Chapter 6

Points of Finite Order

6.1 The Torsion Subgroup

The elements of finite order in an abelian group A form a subgroup $F \subset A$, since

$$
a, b \in F \Longrightarrow m a=0, n b=0 \Longrightarrow m n(a+b)=0 \Longrightarrow a+b \in F
$$

This subgroup F is commonly called the torsion subgroup of A. (See Appendix A for further details.)

It turns out to be much easier to determine the torsion subgroup $F \subset$ $\mathcal{E}(\mathbb{Q})$ of an elliptic curve than it is to determine the rank of the curve - that is, the number of copies of \mathbb{Z} in

$$
\mathcal{E}(\mathbb{Q})=F \oplus \mathbb{Z} \oplus \cdots \oplus \mathbb{Z}
$$

In effect the discussion below provides a simple algorithm for determining F, while there is no known algorithm for determining the rank.

Proposition 6.1 The torsion subgroup of an elliptic curve $\mathcal{E}(\mathbb{Q})$ is finite, ie \mathcal{E} has only a finite number of points of finite order.

Proof \bullet Suppose \mathcal{E} has equation

$$
y^{2}+c_{1} x y+c_{3} y=x^{3}+c_{2} x^{2}+c_{4} x+c_{6}
$$

where $c_{i} \in \mathbb{Q}$. Choose any odd prime p not appearing in the denominators of the c_{i}, and consider the p-adic curve $\mathcal{E}\left(\mathbb{Q}_{p}\right)$. Any point $P \in \mathcal{E}(\mathbb{Q})$ of finite order will still have finite order in $\mathcal{E}\left(\mathbb{Q}_{p}\right)$.

We know that $\mathcal{E}\left(\mathbb{Q}_{p}\right)$ has an open subgroup

$$
\mathcal{E}_{(p)}\left(\mathbb{Q}_{p}\right) \cong \mathbb{Z}_{p}
$$

The only point of finite order in this subgroup is 0 (since \mathbb{Z}_{p} has no other elements of finite order).

It follows that any coset

$$
P+\mathcal{E}_{(p)}\left(\mathbb{Q}_{p}\right)
$$

contains at most one element of finite order. For if there were two, say P, Q, then $P-Q$ would be a point of finite order in the subgroup.

But $\mathcal{E}\left(\mathbb{Q}_{p}\right)$ is compact, since it is a closed subspace of the compact space $\mathbb{P}^{2}\left(\mathbb{Q}_{p}\right)$. Hence it can be covered by a finite number of cosets

$$
P_{1}+\mathcal{E}_{(p)}\left(\mathbb{Q}_{p}\right), \ldots, P_{r}+\mathcal{E}_{(p)}\left(\mathbb{Q}_{p}\right)
$$

Since each coset contains at most 1 point of finite order, the number of such points is finite.

Remarks:

1. The finiteness of the torsion group of $\mathcal{E}(\mathbb{Q})$ follows at once from the Nagell-Lutz Theorem (Theorem 6.2), the most important result in this Chapter.
2. We shall prove in Chapter 8 the much deeper result that the group $\mathcal{E}(\mathbb{Q})$ of an elliptic curve over \mathbb{Q} is finitely-generated (Mordell's Theorem), from which the finiteness of F follows (as shown in Appendix A). However, it would be more realistic to describe the finiteness of the torsion group as a small part of Mordell's Theorem rather than a consequence of it.

6.2 Lessons from the Real Case

Proposition 6.2 Suppose F is the torsion subgroup of the elliptic curve $\mathcal{E}(\mathbb{Q})$. Then

$$
F \cong \mathbb{Z} /(n) \text { or } F \cong \mathbb{Z}(2 n) \oplus \mathbb{Z} /(2)
$$

Proof \bullet We know that

$$
\mathcal{E}(\mathbb{R}) \cong \mathbb{T} \text { or } \mathbb{T} \oplus \mathbb{Z} /(2)
$$

Since

$$
\mathcal{E}(\mathbb{Q}) \subset \mathcal{E}(\mathbb{R})
$$

it follows that

$$
F \subset \mathbb{T} \text { or } \mathbb{T} \oplus \mathbb{Z} /(2)
$$

$$
\text { MA342P-2016 } \quad 6-2
$$

Lemma Every finite subgroup of \mathbb{T} is cyclic; and there is just one such subgroup of each order n.

Proof of Lemma \triangleright The torsion subgroup of

$$
\mathbb{T}=\mathbb{R} / \mathbb{Z}
$$

is

$$
F=\mathbb{Q} / \mathbb{Z} .
$$

For if $\bar{t} \in \mathbb{T}$ is of order n then $n t \in \mathbb{Z}$, say $n t=m$, ie $t=m / n \in \mathbb{Q}$. Conversely, if $t \in \mathbb{Q}$, say $t=m / n$, then $n \bar{t}=0$, and so $\bar{t} \in F$.

Suppose

$$
A \subset \mathbb{Q} / \mathbb{Z}
$$

is a finite subgroup $\neq 0$. Since each $\bar{t} \in \mathbb{T}$ has a unique representative $t \in[-1 / 2,1 / 2), A$ has a smallest representative $t=m / n>0$, where we may assume that $m, n>0, \operatorname{gcd}(m, n)=1$.

In fact $n=1$; for we can find $u, v, \in \mathbb{Z}$ such that

$$
u m+v n=1,
$$

and then

$$
\frac{1}{n}=u \frac{m}{n}+v
$$

ie

$$
\frac{1}{n} \equiv u \frac{m}{n} \bmod \mathbb{Z}
$$

Thus

$$
\frac{1}{n} \in A .
$$

Since $1 / n \leq m / n$, this must be our minimal representative: $n=1$.
Now every element $\bar{t} \in A$ must be of the form m / n; for otherwise we could find a representative

$$
t-m / n \in(0,1 / n)
$$

contradicting our choice of $1 / n$ as minimal representative of A.
We conclude that

$$
A=\left\{0, \frac{1}{n}, \frac{2}{n}, \ldots, \frac{n-1}{n}\right\} \cong \mathbb{Z} /(n) .
$$

Moreover, our argument shows that this is the only subgroup of A of order n.

Since this is the only subgroup of \mathbb{T} of order n we can write

$$
\mathbb{Z} /(n) \subset \mathbb{T}
$$

without ambiguity, identifying

$$
r \bmod n \longleftrightarrow r / n \bmod \mathbb{Z}
$$

This establishes the result if $F \subset \mathbb{T}$. It remains to consider the case

$$
A \subset \mathbb{T} \oplus \mathbb{Z} /(2)
$$

By the Lemma, $A \cap \mathbb{T}$ is cyclic, say

$$
A \cap \mathbb{T}=\mathbb{Z} /(n)
$$

Thus

$$
\mathbb{Z} /(n) \subset A \subset \mathbb{Z} /(n) \oplus \mathbb{Z} /(2)
$$

Since $\mathbb{Z} /(n)$ is of index 2 in $\mathbb{Z} /(n) \oplus \mathbb{Z} /(n)$ it follows that

$$
A=\mathbb{Z} /(n) \text { or } A=\mathbb{Z} /(n) \oplus \mathbb{Z} /(2)
$$

If n is odd then

$$
\mathbb{Z} /(n) \oplus \mathbb{Z} /(2) \cong \mathbb{Z} /(2 n)
$$

by the Chinese Remainder Theorem. Thus either A is cyclic or else

$$
A \cong \mathbb{Z} /(n) \oplus \mathbb{Z} /(2)
$$

with n even.
Mazur has shown that in fact the torsion group of an elliptic curve can only be one of a small number of groups, namely

$$
\mathbb{Z} /(n)(n=1-10,12) \text { and } \mathbb{Z} /(2 n) \oplus \mathbb{Z} /(2)(n=1-5)
$$

6.2.1 Elements of order 2

We can distinguish between the two cases in Proposition 6.2 by considering the number of points of order 2 . For $Z /(n)$ has no points of order 2 if n is odd, and just one point if n is even, say $n=2 m$, namely $m \bmod n$; while $\mathbb{Z} /(2 n) \oplus \mathbb{Z} /(2)$ has three points of order 2 , namely $(n \bmod 2 n, 0 \bmod$ $2),(n \bmod 2 n, 1 \bmod 2),(0 \bmod 2 n, 1 \bmod 2)$.

Proposition 6.3 The point $P=(x, y)$ on the elliptic curve

$$
\mathcal{E}(\mathbb{Q}): y^{2}=x^{3}+a x^{2}+b x+c \quad(a, b, c \in \mathbb{Q})
$$

has order 2 if and only if $y=0$. There are either 0, 1 or 3 points of order 2.
Proof \bullet If $P=(x, y)$ then $-P=(x,-y)$. Thus $2 P=0$, ie $-P=P$, if and only if $y=0$.

Thus there are as many elements of order 2 as there are roots of $f(x)=$ $x^{3}+a x^{2}+b x+c$ in \mathbb{Q}. But if 2 roots $\alpha, \beta \in \mathbb{Q}$ then the third root $\gamma \in \mathbb{Q}$, since

$$
\alpha+\beta+\gamma=-a
$$

In determining whether

$$
f(x)=x^{3}+a x^{2}+b x+c
$$

has 0 , 1 or 3 rational roots, one idea is very important: if $a, b, c \in \mathbb{Z}$ then every rational root r of $f(x)$ is in fact integral, and $r \mid n$. (For on substituting $r=m / n$ and multiplying by n^{3}, each term is divisible by n except the first.) This usually reduces the search for rational roots to a number of simple cases.

We may also note that if $a, b, c \in \mathbb{Z}$ then a necessary - but not sufficient - condition for $f(x)$ to have 3 rational roots is that the discriminant D should be a perfect square: $D=d^{2}$. For

$$
D=[(\alpha-\beta)(\beta-\gamma)(\gamma-\alpha)]^{2}
$$

6.2.2 Elements of order 3

In any abelian group, the elements of order p (where p is a prime), together with 0 , form a subgroup; for

$$
p a=0, p b=0 \Longrightarrow p(a+b)=0
$$

We can consider this subgroup as a vector space over the finite field $\mathbb{F}(p)$.
Proposition 6.4 If p is an odd prime then there are either no points of order p on the elliptic curve $\mathcal{E}(\mathbb{Q})$, or else there are exactly $p-1$ such elements, forming with 0 the group $\mathbb{Z} /(p)$.

Proof \bullet An element of $\mathbb{T} \oplus \mathbb{Z} /(2)$ of odd order p is necessarily in \mathbb{T}. Thus the result follows from Proposition 6.2 and the Lemma in the proof of that Proposition.

The elements of order 3 have a particularly simple geometric description.

Proposition 6.5 A point $P \neq 0$ on the elliptic curve $\mathcal{E}(\mathbb{Q})$ has order 3 if and only if it is a point of inflexion. There are either 0 or 2 such points.

Proof \downarrow Suppose P has order 3, ie

$$
P+P+P=0 .
$$

From the definition of addition, this means that the tangent at P meets \mathcal{E} in 3 coincident points P, P, P. In other words, P is a point of inflexion.

It follows from the previous Proposition that there are either 0 or 2 such flexes.

Remark: The point 0 is of course a flex (by choice); so there are either 1 or 3 flexes on the elliptic curve $\mathcal{E}(\mathbb{Q})$ given by a general Weierstrass equation.

6.3 Points of Finite Order are Integral

Theorem 6.1 Suppose $P=(x, y)$ is a point of finite order on the elliptic curve

$$
\mathcal{E}(\mathbb{Q}): y^{2}+c_{1} x y+c_{3} y=x^{3}+c_{2} x^{2}+c_{4} x+c_{6},
$$

where $c_{1}, c_{2}, c_{3}, c_{4}, c_{6} \in \mathbb{Z}$. Then $x, y \in \mathbb{Z}$.
Proof - The following Lemma shows that it is sufficient to prove that $y \in \mathbb{Z}$.
Lemma $1 \mathbb{Z}$ is integrally closed in \mathbb{Q}, ie if $x \in \mathbb{Q}$ satisfies an equation

$$
x^{d}+c_{1} x^{d-1}+\cdots+c_{d}=0
$$

where $c_{1}, \ldots, c_{d} \in \mathbb{Z}$, then $x \in \mathbb{Z}$.
Proof of Lemma \triangleright For each prime p,

$$
\|x\|_{p} \leq 1
$$

for otherwise x^{d} would dominate the equation.
Since this is true for all primes p.

$$
x \in \mathbb{Z}
$$

\triangleleft
For an alternative - perhaps simpler - proof, suppose $x=m / n$, where $\operatorname{gcd}(m, n)=1$. Multiplying out,

$$
m^{d}+c_{1} m^{d-1} n+\cdots c_{d} n^{d}=0
$$

Since n divides all the terms but the first,

$$
n \mid m^{d} .
$$

Since $\operatorname{gcd}(m, n)=1$, it follows that $n= \pm 1$, ie $x \in \mathbb{Z}$.
Now suppose $y \in \mathbb{Z}$. Then x satisfies the equation

$$
x^{3}+a x^{2}+b x+\left(c-y^{2}\right)=0 .
$$

Since all the coefficients of this cubic are integral, it follows by the Lemma that $x \in \mathbb{Z}$.

Suppose $\mathcal{E}\left(\mathbb{Q}_{p}\right)$ is an elliptic curve over the p-adic field. Recall that

$$
\mathcal{E}_{(p)}=\left\{[X, 1, Z]:\|X\|_{p}<1,\|Z\|_{p}<1\right\} .
$$

Lemma 2 If $P=(x, y) \in \mathcal{E}\left(\mathbb{Q}_{p}\right)$ then either $x, y \in \mathbb{Z}_{p}$ or else $P \in \mathcal{E}_{(p)}$.
Proof of Lemma \triangleright The equation of the curve in (X, Z)-coordinates is

$$
Z+c_{1} X Z+c_{3} Z^{2}=X^{3}+c_{2} X^{2} Z+c_{4} X Z^{2}+c_{6} Z^{3}
$$

Suppose $P \notin \mathcal{E}_{(p)}$, ie

$$
\|X\|_{p} \geq 1 \text { or }\|Z\|_{p} \geq 1
$$

In fact

$$
\|X\|_{p} \geq 1 \Longrightarrow\|Z\|_{p} \geq 1
$$

for if $\|X\|_{p} \geq 1$ but $\|Z\|_{p}<1$ then X^{3} would dominate the equation. Thus

$$
\|Z\|_{p} \geq 1
$$

in either case.
Since $y=1 / Z$

$$
\|Z\|_{p} \geq 1 \Longrightarrow\|y\|_{p} \leq 1
$$

Hence

$$
x, y \in \mathbb{Z}_{p}
$$

by Lemma ??. \triangleleft
Lemma 3 1. If p is odd then $\mathcal{E}_{(p)}$ is torsion-free (ie has no elements of finite order except 0).
2. $\mathcal{E}_{\left(2^{2}\right)}$ is torsion-free.

Proof of Lemma \triangleright This follows at once from the fact that

$$
\mathcal{E}_{(p)} \cong \mathbb{Z}_{p}(p \text { odd }), \quad \mathcal{E}_{\left(2^{2}\right)} \cong \mathbb{Z}_{2},
$$

as we saw in Chapter 5 . \triangleleft
Lemma 4 If $P \in \mathcal{E}_{(2)}$ then $2 P \in \mathcal{E}_{\left(2^{2}\right)}$.
Proof of Lemma \triangleright Suppose $P=(X, Z)$. Recall that although $\mathcal{E}_{(2)}$ was defined as

$$
\mathcal{E}_{(2)}=\left\{(X, Z) \in \mathcal{E}:\|X\|_{2},\|Z\|_{2}<2^{-1}\right\},
$$

in fact it follows from the equation

$$
Z\left(1+c_{1} X+c_{2} Z\right)=X^{3}+c_{2} X^{2} Z+c_{4} X Z^{2}+C_{6} Z^{3}
$$

that

$$
(X, Z) \in \mathcal{E}_{(2)} \Longrightarrow\|Z\|_{2} \leq 2^{-3} .
$$

(More generally, although $\mathcal{E}_{\left(p^{e}\right)}$ is defined as

$$
\mathcal{E}_{\left(p^{e}\right)}=\left\{(X, Z) \in \mathcal{E}:\|X\|_{p}<p^{-e},\|Z\|<1\right\},
$$

in fact

$$
(X, Z) \in \mathcal{E}_{\left(p^{e}\right)} \Longrightarrow\|Z\|_{p} \leq p^{-3 e}
$$

by induction on e.)
The tangent at P is

$$
Z=M X+D
$$

where

$$
\begin{aligned}
M & =\frac{\partial F / \partial X}{\partial F / \partial Z} \\
& =\frac{c_{1} Z-\left(3 X^{2}+2 c_{2} X Z+3 c_{4} Z^{2}\right)}{1+c_{1} X+2 c_{3} Z-\left(c_{2} X^{2}+2 c_{4} X Z+3 c_{6} Z^{2}\right)} .
\end{aligned}
$$

The term $3 X^{2}$ dominates the numerator, while the term 1 dominates the numerator. It follows that

$$
\|M\|_{2} \leq 2^{-2}
$$

Hence

$$
\|D\|_{2}=\|Z-M X\|_{2} \leq 2^{-3}
$$

The tangent meets \mathcal{E} where

$$
\begin{aligned}
& (M X+D)\left(1+c_{1} X+c_{3}(M X+D)\right) \\
& \quad=X^{3}+c_{2} X^{2}(M X+D)+c_{4} X(M X+D)^{2}+c_{6}(M X+D)^{3}
\end{aligned}
$$

Thus if the tangent meets \mathcal{E} again at $\left(X_{2}, Z_{2}\right)$ then

$$
\begin{aligned}
2 X+X_{2} & =-\frac{\text { coeff of } X^{2}}{\text { coeff of } X^{3}} \\
& =\frac{c_{1} M+c_{3} M^{2}-\left(c_{2}+2 c_{4} M+3 c_{6} M^{2}\right) D}{1+c_{2} M+c_{4} M^{2}+c_{6} M^{3}} .
\end{aligned}
$$

Hence

$$
\left\|X_{2}\right\|_{2} \leq 2^{-2}
$$

Since

$$
\left\|Z_{2}\right\|=\left\|M X_{2}+D\right\| \leq 2^{-4}
$$

it follows that

$$
\left(X_{2}, Z_{2}\right) \in \mathcal{E}_{\left(2^{2}\right)} .
$$

We conclude that

$$
2 P=-\left(X_{2}, Z_{2}\right) \in \mathcal{E}_{\left(2^{2}\right)},
$$

since $\mathcal{E}_{\left(2^{2}(\right.}$ is a subgroup of \mathcal{E}. \triangleleft
Now suppose $P=(x, y) \in \mathcal{E}(\mathbb{Q})$ is of finite order.
For each odd prime p,

$$
P \notin \mathcal{E}_{(p)}
$$

by Lemma 3. Thus

$$
x, y \in \mathbb{Z}_{p}
$$

by Lemma 2 .
Since $2 P$ is of finite order,

$$
P \in \mathcal{E}_{(2)} \Longrightarrow 2 P \in \mathcal{E}_{\left(2^{2}\right)} \Longrightarrow 2 P=0
$$

by Lemmas 4 and 3. Thus if $2 P \neq 0$ then

$$
x, y \in \mathbb{Z}_{2},
$$

by Lemma 2 .
Putting these results together, we conclude that either $2 P=0$ or else

$$
x, y \in \mathbb{Z}_{p} \text { for all } p \Longrightarrow x, y \in \mathbb{Z}
$$

Corollary If $P=(x, y)$ is a point of finite order on the elliptic curve

$$
y^{2}=x^{3}+a x^{2}+b x+c
$$

then $x, y \in \mathbb{Z}$.
Proof After the Proposition we need only consider the case

$$
2 P=0 \Longrightarrow y=0 \Longrightarrow x^{3}+a x^{2}+b x+c=0
$$

Since a rational root of a monic polynomial with integral coefficients is necessarily integral, it follows that $x \in \mathbb{Z}$.

Recall that if $P=(x, y)$ is a point of

$$
\mathcal{E}(\mathbb{Q}): y^{2}+c_{1} x y+c_{3} y=x^{3}+c_{2} x^{2}+c_{4} x+c_{6}
$$

then

$$
-P=\left(x,-y-c_{1} x-c_{3}\right) .
$$

For by definition, $-P$ is the point where the line $O P$ meets the curve again. But the lines through O are just the lines

$$
x=c
$$

parallel to the y-axis (together with the line $Z=0$ at infinity). This is clear if we take the line in homogeneous form

$$
l X+m Y+n Z=0
$$

This passes through $O=[0,1,0]$ if $m=0$, giving

$$
x=X / Z=-n / l .
$$

Thus $-P$ is the point with the same x-coordinate as P, say

$$
-P=\left(x, y_{1}\right) .
$$

But y, y_{1} are the roots of the quadratic

$$
y^{2}+y\left(c_{1} x+c_{3}\right)-\left(x^{3}+c_{2} x^{2}+c_{4} x+c_{6}\right) .
$$

Hence

$$
y+y_{1}=-\left(c_{1} x+c_{3}\right),
$$

ie

$$
y_{1}=-y-c_{1} x-c_{3} .
$$

It follows that

$$
\begin{aligned}
2 P=0 & \Longleftrightarrow-P=P \\
& \Longleftrightarrow y=-y-c_{1} x-c_{3} \\
& \Longleftrightarrow 2 y+c_{1} x+c_{3}=0 .
\end{aligned}
$$

Example: Consider the curve

$$
\mathcal{E}(\mathbb{Q}): y^{2}+x y=x^{3}+4 x^{2}+x .
$$

If $P=(x, y)$ is of order 2 then

$$
2 y+x=0
$$

This meets the curve where

$$
x^{2} / 4-x^{2} / 2=x^{3}+4 x^{2}+x
$$

ie

$$
4 x^{3}+17 x^{2}+4 x=0
$$

This has roots $0,-1 / 4,-4$. Thus the curve has three points of order 2 , namely $(0,0),(-1 / 4,1 / 8),(4,2)$.

6.4 Points of Finite Order are Small

Theorem 6.2 (Nagell-Lutz) Suppose $P=(x, y)$ is a point of finite order on the elliptic curve

$$
\mathcal{E}(\mathbb{Q}): y^{2}=x^{3}+a x^{2}+b x+c \quad(a, b, c \in \mathbb{Z})
$$

Then $x, y \in \mathbb{Z}$; and either $y=0$ or

$$
y^{2} \mid 3 D
$$

where

$$
D=4 a^{3} c-a^{2} b^{2}-18 a b c+4 b^{3}+27 c^{2}
$$

is the discriminant of $f(x)=x^{3}+a x^{2}+b x+c$.
Moreover, if $3 \mid a$ (in particular if $a=0$) then either $y=0$ or

$$
y^{2} \mid D
$$

Proof \bullet Suppose $P=(x, y)$ has finite order. We know that $x, y \in \mathbb{Z}$.
We start by proving the weaker result (sometimes known as the weak Nagell-Lutz Theorem) that either $y=0$ or

$$
y \mid D
$$

since this brings out the basic idea in a simpler form.
Let $2 P=\left(x_{2}, y_{2}\right)$. Since P is of finite order so is $2 P$. Hence by Proposition,

$$
x_{2}, y_{2} \in \mathbb{Z}
$$

Recall that the resultant $R(f, g)$ of two polynomials

$$
f(x)=a_{0} x^{m}+a_{1} x^{m-1}+\cdots+a_{m}, g(x)=b_{0} x^{n}+b_{1} x^{n-1}+\cdots+b_{n}
$$

is the determinant of the $(m+n) \times(m+n)$ matrix

$$
\mathbf{R}(f, g)=\left(\begin{array}{cccccccc}
a_{0} & a_{1} & a_{2} & \ldots & a_{m} & 0 & \ldots & 0 \\
0 & a_{0} & a_{1} & \ldots & a_{m-1} & a_{m} & \ldots & 0 \\
& & & \ldots & & & & \\
0 & 0 & 0 & \ldots & & \ldots & a_{m-1} & a_{m} \\
b_{0} & b_{1} & b_{2} & \ldots & b_{n} & 0 & \ldots & 0 \\
0 & b_{0} & b_{1} & \ldots & b_{n-1} & b_{n} & \ldots & 0 \\
0 & 0 & 0 & \ldots & & \ldots & b_{n-1} & b_{n}
\end{array}\right)
$$

We saw earlier that $R(f, g)=0$ is a necessary and sufficient condition for $f(x), g(x)$ to have a root in common. Our present use of the resultant, though related, is more subtle.

Lemma 1 Suppose $f(x), g(x) \in \mathbb{Z}[x]$. Then there exist polynomials $u(x), v(x) \in$ $\mathbb{Z}[x]$ such that

$$
u(x) f(x)+v(x) g(x)=R(f, g) .
$$

Proof of Lemma \triangleright Let us associate to the polynomials

$$
u(x)=c_{0} x^{n-1}+c_{1} x^{n-2}+\cdots+c_{n-1}, v(x)=d_{0} x^{m-1}+d_{1} x^{m-2}+\cdots+d_{m-1}
$$

(of degrees $<n$ and $<m$) the $(m+n)$-vector

$$
\left(\begin{array}{c}
c_{0} \\
c_{1} \\
\vdots \\
c_{n-1} \\
d_{0} \\
d_{1} \\
\vdots \\
d_{m-1}
\end{array}\right) .
$$

It is readily verified that if

$$
u(x) f(x)+v(x) g(x)=e_{0} x^{m_{n}-1}+\cdots+e_{m+n-1}
$$

then the e_{k} are given by the vector equation

$$
\mathbf{R}(f, g)\left(\begin{array}{c}
c_{0} \\
c_{1} \\
\vdots \\
c_{n-1} \\
d_{0} \\
d_{1} \\
\vdots \\
d_{m-1}
\end{array}\right)=\left(\begin{array}{c}
e_{0} \\
e_{1} \\
\vdots \\
e_{m+n-1}
\end{array}\right)
$$

Thus we are looking for integers c_{i}, d_{j} such that

$$
\left(\begin{array}{c}
e_{0} \\
e_{1} \\
\vdots \\
e_{m+n-1}
\end{array}\right)=\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
R(f, g)
\end{array}\right)
$$

The existence of such integers follows at once from the following Sublemma. (For simplicity we prove the result with $\operatorname{det} A$ as first coordinate rather than last; but it is easy to see that this does not matter.)

Sublemma Suppose A is an $n \times n$-matrix with integer entries. Then we can find a vector v with integer entries such that

$$
A\left(\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right)=\left(\begin{array}{c}
\operatorname{det} A \\
0 \\
\vdots \\
0
\end{array}\right)
$$

Proof of Lemma \triangleright On expanding $\operatorname{det} A$ by its first column,

$$
\operatorname{det} A=a_{11} A_{11}+a_{21} A_{21}+\cdots+a_{n 1} A_{n 1},
$$

where the $A_{i 1}$'s are the corresponding co-factors. On the other hand, if $i \neq n$ then

$$
a_{1 i} A_{11}+a_{2 i} A_{21}+\cdots+a_{n i} A_{n 1}=0
$$

since this is the determinant of a matrix with two identical columns.
Thus the vector

$$
v=\left(\begin{array}{c}
A_{11} \\
A_{21} \\
\vdots \\
A_{n 1}
\end{array}\right)
$$

has the required property. \triangleleft
\triangleleft
We apply this Lemma to the polynomials $f(x), f^{\prime}(x)$, recalling that

$$
R\left(f, f^{\prime}\right)=-D(f) .
$$

It follows that we can find polynomials $u(x), v(x) \in \mathbb{Z}[x]$ such that

$$
u(x) f(x)+v(x) f^{\prime}(x)=D
$$

Hence

$$
y\left|f(x), f^{\prime}(x) \Longrightarrow y\right| D
$$

Turning now to the full result, suppose as before that $P=(x, y)$ is of finite order, and that $2 P=\left(x_{2}, y_{2}\right)$. We know that $x, y, x_{2}, y_{2} \in \mathbb{Z}$.

Lemma 2 The x-coordinate of $2 P$ is

$$
\frac{x^{4}-2 b x^{2}-8 c x+b^{2}-4 a c}{4 y^{2}} .
$$

Proof of Lemma \triangleright Let $x_{2}=x(2 P)$. Recall that

$$
2 x+x_{2}=m^{2}-a,
$$

where

$$
m=\frac{f^{\prime}(x)}{2 y} .
$$

Thus

$$
x_{2}=\frac{f^{\prime}(x)^{2}}{4 y^{2}}-(2 x+a)
$$

Now

$$
y^{2}=f(x)
$$

Hence

$$
x_{2}=\frac{g(x)}{4 y^{2}}
$$

where

$$
\begin{aligned}
g(x) & =f^{\prime}(x)^{2}-4(2 x+a) f(x) \\
& =\left(3 x^{2}+2 a x+b\right)^{2}-4(2 x+a)\left(x^{3}+a x^{2}+b x+c\right) \\
& =x^{4}-2 b x^{2}-8 c x+\left(b^{2}-4 a c\right) .
\end{aligned}
$$

\triangleleft
It follows from the lemma that

$$
y^{2} \mid g(x) ;
$$

Thus

$$
y^{2} \mid f(x), g(x)
$$

since $y^{2}=f(x)$.
Now let us assume that $a=0$. In that case

$$
f(x)=x^{3}+a x^{2}+b x+c, g(x)=x^{4}-2 b x^{2}-8 c x+b^{2}
$$

(Observe that $g(x)=\left(x^{2}-b\right)^{2}-8 c x$. This is an easy way to remember the formula for $x(2 P)$ when $a=0$; and it will also have some relevance later, in the proof of Mordell's Theorem.)

Lemma 3 If $a=0$ then there exist polynomials $u(x), v(x) \in \mathbb{Z}[x]$ of degrees 3,2 such that

$$
u(x) f(x)+v(x) g(x)=D
$$

Proof of Lemma \triangleright Let us see if we can find $u(x), v(x) \in \mathbb{Q}[x]$ of the form

$$
u(x)=x^{3}+B x+C, \quad v(x)=x^{2}+D
$$

(with $B, C, D \in \mathbb{Q}$) such that

$$
u(x) f(x)-v(x) g(x)=\text { const. }
$$

The coefficients of x^{6} and x^{5} on the left both vanish. Equating the coefficients of x^{4}, x^{3}, x^{2}, x yields

$$
\begin{array}{lll}
x^{4}: & b+B=-2 b+D & \Longrightarrow D=B+3 b \\
x^{3}: & c+C=-8 c & \Longrightarrow C=-9 c \\
x^{2}: & B b=b^{2}-2 D b & \Longrightarrow>b=0 \text { or } 2 D+B=b \\
x: & B c+C b=-8 D c & \Longrightarrow B-9 b=-8 D .
\end{array}
$$

If $b=0$ then $D=B=0$. Otherwise, substituting for D in the third equation gives

$$
B=-5 b / 3, \quad D=4 b / 3
$$

(which also holds if $b=0$). The final equation then reduces to

$$
-5 b / 3-9 b=-32 b / 3,
$$

which is an identity.
Multiplying by 3 (to make the coefficients integral),

$$
u(x)=3 x^{3}-5 b x-27 c, \quad v(x)=3 x^{2}+4 b ;
$$

yielding

$$
u(x) f(x)-v(x) g(x)=-27 c^{2}-4 b^{2}=D
$$

as required \triangleleft

Remarks:

1. For any polynomials $f(x), g(x) \in \mathbb{Z}[x]$, the integers $m \in Z$ for which there exist $u(x), v(x) \in \mathbb{Z}[x]$ such that

$$
u(x) f(x)-v(x) g(x)=m
$$

form an ideal in \mathbb{Z}. Accordingly there is a least integer, say $S=S(f, g)$, such that m has this property if and only if $S \mid m$.
We saw in Lemma 1 that the resultant $R(f, g)$ has this property. Accordingly,

$$
S(f, g) \mid R(f, g) .
$$

We know of course that $f(x), g(x)$ have a factor in common if and only if $R(f, g)=0$. Note that it doesn't matter here whether one is speaking of factors in $\mathbb{Q}[x]$ or $\mathbb{Z}[x]$; since $Z[x]$ is a unique factorisation domain it follows easily that if $f(x), g(x) \in \mathbb{Z}[x]$ have a common factor $d(x) \in \mathbb{Q}[x]$ - which we may take to be monic - then $\operatorname{md}(x)$ is a common factor in $\mathbb{Z}[x]$, where m is the $l c m$ of the denominators of the coefficients of $d(x)$, ie the smallest integer such that $m d(x) \in \mathbb{Z}[x]$.
2. Turning to our polynomials $f(x), g(x)$, it is clear that these do not have a factor in common, since

$$
g(x)=f^{\prime}(x)^{2}-(2 x+a) f(x) .
$$

So an irreducible common factor of $f(x), g(x)$ would also be a factor of $f^{\prime}(x)$, in which case $f(x)$ would have a double root, excluded in the definition of an elliptic curve. Thus $R(f, g) \neq 0$.
In fact it is a straightforward if lengthy task to show that

$$
R(f, g)=D^{2}
$$

so Lemma 1 would not have given us the stronger result we are looking for.
3. It is not entirely clear (to me at least) why $S(f, g)=D$ rather than D^{2}.
Nor is it clear to me why $u(x), v(x)$ have the special form above, with the coefficients of x^{2} in $u(x)$ and x in $v(x)$ both 0 .

The result now follows as before; since $x, y \in \mathbb{Z}$,

$$
y^{2}\left|f(x), g(x) \Longrightarrow y^{2}\right| D
$$

It remains to consider the general case, when $a \neq 0$.
Let

$$
f_{0}(x)=f(x-a / 3), g_{0}(x)=g(x-a / 3),
$$

so that

$$
f_{0}(x)=x^{3}+b^{\prime} x+c^{\prime} .
$$

It follows from the identity

$$
(x-a / 3)^{3}+a(x-a / 3)^{2}+b(x-a / 3)+c=x^{3}+b^{\prime} x+c^{\prime},
$$

that

$$
b^{\prime}=b-a^{2} / 3, c^{\prime}=c-a b / 3+2 a^{3} / 27
$$

From the result we established when $a=0$,

$$
u_{0}(x) f_{0}(x)-v_{0}(x) g_{0}(x)=-\left(4 b^{\prime 3}+27 c^{\prime 2}\right)=D,
$$

where

$$
u_{0}(x)=3 x^{3}-5 b^{\prime} x-27 c^{\prime}, \quad v(x)=3 x^{2}+4 b^{\prime} .
$$

Substituting $x+a / 3$ for x,

$$
u_{0}(x+a / 3) f(x)-v_{0}(x+a / 3) g(x)=D .
$$

But

$$
\begin{aligned}
u_{0}(x+a / 3) & =3(x+a / 3)^{3}-5 b^{\prime}(x+a / 3)-27 c^{\prime} \\
& =3(x+a / 3)^{3}-5\left(b-a^{2} / 3\right)(x+a / 3)-\left(27 c-9 a b+2 a^{3}\right) \\
& =3 x^{3}+a x^{2}+\frac{1}{3}\left(a^{2}-15 b-5 a^{2}\right) x+\frac{1}{9}\left(a^{3}+5 a^{3}\right)-\left(27 c-9 a b+2 a^{3}\right) \\
& =\frac{1}{3}\left(9 x^{3}+3 a x^{2}+\left(a^{2}-15 b-5 a^{2}\right) x+\left(8 a^{3}-54 c+18 a b\right)\right),
\end{aligned}
$$

while

$$
\begin{aligned}
v_{0}(x+a / 3) & =3(x+a / 3)^{2}+4 b^{\prime} \\
& =3 x^{2}+2 a x+a^{2} / 3+4 b-4 a^{2} / x \\
& =3 x^{2}+2 a x+\left(4 b-a^{2}\right) .
\end{aligned}
$$

Multiplying by 3,

$$
u(x) f(x)-v(x) g(x)=3 D
$$

where

$$
u(x)=9 x^{3}+3 a x^{2}+\left(a^{2}-15 b-5 a^{2}\right) x+\left(8 a^{3}-54 c+18 a b\right), v(x)=9 x^{2}+6 a x+3\left(4 b-a^{2}\right) .
$$

It follows as before that

$$
y^{2} \mid 3 D .
$$

Finally, we observe that if $3 \mid a$ then $b^{\prime}, c^{\prime} \in \mathbb{Z}$, ie we can reduce the equation to the form $y^{2}=x^{3}+b^{\prime} x+c$ without introducing fractions, so our previous argument shows that

$$
y^{2} \mid D
$$

6.5 Examples

In these examples we compute the torsion group F of various elliptic curves $\mathcal{E}(\mathbb{Q})$.

1. We look first at the curve

$$
\mathcal{E}(\mathbb{Q}): y^{2}=x^{3}+1 .
$$

Recall that the discriminant of the polynomial

$$
f(x)=x^{3}+b x+c
$$

is

$$
D=-\left(4 b^{3}+27 c^{2}\right) .
$$

Thus in the present case

$$
D=-27 .
$$

It follows from Nagell-Lutz (Theorem 6.2) that

$$
y=0, \pm 1, \pm 3 .
$$

There is just one point of order 2 , ie with $y=0$, namely $(-1,0)$.
If $y= \pm 1$ then $x=0$, giving the two points $(0, \pm 1)$.
If $y= \pm 3$ then $x^{3}=8$, giving the two points $(2, \pm 3)$.
It remains to determine which of these points $(0, \pm 1),(2, \pm 3)$ are of finite order - remembering that the Nagell-Lutz condition $y^{2} \mid D$ is necessary (if $y \neq 0$) but by no means sufficient.
The tangent at $P=(0,1)$ has slope

$$
m=\frac{p^{\prime}(x)}{2 y}=\frac{3 x^{2}}{2 y}=0 .
$$

Thus the tangent at P is

$$
y=1 .
$$

This meets \mathcal{E} where

$$
x^{3}=0,
$$

ie thrice at P. In other words P is a flex, and so of order 3 .
Turning to the point $(2,3)$ we have

$$
m=\frac{3 x^{2}}{2 y}=2 .
$$

and so the tangent at this point is

$$
y=2 x-1
$$

which meets \mathcal{E} again at $(0,-1)$. Thus

$$
2(2,3)=-(0,-1)=(0,1) .
$$

We conclude that $(2,3)$ (and $(2,-3)=-(2,3))$ are of order 6 , and

$$
F=\mathbb{Z} /(6)
$$

2. Consider the curve

$$
\mathcal{E}(\mathbb{Q}): y^{2}=x^{3}-1 .
$$

Again, $D=-27$, and there is one point $(1,0)$ of order 2 .
But now

$$
\begin{aligned}
& y= \pm 1 \Longrightarrow x^{3}=2 \\
& y= \pm 3 \Longrightarrow x^{3}=10
\end{aligned}
$$

neither of which has solutions in \mathbb{Z}. We conclude that

$$
F=\mathbb{Z} /(2) .
$$

3. Suppose F is the torsion subgroup of

$$
\mathcal{E}(\mathbb{Q}): y^{2}=x^{3}+x
$$

We have

$$
D=-4,
$$

and so

$$
y=0, \pm 1, \pm 2 .
$$

There is just one point of order 2 , ie with $y=0$, namely $(0,0)$.
If $y= \pm 1$ then

$$
x^{3}+x-1=0 .
$$

Note that a rational root $\alpha \in \mathbb{Q}$ of a monic polynomial

$$
x^{n}+a_{2} x^{n-1}+\cdots+a_{n}
$$

with integral coefficients $a_{i} \in \mathbb{Z}$ is necessarily integral: $\alpha \in \mathbb{Z}$. And evidently $\alpha \mid a_{n}$. Thus in the present case the only possible rational roots of the equation are $x= \pm 1$; and neither of these is in fact a root. If $y= \pm 2$ then

$$
x^{3}+x-4=0 .
$$

The only possible solutions to this are $x= \pm 1, \pm 2, \pm 4$; and it is readily verified that none of these is in fact a solution.

We conclude that

$$
F=\mathbb{Z} /(2)
$$

4. Consider the curve

$$
y^{2}=x^{3}-x^{2} .
$$

This curve is singular, since $f(x)=x^{3}-x^{2}$ has a double root, (and so $D=0$). Thus it is not an elliptic curve, and so is outside our present study, although we shall say a little about singular cubic curves in the next Chapter.
5. Consider the curve

$$
\mathcal{E}(\mathbb{Q}): y^{2}-y=x^{3}-x .
$$

This has 6 obvious integral points, namely $(0,0),(0,1),(1,0),(1,1),(-1,0),(-1,1)$. We can bring the curve to standard form by setting $y_{1}=y-1 / 2$, ie $y=y_{1}+1 / 2$, to complete the square on the left. The equation becomes

$$
y_{1}^{2}=x^{3}-x+1 / 4
$$

Now we can make the coefficients integral by the transformation

$$
y_{2}=2^{3} y_{1}, x_{2}=2^{2} x
$$

giving

$$
y_{2}^{2}=x_{2}^{3}-2^{4} x_{2}+2^{6} / 4,
$$

since the coefficient of x has weight 4 , while the constant coefficient has weight 6. (In practice it is probably easier to apply this transformation first, and then complete the square; that way our coefficients always remain integral.) Our new equation is

$$
y_{2}^{2}=x_{2}^{3}-16 x_{2}+16,
$$

with discriminant

$$
\begin{aligned}
D & =-\left(4 \cdot 2^{12}+27 \cdot 2^{8}\right) \\
& =-2^{8}(64+27) \\
& =-2^{8} 91 .
\end{aligned}
$$

By Nagell-Lutz, if $\left(x_{2}, y_{2}\right) \in F$ then $x_{2}, y_{2} \in \mathbb{Z}$ and

$$
y_{2}=0, \pm 1, \pm 2, \pm 4, \pm 8, \pm 16 .
$$

Note however that if P is not of order 2 , ie $y_{2} \neq 0$, then

$$
y=\frac{y_{2}-4}{8} \in \mathbb{Z}
$$

by Theorem 6.2. Only the cases $y_{2}= \pm 4$ satisfy this condition. Thus we only have to consider

$$
y_{2}=0, \pm 4 .
$$

If $y_{2}=0$ then

$$
x_{2}^{3}-16 x_{2}+16=0 .
$$

But

$$
\begin{aligned}
16 \mid x_{2}^{3} & \Longrightarrow 4 \mid x_{2} \\
& \Longrightarrow 32 \mid x_{2}^{3}, 16 x_{2} \\
& \Longrightarrow 32 \mid 16
\end{aligned}
$$

which is absurd. Thus there are no points of order 2 on \mathcal{E}.
Finally, if $y_{2}= \pm 4$ then

$$
16=x_{2}^{3}-16 x_{2}+16 \Longrightarrow x_{2}^{3}-16 x_{2}=0 \Longrightarrow x_{2}=0, \pm 4 .
$$

This gives the 6 'obvious' points we mentioned at the beginning. It remains to determine which of these points are of finite order. Reverting to the original equation, suppose $P=(0,0)$. We have

$$
(2 y-1) \frac{d y}{d x}=3 x^{2}-1,
$$

ie

$$
\frac{d y}{d x}=\frac{3 x^{2}-1}{2 y-1}
$$

Thus the tangent at P has slope $m=1$, and so is

$$
y=x .
$$

This meets the curve again at $(1,1)$. Hence

$$
2(0,0)=-(1,1)=(1,0)
$$

The tangent at $(1,0)$ has slope $m=-2$, and so is

$$
y=-2 x+2
$$

which meets \mathcal{E} where

$$
(-2 x+2)^{2}-x(-2 x+2)=x^{3}-x
$$

ie

$$
x^{3}-6 x^{2}+9 x-4=0 .
$$

We know this has two roots equal to 1 . The third root must satisfy

$$
2+x=6,
$$

ie

$$
x=4 .
$$

At this point

$$
y=-2 x+2=-6
$$

We know that this point $(4,-6)$ is not of finite order, by Nagell-Lutz. It follows that $(1,0)$ is of infinite order. Hence so is $(0,0)$ since $2(0,0)=$ $(1,0)$; and so too are $(1,1)=-(1,0)$ and $(0,1)=-(0,0)$
It remains to consider the points $(-1,0$ and $(-1,1)=-(-1,0)$. Note that if these are of finite order then they must be of order 3 (since there would be just 3 points in F), ie they would be flexes.
The tangent at $P=(-1,0)$ has slope $m=-2$, and so is

$$
y=-2 x-2
$$

This meets \mathcal{E} where

$$
(-2 x-1)^{2}-x(-2 x-1)=x^{3}-x
$$

We know that this has two roots -1. Hence the third root is given by

$$
-2+x=6
$$

ie

$$
x=8,
$$

as before. At this point

$$
y=-2 x+2=-14
$$

So

$$
2(-1,0)=-(8,-14) .
$$

Again, we know by Nagell-Lutz that this point is of infinite order, and so therefore is $(-1,0)$ and $(-1,1)=-(-1,0)$.
To verify that $P=(4,-6)$, for example, is not of finite order, we may note that the tangent at this point has slope

$$
m=-\frac{47}{11} .
$$

But the tangent

$$
y=m x+d
$$

at P meets the curve again where

$$
(m x+d)^{2}-x(m x+d)=x^{3}-x,
$$

ie at a point $\left(x_{1}, y_{1}\right)$ with

$$
2 \cdot 4+x_{1}=m^{2}-m
$$

By Nagell-Lutz, $x_{1} \in \mathbb{Z}$ (since we have seen that there are no points of order 2), and so $m^{2}-m \in \mathbb{Z}$, which is manifestly not the case.
We conclude that the torsion-group of this curve is trivial:

$$
F=\{0\} .
$$

