
‖D‖2 = ‖Z −MX‖2 ≤ 2−3.
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The tangent meets E where

(MX +D)(1 + c1X + c3(MX +D))

= X3 + c2X
2(MX +D) + c4X(MX +D)2 + c6(MX +D)3.

Thus if the tangent meets E again at (X2, Z2) then

2X +X2 = −coeff of X2

coeff of X3

=
c1M + c3M

2 − (c2 + 2c4M + 3c6M
2)D

1 + c2M + c4M2 + c6M3
.

Hence
‖X2‖2 ≤ 2−2.

Since
‖Z2‖ = ‖MX2 +D‖ ≤ 2−4,

it follows that
(X2, Z2) ∈ E(22).

We conclude that
2P = −(X2, Z2) ∈ E(22),

since E(22( is a subgroup of E . C

Now suppose P = (x, y) ∈ E(Q) is of finite order.
For each odd prime p,

P /∈ E(p)
by Lemma 3. Thus

x, y ∈ Zp

by Lemma 2.
Since 2P is of finite order,

P ∈ E(2) =⇒ 2P ∈ E(22) =⇒ 2P = 0,

by Lemmas 4 and 3. Thus if 2P 6= 0 then

x, y ∈ Z2,

by Lemma 2.
Putting these results together, we conclude that either 2P = 0 or else

x, y ∈ Zp for all p =⇒ x, y ∈ Z.

J
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Corollary If P = (x, y) is a point of finite order on the elliptic curve

y2 = x3 + ax2 + bx+ c

then x, y ∈ Z.

Proof I After the Proposition we need only consider the case

2P = 0 =⇒ y = 0 =⇒ x3 + ax2 + bx+ c = 0.

Since a rational root of a monic polynomial with integral coefficients is nec-
essarily integral, it follows that x ∈ Z. J

Recall that if P = (x, y) is a point of

E(Q) : y2 + c1xy + c3y = x3 + c2x
2 + c4x+ c6

then
−P = (x,−y − c1x− c3).

For by definition, −P is the point where the line OP meets the curve
again. But the lines through O are just the lines

x = c

parallel to the y-axis (together with the line Z = 0 at infinity). This is clear
if we take the line in homogeneous form

lX +mY + nZ = 0.

This passes through O = [0, 1, 0] if m = 0, giving

x = X/Z = −n/l.

Thus −P is the point with the same x-coordinate as P , say

−P = (x, y1).

But y, y1 are the roots of the quadratic

y2 + y(c1x+ c3)− (x3 + c2x
2 + c4x+ c6).

Hence

y + y1 = −(c1x+ c3),

MA342P–2016 6–10



ie

y1 = −y − c1x− c3.

It follows that

2P = 0⇐⇒ −P = P

⇐⇒ y = −y − c1x− c3
⇐⇒ 2y + c1x+ c3 = 0.

Example: Consider the curve

E(Q) : y2 + xy = x3 + 4x2 + x.

If P = (x, y) is of order 2 then

2y + x = 0.

This meets the curve where

x2/4− x2/2 = x3 + 4x2 + x,

ie

4x3 + 17x2 + 4x = 0.

This has roots 0,−1/4,−4. Thus the curve has three points of order 2,
namely (0, 0), (−1/4, 1/8), (4, 2).

6.4 Points of Finite Order are Small

Theorem 6.2 (Nagell-Lutz) Suppose P = (x, y) is a point of finite order
on the elliptic curve

E(Q) : y2 = x3 + ax2 + bx+ c (a, b, c ∈ Z).

Then x, y ∈ Z; and either y = 0 or

y2 | 3D,

where
D = 4a3c− a2b2 − 18abc+ 4b3 + 27c2

is the discriminant of f(x) = x3 + ax2 + bx+ c.
Moreover, if 3 | a (in particular if a = 0) then either y = 0 or

y2 | D.
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Proof I Suppose P = (x, y) has finite order. We know that x, y ∈ Z.
We start by proving the weaker result (sometimes known as the weak

Nagell-Lutz Theorem) that either y = 0 or

y | D,

since this brings out the basic idea in a simpler form.
Let 2P = (x2, y2). Since P is of finite order so is 2P . Hence by Proposi-

tion ,
x2, y2 ∈ Z.

Recall that the resultant R(f, g) of two polynomials

f(x) = a0x
m + a1x

m−1 + · · ·+ am, g(x) = b0x
n + b1x

n−1 + · · ·+ bn

is the determinant of the (m+ n)× (m+ n) matrix

R(f, g) =



a0 a1 a2 . . . am 0 . . . 0
0 a0 a1 . . . am−1 am . . . 0

. . .
0 0 0 . . . . . . am−1 am
b0 b1 b2 . . . bn 0 . . . 0
0 b0 b1 . . . bn−1 bn . . . 0

. . .
0 0 0 . . . . . . bn−1 bn


We saw earlier that R(f, g) = 0 is a necessary and sufficient condition

for f(x), g(x) to have a root in common. Our present use of the resultant,
though related, is more subtle.

Lemma 1 Suppose f(x), g(x) ∈ Z[x]. Then there exist polynomials u(x), v(x) ∈
Z[x] such that

u(x)f(x) + v(x)g(x) = R(f, g).

Proof of Lemma B Let us associate to the polynomials

u(x) = c0x
n−1 + c1x

n−2 + · · ·+ cn−1, v(x) = d0x
m−1 + d1x

m−2 + · · ·+ dm−1
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(of degrees < n and < m) the (m+ n)-vector

c0
c1
...

cn−1
d0
d1
...

dm−1


.

It is readily verified that if

u(x)f(x) + v(x)g(x) = e0x
mn−1 + · · ·+ em+n−1,

then the ek are given by the vector equation

R(f, g)



c0
c1
...

cn−1
d0
d1
...

dm−1


=


e0
e1
...

em+n−1

 .

Thus we are looking for integers ci, dj such that
e0
e1
...

em+n−1

 =


0
...
0

R(f, g)


The existence of such integers follows at once from the following Sub-

lemma. (For simplicity we prove the result with detA as first coordinate
rather than last; but it is easy to see that this does not matter.)

Sublemma Suppose A is an n × n-matrix with integer entries. Then we
can find a vector v with integer entries such that

A

v1...
vn

 =


detA

0
...
0

 .
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Proof of Lemma B On expanding detA by its first column,

detA = a11A11 + a21A21 + · · ·+ an1An1,

where the Ai1’s are the corresponding co-factors. On the other hand, if i 6= n
then

a1iA11 + a2iA21 + · · ·+ aniAn1 = 0,

since this is the determinant of a matrix with two identical columns.
Thus the vector

v =


A11

A21
...

An1


has the required property. C

C

We apply this Lemma to the polynomials f(x), f ′(x), recalling that

R(f, f ′) = −D(f).

It follows that we can find polynomials u(x), v(x) ∈ Z[x] such that

u(x)f(x) + v(x)f ′(x) = D.

Hence
y | f(x), f ′(x) =⇒ y | D.

Turning now to the full result, suppose as before that P = (x, y) is of
finite order, and that 2P = (x2, y2). We know that x, y, x2, y2 ∈ Z.

Lemma 2 The x-coordinate of 2P is

x4 − 2bx2 − 8cx+ b2 − 4ac

4y2
.

Proof of Lemma B Let x2 = x(2P ). Recall that

2x+ x2 = m2 − a,

where

m =
f ′(x)

2y
.
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Thus

x2 =
f ′(x)2

4y2
− (2x+ a).

Now
y2 = f(x).

Hence

x2 =
g(x)

4y2
,

where

g(x) = f ′(x)2 − 4(2x+ a)f(x)

= (3x2 + 2ax+ b)2 − 4(2x+ a)(x3 + ax2 + bx+ c)

= x4 − 2bx2 − 8cx+ (b2 − 4ac).

C

It follows from the lemma that

y2 | g(x);

Thus
y2 | f(x), g(x)

since y2 = f(x).
Now let us assume that a = 0. In that case

f(x) = x3 + ax2 + bx+ c, g(x) = x4 − 2bx2 − 8cx+ b2.

(Observe that g(x) = (x2 − b)2 − 8cx. This is an easy way to remember
the formula for x(2P ) when a = 0; and it will also have some relevance later,
in the proof of Mordell’s Theorem.)

Lemma 3 If a = 0 then there exist polynomials u(x), v(x) ∈ Z[x] of degrees
3, 2 such that

u(x)f(x) + v(x)g(x) = D.

Proof of Lemma B Let us see if we can find u(x), v(x) ∈ Q[x] of the form

u(x) = x3 +Bx+ C, v(x) = x2 +D

(with B,C,D ∈ Q) such that

u(x)f(x)− v(x)g(x) = const.
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The coefficients of x6 and x5 on the left both vanish. Equating the coef-
ficients of x4, x3, x2, x yields

x4 : b+B = −2b+D =⇒ D = B + 3b
x3 : c+ C = −8c =⇒ C = −9c
x2 : Bb = b2 − 2Db => b = 0 or 2D +B = b
x : Bc+ Cb = −8Dc =⇒ B − 9b = −8D.

If b = 0 then D = B = 0. Otherwise, substituting for D in the third equation
gives

B = −5b/3, D = 4b/3

(which also holds if b = 0). The final equation then reduces to

−5b/3− 9b = −32b/3,

which is an identity.
Multiplying by 3 (to make the coefficients integral),

u(x) = 3x3 − 5bx− 27c, v(x) = 3x2 + 4b;

yielding
u(x)f(x)− v(x)g(x) = −27c2 − 4b2 = D,

as required C

Remarks:

1. For any polynomials f(x), g(x) ∈ Z[x], the integers m ∈ Z for which
there exist u(x), v(x) ∈ Z[x] such that

u(x)f(x)− v(x)g(x) = m

form an ideal in Z. Accordingly there is a least integer, say S = S(f, g),
such that m has this property if and only if S | m.

We saw in Lemma 1 that the resultant R(f, g) has this property. Ac-
cordingly,

S(f, g) | R(f, g).

We know of course that f(x), g(x) have a factor in common if and
only if R(f, g) = 0. Note that it doesn’t matter here whether one is
speaking of factors in Q[x] or Z[x]; since Z[x] is a unique factorisation
domain it follows easily that if f(x), g(x) ∈ Z[x] have a common factor
d(x) ∈ Q[x] — which we may take to be monic — then md(x) is a
common factor in Z[x], where m is the lcm of the denominators of the
coefficients of d(x), ie the smallest integer such that md(x) ∈ Z[x].
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2. Turning to our polynomials f(x), g(x), it is clear that these do not have
a factor in common, since

g(x) = f ′(x)2 − (2x+ a)f(x).

So an irreducible common factor of f(x), g(x) would also be a factor
of f ′(x), in which case f(x) would have a double root, excluded in the
definition of an elliptic curve. Thus R(f, g) 6= 0.

In fact it is a straightforward if lengthy task to show that

R(f, g) = D2;

so Lemma 1 would not have given us the stronger result we are looking
for.

3. It is not entirely clear (to me at least) why S(f, g) = D rather than
D2.

Nor is it clear to me why u(x), v(x) have the special form above, with
the coefficients of x2 in u(x) and x in v(x) both 0.

The result now follows as before; since x, y ∈ Z,

y2 | f(x), g(x) =⇒ y2 | D.

It remains to consider the general case, when a 6= 0.
Let

f0(x) = f(x− a/3), g0(x) = g(x− a/3),

so that
f0(x) = x3 + b′x+ c′.

It follows from the identity

(x− a/3)3 + a(x− a/3)2 + b(x− a/3) + c = x3 + b′x+ c′,

that
b′ = b− a2/3, c′ = c− ab/3 + 2a3/27.

From the result we established when a = 0,

u0(x)f0(x)− v0(x)g0(x) = −(4b′3 + 27c′2) = D,

where
u0(x) = 3x3 − 5b′x− 27c′, v(x) = 3x2 + 4b′.

MA342P–2016 6–17



Substituting x+ a/3 for x,

u0(x+ a/3)f(x)− v0(x+ a/3)g(x) = D.

But

u0(x+ a/3) = 3(x+ a/3)3 − 5b′(x+ a/3)− 27c′

= 3(x+ a/3)3 − 5(b− a2/3)(x+ a/3)− (27c− 9ab+ 2a3)

= 3x3 + ax2 +
1

3
(a2 − 15b− 5a2)x+

1

9
(a3 + 5a3)− (27c− 9ab+ 2a3)

=
1

3

(
9x3 + 3ax2 + (a2 − 15b− 5a2)x+ (8a3 − 54c+ 18ab)

)
,

while

v0(x+ a/3) = 3(x+ a/3)2 + 4b′

= 3x2 + 2ax+ a2/3 + 4b− 4a2/x

= 3x2 + 2ax+ (4b− a2).

Multiplying by 3,
u(x)f(x)− v(x)g(x) = 3D,

where

u(x) = 9x3+3ax2+(a2−15b−5a2)x+(8a3−54c+18ab), v(x) = 9x2+6ax+3(4b−a2).

It follows as before that
y2 | 3D.

Finally, we observe that if 3 | a then b′, c′ ∈ Z, ie we can reduce the
equation to the form y2 = x3 + b′x+ c without introducing fractions, so our
previous argument shows that

y2 | D.

J

6.5 Examples

In these examples we compute the torsion group F of various elliptic curves
E(Q).
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1. We look first at the curve

E(Q) : y2 = x3 + 1.

Recall that the discriminant of the polynomial

f(x) = x3 + bx+ c

is
D = −

(
4b3 + 27c2

)
.

Thus in the present case
D = −27.

It follows from Nagell-Lutz (Theorem 6.2) that

y = 0,±1,±3.

There is just one point of order 2, ie with y = 0, namely (−1, 0).

If y = ±1 then x = 0, giving the two points (0,±1).

If y = ±3 then x3 = 8, giving the two points (2,±3).

It remains to determine which of these points (0,±1), (2,±3) are of
finite order – remembering that the Nagell-Lutz condition y2 | D is
necessary (if y 6= 0) but by no means sufficient.

The tangent at P = (0, 1) has slope

m =
p′(x)

2y
=

3x2

2y
= 0.

Thus the tangent at P is
y = 1.

This meets E where
x3 = 0,

ie thrice at P . In other words P is a flex, and so of order 3.

Turning to the point (2, 3) we have

m =
3x2

2y
= 2.

and so the tangent at this point is

y = 2x− 1,
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which meets E again at (0,−1). Thus

2(2, 3) = −(0,−1) = (0, 1).

We conclude that (2, 3) (and (2,−3) = −(2, 3)) are of order 6, and

F = Z/(6).

2. Consider the curve
E(Q) : y2 = x3 − 1.

Again, D = −27, and there is one point (1, 0) of order 2.

But now

y = ±1 =⇒ x3 = 2,

y = ±3 =⇒ x3 = 10,

neither of which has solutions in Z. We conclude that

F = Z/(2).

3. Suppose F is the torsion subgroup of

E(Q) : y2 = x3 + x

We have
D = −4,

and so
y = 0,±1,±2.

There is just one point of order 2, ie with y = 0, namely (0, 0).

If y = ±1 then
x3 + x− 1 = 0.

Note that a rational root α ∈ Q of a monic polynomial

xn + a2x
n−1 + · · ·+ an

with integral coefficients ai ∈ Z is necessarily integral: α ∈ Z. And
evidently α | an. Thus in the present case the only possible rational
roots of the equation are x = ±1; and neither of these is in fact a root.

If y = ±2 then
x3 + x− 4 = 0.
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The only possible solutions to this are x = ±1,±2,±4; and it is readily
verified that none of these is in fact a solution.

We conclude that
F = Z/(2).

4. Consider the curve
y2 = x3 − x2.

This curve is singular, since f(x) = x3 − x2 has a double root, (and so
D = 0). Thus it is not an elliptic curve, and so is outside our present
study, although we shall say a little about singular cubic curves in the
next Chapter.

5. Consider the curve
E(Q) : y2 − y = x3 − x.

This has 6 obvious integral points, namely (0, 0), (0, 1), (1, 0), (1, 1), (−1, 0), (−1, 1).

We can bring the curve to standard form by setting y1 = y − 1/2, ie
y = y1+1/2, to complete the square on the left. The equation becomes

y21 = x3 − x+ 1/4.

Now we can make the coefficients integral by the transformation

y2 = 23y1, x2 = 22x,

giving
y22 = x32 − 24x2 + 26/4,

since the coefficient of x has weight 4, while the constant coefficient has
weight 6. (In practice it is probably easier to apply this transformation
first, and then complete the square; that way our coefficients always
remain integral.) Our new equation is

y22 = x32 − 16x2 + 16,

with discriminant

D = −(4 · 212 + 27 · 28)

= −28(64 + 27)

= −2891.

By Nagell-Lutz, if (x2, y2) ∈ F then x2, y2 ∈ Z and

y2 = 0,±1,±2,±4,±8,±16.
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Note however that if P is not of order 2, ie y2 6= 0, then

y =
y2 − 4

8
∈ Z

by Theorem 6.2. Only the cases y2 = ±4 satisfy this condition. Thus
we only have to consider

y2 = 0,±4.

If y2 = 0 then
x32 − 16x2 + 16 = 0.

But

16 | x32 =⇒ 4 | x2
=⇒ 32 | x32, 16x2

=⇒ 32 | 16,

which is absurd. Thus there are no points of order 2 on E .

Finally, if y2 = ±4 then

16 = x32 − 16x2 + 16 =⇒ x32 − 16x2 = 0 =⇒ x2 = 0,±4.

This gives the 6 ‘obvious’ points we mentioned at the beginning.

It remains to determine which of these points are of finite order.

Reverting to the original equation, suppose P = (0, 0). We have

(2y − 1)
dy

dx
= 3x2 − 1,

ie

dy

dx
=

3x2 − 1

2y − 1
.

Thus the tangent at P has slope m = 1, and so is

y = x.

This meets the curve again at (1, 1). Hence

2(0, 0) = −(1, 1) = (1, 0).
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The tangent at (1, 0) has slope m = −2, and so is

y = −2x+ 2,

which meets E where

(−2x+ 2)2 − x(−2x+ 2) = x3 − x,

ie

x3 − 6x2 + 9x− 4 = 0.

We know this has two roots equal to 1. The third root must satisfy

2 + x = 6,

ie

x = 4.

At this point
y = −2x+ 2 = −6.

We know that this point (4,−6) is not of finite order, by Nagell-Lutz.
It follows that (1, 0) is of infinite order. Hence so is (0, 0) since 2(0, 0) =
(1, 0); and so too are (1, 1) = −(1, 0) and (0, 1) = −(0, 0)

It remains to consider the points (−1, 0 and (−1, 1) = −(−1, 0). Note
that if these are of finite order then they must be of order 3 (since there
would be just 3 points in F ), ie they would be flexes.

The tangent at P = (−1, 0) has slope m = −2, and so is

y = −2x− 2.

This meets E where

(−2x− 1)2 − x(−2x− 1) = x3 − x.

We know that this has two roots -1. Hence the third root is given by

−2 + x = 6,

ie

x = 8,
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as before. At this point

y = −2x+ 2 = −14.

So
2(−1, 0) = −(8,−14).

Again, we know by Nagell-Lutz that this point is of infinite order, and
so therefore is (−1, 0) and (−1, 1) = −(−1, 0).

To verify that P = (4,−6), for example, is not of finite order, we may
note that the tangent at this point has slope

m = −47

11
.

But the tangent
y = mx+ d

at P meets the curve again where

(mx+ d)2 − x(mx+ d) = x3 − x,

ie at a point (x1, y1) with

2 · 4 + x1 = m2 −m.

By Nagell-Lutz, x1 ∈ Z (since we have seen that there are no points of
order 2), and so m2 −m ∈ Z, which is manifestly not the case.

We conclude that the torsion-group of this curve is trivial:

F = {0}.
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