
Chapter 1

Introduction

Definition 1.1 An elliptic curve E over a field k of characterstic 6= 2 is
defined by an equation

y2 = x3 + ax2 + bx+ c,

where the cubic on the right has distinct roots.

Remarks:

1. There are several ways of defining elliptic curves. We have chosen the
definition above because it is the most concrete, and requires no further
explanation.

2. An alternative definition is that an elliptic curve over a field k is a
non-singular cubic curve over k containing at least one point defined
over k.

By a cubic curve we mean a curve defined by a cubic polynomial

ax3 + bx2y + cxy2 + dy3 + ex2 + fxy + gy2 + hx+ iy + j = 0.

We will see in Chapter 2 exactly what is meant by non-singular ; but
informally it means that the curve does not cross itself like

y2 = x3 + x,

or have a cusp like
y2 = x3.

We shall see too that the curve

y2 = x3 + ax2 + bx+ c

is non-singular precisely when the cubic on the right is separable, ie has
distinct roots.
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3. The additive group on an elliptic curve is most naturally seen in this
context; if P,Q,R are three points defined over k (ie with coordinates
in k) on the cubic curve then P +Q+R = 0 if and only if P,Q,R are
collinear.

Note one subtle (and important) point about this definition: if P,Q
are two points on the curve defined over k then the line PQ meets the
curve in a third point defined over k. This follows from the fact that if
two of the roots α, β of the cubic polynomial

p(x) = Ax3 +Bx2 + Cx+D (A,B,C,D ∈ k)

lie in k then so does the third root γ, since

α + β + γ = −B/A.

It follows that the points defined over k form a group. Since a curve
defined over k is also defined over any extension field K ⊃ k, there is
a group E(K) defined for each such field.

In particular, in the rational case k = Q which specially concerns us
we can consider the groups over Q,R and C, as well as over the p-adic
fields Qp which we shall introduce in Chapter ??. Each of these groups
tells us something about the elliptic curve we are studying.

4. We’ve skated over one difficulty; the line PQ may not meet the curve
again. We have to pass from affine to projective geometry, in effect
adding a line at infinity where PQ can meet the curve in this case. All
this will be detailed in Chapter 2

5. There is an even more general definition. To every curve there corre-
sponds a non-negative integer g, the genus of the curve. An elliptic
curve over k is a curve of genus 1 over k containing at least one point
defined over k.

(The reason for adding the condition that the curve must contain a
point over k is that the set of points defined over k form an abelian
group, as we have said; and a group, by definition, must be non-empty.)

Lines and conics are curves of genus 0. Such curves are said to be
rational, since the points on the curve can be parametrised by rational
functions, at least if k is algebraically closed. For example, the circle
x2 + y2 = 1 can be parametrised by

x =
t2 − 1

t2 + 1
, y =

2t

t2 + 1
.
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From this point of view, elliptic curves are the least complicated curves
after the conics studied by the ancient Greeks.

Our earlier definitions of an elliptic curve were set in the plane; but
this definition — an elliptic curve is a curve of genus 1 — extends to
curves in any number of dimensions.

6. An elliptic curve defined by an equation

y2 = x3 + ax2 + bx+ c

is said to be in Weierstrass normal form, or just normal form.

If the characteristic of k is 6= 2 or 3, we can simplify this equation by
the change of coordinate x′ = x+a/3, making the coefficient of x2 zero,
ie bringing the equation to the form

y2 = x3 + bx+ c.

We shall say that the curve in this case is in Weierstrass reduced form,
or just reduced form.

7. Although we excluded fields k of characteristic 2 in our definition above,
we do consider elliptic curves over such fields. But in this case we have
to allow the equation to take the more general form

y2 + c1xy + c3 = x3 + c2x
2 + c4x+ c6.

(We shall see in due course the reason for this rather curious numbering
of the coefficients. Note that there is no coefficient c5.)

We shall say that the curve in this case is in Weierstrass general form.

Note that if the characteristic of k is not 2 then we can bring the
equation above to standard form by ‘completing the square’ on the
left:

(y + c1x/2 + c3/2)2 = x3 + (c2 + c2
1/4)x2 + (c4 + c1c3/2)x+ (c6 + c2

3/4),

ie by the change of coordinate y′ = y + c1x/2 + c3/2.

8. There is another way of looking at elliptic curves, through the theory
of doubly periodic functions f(z) of a complex variable. Although this
does not lend itself to a definition, it was in fact the origin of the
theory of elliptic curves, as well as the explanation for the use of the
word ‘elliptic’.
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The familiar trigonometric functions cosx, sin x, tanx, etc, are singly
periodic functions f(x) of a real variable:

f(x+ 2π) = f(x).

By analogy, we say that f(z) is doubly periodic, with periods ω1, ω2

(where ω1/ω2 /∈ R), if

f(z + ω1) = f(z), f(z + ω2) = f(z).

It turns out (as we shall see in Chapter 8) that all such functions can be
expressed in terms of one such function, Weierstrass’ elliptic function

ϕ(z) = ϕω1,ω2(z).

More precisely, if f(z) is even then it is a rational function of ϕ(z):

f(z) =
P (ϕ(z)

Q(ϕ(z)

where P (w), Q(w) are polynomials.

As we shall see, ϕ(z) and its derivative ϕ′(z) satisfy an equation

ϕ′(z)2 = 4ϕ(z)3 +Bϕ(z) + C.

(This is where the term elliptic comes from; because of this relation
the function ϕ(z) can be used to compute integrals around an ellipse.)

We see from this equation that the points (ϕ(z), ϕ′(z)/2) parametrise
the elliptic curve

y2 = x3 + bx+ c,

where b = B/4, c = C/4 — much as (cos t, sin t) parametrises the
circle x2 + y2 = 1. It turns out that every elliptic curve over C can
be parametrized by a Weierstrass elliptic function in this way; and this
provides a powerful analytical tool for studying elliptic curves.

1.1 The discriminant

Since our definition requires that the cubic polynomial

p(x) = x3 + ax2 + bx+ c

on the right hand side of our equation should be separable, ie should have
distinct roots, it is useful to establish a criterion for this.
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Definition 1.2 Suppose the polynomial

f(x) = xn + c1x
n−1 + · · ·+ cn

has roots α1, . . . , αn. The discriminant of f is defined to be

D(f) =
∏
i<j

(αi − αj)2.

Equivalently,

D(f) = (−1)n(n−1)/2
∏
i6=j

(αi − αj),

where now each pair occurs twice, once as αi − αj and once as αj − αi.
The following is an immediate consequence of the definition.

Proposition 1.1 The polynomial f(x) is separable (has distinct roots) if
and only if

D(f) 6= 0.

Since D(f) is a symmetric function of the roots (ie any permutation of
the roots leaves D(f) unchanged) it is expressible as a polynomial in the
coefficients of f :

D(f) = D(c1, . . . , cn).

To determine this polynomial explicitly we start with the following result.

Proposition 1.2 The polynomial f(x) has a multiple root if and only if f(x)
and its derivative f ′(x) have a factor in common:

f(x) separable⇐⇒ gcd(f, f ′) = 1.

Proof I Suppose first that f(x) has a multiple root, say

f(x) = (x− α)rg(x).

Then
f ′(x) = (x− α)r−1 (g(x) + (x− α)g′(x)) .

Thus if r > 1,
(x− α) | gcd(f(x), f ′(x)).

Conversely, suppose this is so. If

f(x) = (x− α)g(x)
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then
f ′(x) = g(x) + (x− α)g′(x)

and so

(x− α) | f ′(x) =⇒ (x− α) | g(x)

=⇒ (x− α)2 | f(x).

J

As this suggests, the discriminant of a polynomial is closely related to the
resultant of two polynomials, which tells us if those polynomials have a root
in common.

Definition 1.3 Suppose the polynomials

f(x) = xm + a1x
m−1 + · · ·+ am, g(x) = xn + b1x

n−1 + · · ·+ bn.

have roots
α1, . . . , αm and β1, . . . , βn,

respectively. Then the resultant R(f, g) of f and g is defined to be

R(f, g) =
∏

1≤i≤m,1≤j≤n

(βj − αi).

The following result is immediate.

Proposition 1.3 The polynomials f(x), g(x) have a root in common if and
only if R(f, g) = 0.

Now

f(x) = (x− α1) · · · (x− αm), g(x) = (x− β1) · · · (x− βn).

Thus
R(f, g) = g(α1)g(α2) · · · g(αm).

Since the expression on the right is symmetric in α1, . . . , αm, it follows that
R(f, g) can be expressed as a polynomial in the coefficients of f and g.
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Proposition 1.4 The resultant R(f, g) can be expressed as an (m + n) ×
(m+ n) determinant:

R(f, g) = det



1 a1 a2 . . . am 0 . . . 0
0 1 a1 . . . am−1 am . . . 0

. . .
0 0 0 . . . . . . am−1 am
1 b1 b2 . . . bn 0 . . . 0
0 1 b1 . . . bn−1 bn . . . 0

. . .
0 0 0 . . . . . . bn−1 bn


Proof I Let us denote this determinant by S(f, g). Suppose f(x) and g(x)
have a root, say t, in common. Consider the m+ n equations

tm−1f(t) = 0

tm−2f(t) = 0

. . .

f(t) = 0

tn−1g(t) = 0

tn−2g(t) = 0

. . .

g(t) = 0

as linear equations in tm+n−1, tm+n−2, . . . , 1. The determinant of these linear
equations is precisely S(f, g). Thus S(f, g) = 0 if f(x) and g(x) have a root
in common.

This will certainly be the case if any of the mn relations

αi − βj = 0 (1 ≤ i ≤ m, 1 ≤ j ≤ n)

holds. It follows by the Remainder Theorem that each of these is a factor of
S(f, g); and so

R(f, g) | S(f, g).

But now if we express the coefficients of f(x) and g(x) in terms of the α’s
and β’s we see that R(f, g) and S(f, g) are of the same degree in β1, . . . , βn;
and on comparing the coefficients of βm1 . . . βmn in R(f, g) and S(f, g) we
conclude that

R(f, g) = S(f, g).

J
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Let us apply this argument to the polynomials f(x), f ′(x). We have seen
that f(x) has a repeated root if D(f) = 0; and we have also seen that f(x)
has a repeated root if R(f, f ′) = 0. It is not surprising therefore to find that
there is a relation between these entities.

Proposition 1.5 If f(x) is a monic polynomial then

D(f) = (−1)n(n−1)/2R(f, f ′).

Proof I On differentiating

f(x) =
∏

(x− αi)

and setting x = αj,

f ′(αj) =
∏
i6=j

(αj − αi).

It follows that

R(f, f ′) =
∏
j

f ′(αj)

=
∏
i6=j

(αj − αi)

= (−1)n(n−1)/2
∏
j<i

(αj − αi)2

= (−1)n(n−1)/2D(f).

In other words,
D(f) = (−1)n(n−1)/2R(f, f ′).

J

Now we can apply this result to our cubic. First we consider the reduced
case.

Proposition 1.6 The discriminant of the polynomial

f(x) = x3 + bx+ c

is
D(f) = −(4b3 + 27c2).
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Proof I We have
f ′(x) = 3x2 + b,

and so

D(f) = −R(f, f ′)

= − det


1 0 b c 0
0 1 0 b c
3 0 b 0 0
0 3 0 b 0
0 0 3 0 b


= −4b3 − 27c2.

J

It is probably a good idea to remember the discriminant in this reduced
case, but not the more general case we turn to now.

Proposition 1.7 The discriminant of the polynomial

f(x) = x3 + ax2 + bx+ c

is
D(f) = −4a3c+ 18abc− 4b3 − 27c2.

Proof I We could determine this in the same way, by computing the deter-
minant

D(f) = − det


1 a b c 0
0 1 a b c
3 2a b 0 0
0 3 2a b 0
0 0 3 2a b

 .

Alternatively, it may be simpler to observe that D(f) is left unaltered by
the “change of origin” x′ = x + a/3, since this leaves each factor (αi − αj)
unchanged. Thus we can derive the formula for D(f) from the reduced case
a = 0 by substituting b− a2/3 for b and c+ 2a3/27− ab/3 for c:

D(f) = −4
(
b− a2/3

)3 − 27
(
c+ 2a3/27− ab/3

)2
.

In either case, the details are left to you! J
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1.2 Weights

The transformation
x 7→ d2x, y 7→ d3y

leaves our equation in standard form, taking

y2 = x3 + ax2 + bx+ c

into
y2 = x3 + a′x2 + b′x+ c′

where
a′ = d2a, b′ = d4b, c′ = d6c.

We may say that the terms a, b, c have weights 2, 4, 6 respectively. The
various invariants we shall meet — in particular the discriminant defined
above — are all homogeneous, ie consist of terms of the same weight. This
offers a valuable check on the sometimes complicated formulae we shall en-
counter.

In particular, we see that the disciminant is of weight 12. So it could not
contain, for example, a term a2b, since that has weight 8.

428–99 1–10



Chapter 1

Introduction

A simple geometric construction allows us to add points on an elliptic curve
— that is, a non-singular cubic curve. The resulting abelian group is the
basis for the application of elliptic curves in cryptography, number theory
and elsewhere.

Our aim in this Chapter is to explain informally — so for the moment we
are not on oath! — how points are added, and why this operation is asso-
ciative. Then in Chapter 3, when we have the tools of projective geometry
at our disposal, we can set the theory on a rigorous footing.

1.1 The operation ∗
Let Γ be a cubic curve over the field k defined by a polynomial equation

f(x, y) = 0,

where f(x, y) is a polynomial of degree 3 with coefficients in k, say

f(x, y) = a1x
3 + a2x

2y+ a3xy
2 + a4y

3 + a5x
2 + a6xy+ a7y

2 + a8x+ a9y+ a10.

Let Γ(k) denote the set of points P = (x, y) ∈ Γ defined over k, ie with
coordinates x, y ∈ k.

Suppose P,Q ∈ Γ(k). Let ` be the line PQ if P 6= Q, or the tangent at
P if P = Q. Then ` meets Γ in a third point R ∈ Γ(k).

For if ` is the line
y = mx+ d

then

m =
y2 − y1

x2 − x1
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if P 6= Q; while

m =
(∂f/∂x)P
(∂f/∂y)P

if P = Q. In either case,
m ∈ k;

and so also
d = y1 −mx1 ∈ k.

But PQ meets Γ where

u(x) = f(x,mx+ d) = 0.

Now u(x) is a cubic polynomial, say

u(x) = b0x
3 + b1x

2 + b2x+ b3,

with coefficients b0, b1, b2, b3 ∈ k.
If the roots of this equation are x1, x2, x3 then

x1 + x2 + x3 = −b1

b0

∈ k.

Thus
x1, x2 ∈ k =⇒ x3 = −(x1 + x2 + b1/b0) ∈ k.

Since
y3 = mx3 + d ∈ k,

it follows that
R = (x3, y3) ∈ Γ(k),

as we claimed.
We set

R = P ∗Q.
Evidently this binary operation is commutative:

Q ∗ P = P ∗Q. (∗1)

Moreover, the relation between P,Q,R is symmetric:

R = P ∗Q =⇒ P = Q ∗R =⇒ Q = R ∗ P.

In other words,

P ∗ (P ∗Q) = Q. (∗2)

It follows from this that

P ∗Q = P ∗R⇐⇒ Q = R. (∗3)

We have skated round two problems in the discussion above:
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1. The line PQ may not meet the curve Γ again, since the coefficient of x3

in the polynomial u(x) may vanish, leaving a quadratic with the two
solutions x1, x2.

For example, consider the curve

x2 = y3 + 1.

The points P = (2, 3), Q = (−2, 3) lie on this curve; but the line

y = 3

joining them only meets the curve at these two points.

As we shall see in Chapter 2, we can solve this problem completely by
passing to the projective plane – in effect adding a ‘line at infinity’ to
the affine plane k2. Now every line PQ in the projective plane does
meet the curve in three points, the third point perhaps being on the
line at infinity.

2. More seriously, in the case P = Q the tangent at P may be undefined.
This happens if

∂f/∂x = ∂f/∂y = 0

at this point. Such a point is said to be singular.

We have to restrict ourselves to non-singular curves, ie those without
singular points. That is why we define an ‘elliptic curve’ as a non-
singular cubic curve. This again will be dealt with in Chapter 2.

1.2 Addition

The operation ∗ is not associative. For if it were it would follow from (∗1)
that if S = P ∗ P then

S ∗Q = (P ∗ P ) ∗Q = P ∗ (P ∗Q) = Q

for all Q, which is absurd.
Remarkably though, if we choose any point O ∈ Γ(k), and set

P +Q = O ∗ (P ∗Q)

for P,Q ∈ Γ(k) then the operation + is not only commutative — that is
obvious — but is also associative:

P + (Q+R) = (P +Q) +R
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for all P,Q,R ∈ Γ. That is far from obvious.
It is clear however that O is a neutral (or zero) element with respect to

this operation:
O + P = O ∗ (O ∗ P ) = P,

by (∗1). Moreover, if we set
S = O ∗O

then the point
P ′ = S ∗ P

is the additive inverse of P. For

P ′ ∗ P = (S ∗ P ) ∗ P = S

and so
P ′ + P = O ∗ S = O ∗ (O ∗O) = O.

Thus we may write
−P = S ∗ P.

It follows that if the operation is associative then it defines an abelian
group on Γ(k).

It might seem surprising that we can choose any point O ∈ Γ as the
neutral (or zero) point. However, that is not really so. For if we have an
abelian group structure on a set A then we take any element a ∈ A and
define a new abelian group structure on A by the operation

x † y = x+ y − a.

It is readily verified that this new operation is associative:

(x † y) † z = x+ y + z − 2a = x † (y † z).

Moreover
x † a = x+ a− a = x,

so the element a is the new zero element; and if we set

x′ = −x+ 2a

then
x+ x′ = x+ (−x) + 2a− a = a,

ie x′ is the inverse of x with respect to the new operation.
In effect, all that we have done is to ‘move the origin’ from 0 to a, through

the transformation
x 7→ x− a.
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1.3 The choice of O

Recall that we can choose any point O ∈ Γ(k) as the zero point of our group.
What is the best choice?

We saw that
−P = S ∗ P,

where S = O ∗O (ie S is the point where the tangent at O meets Γ again).
It turns out that life is much simpler if we can choose O so that S = O,

ie
O ∗O = O.

That is, the tangent at O meets Γ in three coincident points: O,O,O. In
other words, O is a point of inflexion (or flex ) on Γ.

For then, as we have seen,

−P = O ∗ P.

It also follows in this case that

P +Q+R = 0⇐⇒ P,Q,R are collinear.

For if P,Q,R are collinear then

R = P ∗Q =⇒ O ∗R = O ∗ (P ∗Q)

=⇒ −R = P +Q

=⇒ P +Q+R = 0.

Conversely, if P +Q+R = 0 then

P +Q+R = 0 =⇒ −R = P +Q

=⇒ O ∗R = O ∗ (P ∗Q)

=⇒ R = P ∗Q
=⇒ P,Q,R collinear

However, in general a cubic Γ over k does not contain a point of inflexion
over k. In fact, Γ may contain no points defined over k at all — let alone
points of inflexion — as for example the curve

Γ : x3 + 2y3 = 4

over Q. For if (x, y) ∈ Γ, where x, y ∈ Q, then we can write

x =
X

Z
, y =

Y

Z
,
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where X, Y, Z ∈ Z and gcd(X, Y, Z) = 1; and now

X3 + 2Y 3 = 4Z3.

Evidently 2 | X, say X = 2X ′. Then

4X ′
3

+ Y 3 = 2Z3.

It follows that 2 | Y , say Y = 2Y ′. But now

2X ′
3

+ 4Y ′
3

= Z3.

Hence 2 | Z; and so 2 | X, Y, Z, contradicting our assumption that gcd(X, Y, Z) =
1.

On the other hand, we shall show in Chapter 3 that if the elliptic curve E
does contain a point P ∈ E(k) then we can find a birational transformation
over k taking E into another elliptic curve E ′ over k having a point of inflexion
O ∈ E ′(k). Moreover, this birational transformation preserves the group
structure; so nothing is lost, from our point of view, in passing from E to E ′.

We may describe an elliptic curve with this property (having a point of
inflexion O defined over the base field) as Weierstrassian, since in this case
— as we shall see in Chapter 3 — the equation of the curve can be taken in
a simple form, due to Weierstrass.

In the rest of the course we shall assume that every elliptic curve E is
Weierstrassian, unless the contrary is stated.

1.4 Associativity

There are several ways of showing that our addition is associative. But since
we defined addition geometrically, it is appropriate to give a geometric proof
of associativity. For the moment, we merely sketch the proof; we shall fill in
the details in Chapter 3.

We want to show that

P + (Q+R) = (P +Q) +R

ie

O ∗ (P ∗ (O ∗ (Q+R))) = O ∗ ((O ∗ (P ∗Q) ∗R).

Since
O ∗X = O ∗ Y ⇐⇒ X = Y,
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we can ‘hive off’ the last O∗; it is sufficient to show that

P ∗ (Q+R) = (P +Q) ∗R.

There is an equivalent, more symmetric, form of this identity: for any 4
points X,Y, Z, T ∈ E ,

(X ∗ Y ) ∗ (Z ∗ T ) = (X ∗ Z) ∗ (Y ∗ T ). (∗4)

To see that this follows from the associative law, note first that it is sufficient
to prove the result in any extension of the ground field k; so we may assume
that k is algebraically closed. In that case we can certainly find a point of
inflexion O ∈ E ; and on taking this as our zero point,

X ∗ Y = O ∗ (X + Y ) = −(X + Y ).

Thus

(X ∗ Y ) ∗ (Z ∗ T ) = X + Y + Z + T = (X ∗ Z) ∗ (Y ∗ T ).

Conversely, suppose this result holds. On taking X = O, Y = P ∗Q, Z =
Q ∗R, T = Q, we derive the required result:

(P +Q) ∗R = (Q+R) ∗ P.

It remains to prove the identity (∗4).
The general cubic curve Γ, as we saw, is defined by 10 coefficients:

Γ : a1x
3 + a2x

2y + a3xy
2 + a4y

3 + a5x
2 + a6xy + a7y

2 + a8x+ a9y + a10 = 0.

Suppose we are given 8 points P1, P2, P3, P4, P5, P6, P7, P8 in the plane,
no three of which are collinear. Let us also suppose that there is an elliptic
curve E , ie a non-singular cubic, passing through these 8 points.

The cubic Γ passes through a given point P if the coefficients (a1, . . . , a10)
satisfy a certain homogeneous linear equation. Thus Γ will pass through the
8 points if the 10 coefficients satisfy 8 homogeneous linear equations.

Now we know from linear algebra that the solutions of m linear homoge-
neous equations in n unknowns form a vector space of dimension ≥ n −m.
Thus the cubics passing through our 8 points form a vector space of dimen-
sion d ≥ 2.

Suppose first that d > 2. We shall show that this leads to a contradiction.
For in this case we can impose 2 further homogeneous linear equations; in
particular we can find a cubic Γ passing through any further two points Q,R.
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Let us choose these two points on the line ` = P1P2, say, then this line
will meet Γ in 4 points, and so will lie wholly in Γ, which must therefore be
degenerate:

Γ = `C,

where C is a conic.
But this conic C must pass through the 6 points P3, P4, P5, P6, P7, P8.

Now a general conic is defined by 6 coefficients:

C : b1x
2 + b2xy + b3y

2 + b4x+ b5y + b6 = 0.

It follows that we can always find a conic passing through 5 pointsQ1, Q2, Q3, Q4, Q5.
In fact, if no 3 of these 5 points are collinear, then there is exactly one

such conic. For if there were two we would have a pencil

C = µ1C1 + µ2C2;

and we could find a conic in this pencil passing through any further point
R. But now if we choose R on ` = Q1Q2, say, then the line ` meets C in 3
points, and so lies wholly in C. Thus C is degenerate:

C = `m,

and the line m must pass through Q3, Q4, Q5, contrary to our assumption
that these points were not collinear.

Let C be the conic determined by the points P4, P5, P6, P7, P8. Then it
follows from the argument above that this conic passes through P3. But there
was nothing special about our choice of P1, P2 out of the 8 points; we could
equally well have chosen P2, P3 and P1, P3, in which case we would conclude
that C passed through P1 and P2. It follows that all 8 points must lie on the
conic C.

But a conic C and a cubic Γ meet in at most 6 points, unless the cubic
is degenerate and contains the conic:

Γ = `C.

Thus all the cubics in our pencil must be degenerate. But that is impossible,
since we supposed that there was a non-degenerate cubic (the elliptic curve
E) passing through the 8 points.

We have shown, therefore, that d = 2, ie the pencil of cubics through the
8 points takes the form

Γ = λ1Γ1 + λ2Γ2.

Now Γ1 and Γ2 meet in at most 9 points. For on eliminating y say from
the equations for Γ1 and Γ2 we obtain a polynomial equation of degree 9 in x,
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to which the x-coefficients of P1, . . . , P8 provide 8 solutions. It follows that
there is a 9th solution, giving a 9th common point P9 on Γ1 and Γ2. (It also
follows — although we make no use of this — that if P1, . . . , P8 ∈ Γ(k) then
P9 ∈ Γ(k), by the same argument we used to show that if P,Q ∈ Γ(k) then
P ∗Q ∈ Γ(k).)

We have proved (more-or-less) the remarkable result that given any 8
points P1, . . . , P8 (no 3 of which are collinear) there exists a unique 9th
point P9 with the property that every cubic Γ through P1, . . . , P8 also passes
through P9.

To prove the associative law, we apply this result to the 8 points

X, Y, Z, T,X ∗ Y,X ∗ Z, Y ∗ T, Z ∗ T.

These points all lie on the elliptic curve E , of course, and they also lie on 2
sets of 3 lines, as follows

` m n
`′ X Y X ∗ Y
m′ Z T Z ∗ T
n′ X ∗ Z Y ∗ T

Now consider the 3 cubics

E , `mn, `′m′n′.

Each of these passes through the 8 points, and so belongs to the pencil defined
by those points. Hence

E = λ`mn+ λ′`′m′n′

for some λ, λ′ ∈ k.
Moreover, E and `mn meet in the further point

(X ∗ Y ) ∗ (Z ∗ T ) ∈ E ∩ `mn;

while E and `′m′n′ meet in the further point

(X ∗ Z) ∗ (Y ∗ T ) ∈ E ∩ `′m′n′;

It therefore follows from our argument above that

(X ∗ Y ) ∗ (Z ∗ T ) = (X ∗ Z) ∗ (Y ∗ T ).

This establishes the identity (∗4), and so the associativity of our addition.
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Chapter 2

From Affine to Projective
Geometry

2.1 Projective spaces

One of the great discoveries of the Italian school of algebraic geometry around
the turn of the century was that life becomes much easier if one “completes”
the affine space kn by adding “points at infinity” to form the projective space
P
n(k).

Suppose V is a vector space over the field k. The associated projective
space PV is the set of 1-dimensional subspaces of V . In other words, PV is
the quotient-set

PV = (V − {0}) /k×,

where k× denotes the multiplicative group on the set k − {0}.
Thus each non-zero vector v ∈ V defines a point of PV ; 2 non-zero vectors

u, v defining the same point if they are scalar multiples of one another, ie

v = ρu (ρ ∈ k×).

The dimension of PV is defined to be

dimPV = dimV − 1.

Each r-dimensional vector subspace U ⊂ V defines an (r − 1)-dimensional
projective subspace of PV .

We define n-dimensional projective space Pn(k) over k to be

P
n(k) = P(kn+1) =

(
kn+1 − {0}

)
/k×.
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Each point of Pn(k) is represented by a set of n+ 1 homogeneous coordinates

[X1, . . . , Xn, Xn+1].

not all 0. Proportional coordinates define the same projective point:

ρ[X1, . . . , Xn, Xn+1] = [ρX1, . . . , ρXn, ρXn+1] = [X1, . . . , Xn, Xn+1].

There is a natural embedding of the affine space kn into the projective
space Pn(k),

kn ⊂ Pn(k),

defined by the injective map

(x1, . . . , xn) 7→ [x1, . . . , xn, 1].

The points of Pn(k) not in kn, namely the points of the form

[X1, . . . , Xn, 0]

are called ‘points at infinity’. They form an (n − 1)-dimensional projective
subspace of Pn(k).

2.2 The Projective Plane

We shall be mainly concerned with geometry in the projective plane

P
2(k) = {[X, Y, Z] : X, Y, Z ∈ k]}.

We identify the affine plane k2 with the subset Z 6= 0 of P2(k), by the map

(x, y) 7→ [x, y, 1] : k2 → P
2(k).

The points of P2(k) not in k2 form the line at infinity Z = 0.
Each affine line

ax+ by + c = 0

in the affine plane k2 extends to the projective line

aX + bY + cZ = 0

in P2(k), with the addition of a point [−b, a, 0] at infinity.
In general each linear homogenous equation

aX + bY + cZ = 0
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defines a line in the projective plane P2(k). Each such line except for the line
at infinity Z = 0 intersects the affine subspace k2 ⊂ P2(k) in an affine line.

Any 2 distinct projective lines

aX + bY + cZ = 0, a′X + b′Y + c′Z = 0

intersect in a point; while any 2 distinct points in P2(k) define a unique pro-
jective line. This perfect duality between points and lines (or in n dimensions,
between points and (n − 1)-dimensional subspaces) is a minor advantage of
projective geometry.

Two affine lines are parallel if and only if the corresponding projective
lines meet on the line at infinity.

2.3 The Projective Group

An invertible (non-singular) linear map

t : V → V

induces a map
t̄ : PV → PV,

where PV is the corresponding projective space. Such a map is called a
projective transformation.

Two linear maps t, ρt (ρ ∈ k×) define the same linear transformation.
Thus the projective transformations form the projective group

PGL(V ) = GL(V )/k×.

In particular
PGL(n, k) = GL(n+ 1, k)/k×.

If P1, P2, P3, P4 are 4 points in the projective plane, no 3 of which are
collinear, and Q1, Q2, Q3, P4 is a second similar set, then there is a unique
projective transformation sending

P1 7→ Q1, P2 7→ Q2, P3 7→ Q3, P4 7→ Q4.

For if we choose coordinates

Pi = [Xi, Yi, Zi] (i = 1, 2, 3, 4)

then

[X4, Y4, Z4] = a1[X1, Y1, Z1] + a2[X2, Y2, Z2] + a3[X3, Y3, Z3]
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for some ai ∈ k; and the ai are all non-zero since no 3 of the points are
collinear. But now we can take ai[Xi, Yi, Zi] to represent Pi; and then

P4 = P1 + P2 + P3.

Similarly we can choose coordinates to represent the second set with

Q4 = Q1 +Q2 +Q3.

Each point P can now be written in the form

P = λ1P1 + λ2P2 + λ3P3.

and the required projective transformation is then given by

P 7→ Q = λ1Q1 + λ2Q2 + λ3Q3.

In projective geometry, two curves — or other geometric entities — which
can be mapped into one another by projective transformations are regarded
as ‘the same’.

2.4 Affine and Projective Varieties

An affine variety in kn is defined by a set of simultaneous polynomial equa-
tions

P1(x1, . . . , xn) = 0, . . . , Pr(x1, . . . , xn) = 0.

(In general one is interested in the solutions of these equations not only in
k, but also in its algebraic closure k̄.) Algebraic geometry is the study of
varieties.

We shall only be concerned with the simplest of varieties, namely curves
in 2 dimensions defined by a single polynomial equation

F (x, y) = 0.

When we pass to projective space Pn(k) we deal exclusively with homoge-
neous polynomials P (X1, . . . , Xn, Xn+1), ie those with all terms of the same
total degree, eg X2Y +XZ2 +2Y 3. If P (X1, . . . , Xn, Xn+1) is a homogeneous
polynomial of degree d then

P (ρX1, . . . , ρXn, Xn+1) = ρdP (X1, . . . , Xn, Xn+1).

Thus it makes sense to speak of the points in projective space Pn(k) satisfying
the equation P (X1, . . . , Xn, Xn+1) if (and only if) P is homogeneous.
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If p(x1, . . . , xn) is a polynomial in kn of degree d then the corresponding
homogeneous polynomial is

P [X, Y, Z] = Zdp(X/Z, Y/Z).

For example, the homogeneous form of the polynomial

p(x, y) = y2 − x3 − ax2 − bx− c

of degree 3 is

P (X, Y, Z) = Y 2Z −X3 − aX2Z − bXZ2 − cZ3.

If effect we replace x and y by X and Y , and multiply each term by a power
of Z to bring it up to degree d.

In this way, every affine variety V in kn extends to a projective variety V̄
in Pn(k), with

V̄ ∩ kn = V :

ie the restriction of the projective variety V̄ to affine space is just the affine
variety V . In general V̄ will contain additional ‘points at infinity’.

2.5 Tangents to a projective curve

Suppose γ is an affine curve in k2 defined by the equation

f(x, y) = 0.

Let Γ be the corresponding projective curve in P2(k), defined by the ‘ho-
mogenised’ equation

F (X, Y, Z) = 0,

where
F (x, y, 1) ≡ f(x, y).

We assert that the tangent to Γ at the point P = [X0, Y0, Z0] is the line

∂F

∂X
X +

∂F

∂Y
Y +

∂F

∂Z
Z = 0,

where the partial differential coefficients are computed at the point [X0, Y0, Z0].
Let us verify that this is indeed the projective line corresponding to the

usual tangent, if P is a point in the affine plane.
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First note an important identity satisfied by the partial differential coef-
ficients of a homogeous polynomial F (x, y, z). If F is of degree d then

F (ρX, ρY, ρZ) = ρdF (X, Y, Z).

Differentiating with respect to ρ and setting ρ = 1,

∂F

∂X
X +

∂F

∂Y
Y +

∂F

∂Z
Z = dF (X,Y, Z).

The tangent to the affine curve f(x, y) = 0 at the point (x0, y0) is

y − y0 =
dy

dx
(x− x0).

Differentiating f(x, y) = 0 with respect to x,

∂f

∂x
+
∂f

∂y

dy

dx
= 0.

Thus the tangent can be written

∂f

∂x
(x− x0) +

∂f

∂y
(y − y0) = 0,

or
∂f

∂x
x+

∂f

∂y
y =

∂f

∂x
x0 +

∂f

∂y
y0.

Now (
∂F

∂x

)
(x0,y0,1)

=

(
∂f

∂x

)
(x0,y0)

,

since F (x, y, 1) = f(x, y). Moreover

∂F

∂X
x0 +

∂F

∂Y
y0 +

∂F

∂Z
= 0,

since F (x0, y0, 1) = 0. Thus the affine tangent can be written in the form

∂f

∂x
x+

∂f

∂y
y +

∂f

∂z
= 0;

corresponding to the projective line

∂F

∂X
X +

∂F

∂Y
Y +

∂F

∂Z
Z = 0,

as we claimed.
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This tangent is defined unless

∂F

∂X
=
∂F

∂Y
=
∂F

∂Z
= 0,

In this case we say that P is a singular point on the curve. A curve is said to
be non-singular if contains no singular points, either in k or in any extension
field of k.

We say that the curve F (X, Y, Z) = 0 is degenerate if the polynomail F
factorises:

F (X, Y, Z) = G(X, Y, Z)H(X, Y, Z).

A degenerate curve is always singular. For the points where the constituents
meet,

G(X, Y, Z) = H(X,Y, Z) = 0,

are necessarily singular.

2.6 The characteristic 2 case

Now that we have defined what we mean by a singular point or a singular
curve we can extend our definition of an elliptic curve over k to the case
where char(k) = 2.

Definition 2.1 An elliptic curve over a field k is given by an equation

y2 + c1xy + c3y = x3 + c2x
2 + c4x+ c6 (c1, c2, c3, c4, c6 ∈ k)

subject to the condition that the curve must be non-singular.

Note that the new definition is equivalent to our original definition of an
elliptic curve when char(k) 6= 2. For in that case we can complete the square
on the left, and bring the equation to standard form; and we have seen that
the curve is non-singular in this case precisely when the condition in our
original definition — that the cubic on the right should be separable — is
satisfied.

First we verify that there is no singularity at infinity.

Proposition 2.1 The curve

y2 + c1xy + c3y = x3 + c2x
2 + c4x+ c6

meets the line at infinity in just one point, [0, 1, 0]. This is a point of inflec-
tion on the curve, and is non-singular.
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Proof I The homogeneous form of the curve in this case is

F (X, Y, Z) = Y 2Z + c1XY Z + c3Y Z
2 −X3 − c2X

2Z − c4XZ
2 − c6Z

3 = 0.

This meets the line at infinity Z = 0 where

X3 = 0,

ie thrice at the point [0, 1, 0], which is thus a point of inflection. To see that
this point is non-singular, note that

∂F

∂Z
= Y 2 + c1XY + 2c3Y Z − c2X

2 − 2c4XZ − 3c3Z
2

= 1

at [0, 1, 0], since all the terms except the first vanish. J

Now suppose char(k) = 2. We shall establish a condition on the coeffi-
cients ci for non-singularity.

We have seen that the point [0, 1, 0] on the line at infinity is non-singular.
So any singular point is in the affine plane.

In characteristic 2, −1 = 1, 2 = 0, 3 = 1, etc; so we have

∂F

∂X
= c1Y Z +X2 + c4Z

2,

∂F

∂Y
= c1XZ + c3Z

2 = Z(c1X + c3Z),

∂F

∂Z
= Y 2 + c1XY + c2X

2 + c6Z
2.

Thus if the point (x, y) = [x, y, 1] is singular then

c1y + x2 + c4 = 0,

c1x+ c3 = 0,

y2 + c1xy + c2x
2 + c6 = 0.

From the second equation,

c1x = c3.

If c1 = 0 this implies that c3 = 0, so that ∂F/∂Y = 0 identically. In that
case the point (x, y) = [x, y, 1] is singular if

x2 + c4 = 0,

y2 + c2x
2 + c6 = 0.
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We may not be able to solve these equations in k, but we can always solve
them in an extension of k, for example in its algebraic closure k̄. Thus we
have established what we said earlier; the curve

y2 = x3 + ax2 + bx+ c

is always singular in characteristic 2.
Now suppose c1 6= 0. In that case

x = c3/c1.

So from the first equation,

y = c2
3/c

3
1 + c4/c1;

and then from the third equation,

c4
3/c

6
1 + c2

4/c
2
1 + c3

3/c
3
1 + c3c4/c1 + c2c

2
3/c

2
1 + c6 = 0.

(Note that (a + b)2 = a2 + b2 in characteristic 2.) Multiplying by c6
1 and

re-ordering the terms,

c6
1c6 + c4

1c2c
2
3 + c4

1c
2
4 + c3

1c
3
3 + c5

1c3c4 + c4
3 = 0.

Conversely, if this is so then either c1 = c3 = 0, or else c1 6= 0, in which case
on taking

x = c3/c1, y = c2
3/c

3
1 + c4/c1

we see that
∂F

∂X
=
∂F

∂Y
=
∂F

∂Z
= 0

at the point (x, y) = [x, y, 1].
Finally we observe that this point is necessarily on the curve, since

F (X, Y, Z) = X
∂F

∂X
+ Y

∂F

∂Y
+ Z

∂F

∂Z
.

We have established

Proposition 2.2 The equation

y2 + c1xy + c3y = x3 + c2x
2 + c4x+ c6

defines an elliptic curve in characteristic 2 if and only if

c6
1c6 + c5

1c3c4 + c4
1c2c

2
3 + c4

1c
2
4 + c3

1c
3
3 + c4

3 6= 0.

428–99 2–9



2.7 The discriminant of an elliptic curve

We have established two conditions for non-singularity: the condition above
when char(k) = 2, and the condition that if char(k) 6= 2 then the curve

y2 = x3 + ax2 + bx+ c

is non-singular if D(p) 6= 0, where p(x) is the cubic polynomial on the right.
It is natural to ask if we can find a polynomial D(c1, c2, c3, c4, c6) such

that the general Weierstrass equation is non-singular — and so defines an
elliptic curve — if and only if D 6= 0, in all characteristics. We shall show
that this is indeed the case, though the polynomial we get is so complicated
that we shall never write it out explicitly.

Suppose for the moment that char(k) 6= 2. Then we can bring the curve

y2 + c1xy + c3y = x3 + c2x
2 + c4x+ c6

to standard form by completing the square on the left, giving

y2 = x3 + ax2 + bx+ c

with
a = c2 + c2

1/4, b = c4 + c1c3/2, c = c6 + c2
3/4.

We know that the curve is non-singular in this case if

D(p) = −4a3c+ a2b2 + 18abc− 4b3 − 27c2 6= 0.

Substituting for a, b, c gives us a horrendous polynomial, say

∆(c1, c2, c3, c4, c6).

It is clear that the coefficients of this polynomial will have denominators
of the form 1/2r. We claim that the highest power of 2 appearing in these
denominators is 24 = 16. In other words, the polynomial 16∆ has integer
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coefficients. To see that this is so, consider

26∆ =− 28(c2 + c2
1/4)3(c6 + c2

3/4)

+ 26(c2 + c2
1/4)2(c4 + c1c3/2)2

+ 2732(c2 + c2
1/4)(c4 + c1c3/2)(c6 + c2

3/4)

− 28(c4 + c1c3/2)3

− 2633(c6 + c2
3/4)2

=− (4c2 + c2
1)3(4c6 + c2

3)

+ (4c2 + c2
1)2(2c4 + c1c3)2

+ 2232(4c2 + c2
1)(2c4 + c1c3)(4c6 + c2

3)

− 25(2c4 + c1c3)3

− 2233(4c6 + c2
3)2.

Working modulo 4,
26∆ ≡ −c6

1c
2
3 + c6

1c
2
3 mod 4.

Thus 24∆ is a polynomial with integral coefficients.

Definition 2.2 We define the discriminant of the curve

y2 + c1xy + c3y = x3 + c2x
2 + c4x+ c6

to be
D(E) = 24∆.

Proposition 2.3 The equation

y2 + c1xy + c3y = x3 + c2x
2 + c4x+ c6

defines an elliptic curve if and only if

D(E) 6= 0.

Proof I There is nothing to prove if char(k) 6= 2, since the factor 24 then
makes no difference; D(E) = 0 if and only if the discriminant of the cubic
x3 + ax2 + bx + c is 0, which we know is the condition for the curve to be
singular.

If char(k) = 2 it is sufficient to show that D(E) reduces to the polynomial
in Proposition 2.2. In effect, we have to determine 26∆ mod 8. From the
formulae in the calculation mod4 above,

26∆ ≡ −12c4
1c2c

2
3 + 4c6

1c6 + 4c4
1c

2
4 + 4c5

1c3c4 + 2232c3
1c

3
3 − 2333c4

3 mod 8

≡ 4
(
c4

1c2c
2
3 + c6

1c6 + c4
1c

2
4 + c5

1c3c4 + c3
1c

3
3 + c4

3

)
mod 8
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Thus in characteristic 2

D(E) = 24∆ = c6
1c6 + c5

1c3c4 + c4
1c2c

2
3 + c4

1c
2
4 + c3

1c
3
3 + c4

3,

which is exactly the polynomial which we showed vanished if and only if the
curve is singular. J

2.8 On the Intersection of Curves

Suppose Γ1,Γ2 are 2 non-degenerate curves in P2 defined by homogeneous
equations

F1(X, Y, Z) = 0, F2(X,Y, Z) = 0,

of degrees n1, n2; and suppose

P ∈ Γ1 ∩ Γ2.

Then one can define an integer I(P ; Γ1,Γ2) ≥ 1, the intersection number of
Γ1 and Γ2 at P .

In the ‘generic’ case, where Γ1 and Γ2 are non-singular at P , and the tan-
gents to the 2 curves at P are distinct, the intersection number I(P ; Γ1,Γ2) =
1.

We shall not define the intersection number in the general case — al-
though the definition is not particularly complicated — but only in the spe-
cial case which we need, where one (or both) of the curves is a line.

Let Λ then be the line

aX + bY + cZ = 0;

and let Γ be the curve
F (X, Y, Z) = 0,

where F (X, Y, Z) is homogeneous of degree d.
If

P1 = [X1, Y1, Z1], P2 = [X2, Y2, Z2]

are 2 points of Λ then the general point P ∈ Λ can be written

P = uP1 + vP2 = [uX1 + vX2, uY1 + vY2, uZ1 + vZ2].

We may regard u, v as homogeneous coordinates for the line Λ.
This line meets the curve where

H(u, v) ≡ F (uP1 + vP2) = 0,
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which is a homogenous equation of degree d in u, v.
If now P = (u0, v0) ∈ Λ ∩ Γ then uv0 − vu0 is a factor of H(u, v). We

define the intersection number I(P ; Λ,Γ) to be the multiplicity of this factor
in H(u, v).

It is readily verified that this number is independent of the choice of
points P1, P2 ∈ Λ.

If the ground field k is algebraically closed then H(u, v) factorises com-
pletely into linear factors; and it follows that the sum of the intersection
numbers is equal to the degree:∑

P∈Λ∩Γ

I(P ; Λ,Γ) = deg Γ.

In the general case — where k is not algebraically closed — this reduces
to an inequality: ∑

P∈Λ∩Γ

I(P ; Λ,Γ) ≤ deg Γ.

These results break down if Λ is a factor of Γ, ie

F (X, Y, Z) = (aX + bY + cZ)G(X,Y, Z),

whereG is of degree d−1. In this case the intersection numbers are undefined.

Proposition 2.4 Suppose P is a point on the non-singular curve Γ of degree
≥ 2. Let Λ denote the tangent to Γ at P . Then

I(P ; Λ,Γ) ≥ 2.

Proof I Let us take P = [X0, Y0, Z0] and a second point Q = [X1, Y1, Z1] on
Λ to define the homogeneous coordinates (u, v) on Λ. By the 2-dimensional
version of Taylor’s Theorem,

H(u, v) =F (uP + vQ)

=udF (P ) +

ud−1v

[(
∂F

∂X

)
P

(X1 −X0) +

(
∂F

∂Y

)
P

(Y1 − Y0) +

(
∂F

∂Z

)
P

(Z1 − Z0)

]
+ · · · .

Since P and Q both satisfy

∂F

∂X
X +

∂F

∂Y
Y +

∂F

∂Z
Z = 0,
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the coefficient of ud−1v is 0; while the coefficient of ud is 0 since F (P ) = 0.
Thus H has a double zero at u = 0, ie

I(P ; Λ,Γ) ≥ 2.

J

Remarks:

1. The result still holds if Γ is singular, provided the tangent Λ is not a
factor of Γ.

2. We can use the intersection number to define the ‘badness’ or multi-
plicity of a singularity. For suppose P is a singular point on the curve
Γ. It follows from our equation for H(u, v) above that the coefficient
of ud−1v vanishes identically, for any line Λ through P . Thus

min
Λ3P

I(P ; Λ,Γ) ≥ 2.

We define this minimum to be the multiplicity of the singularity at P .

2.8.1 Bezout’s Theorem

Proposition 2.5 Two curves Γ1,Γ2 in P2 of degrees n1, n2 cannot meet in
more than n1n2 points, unless they have a factor in common.

Proof I We may assume that the field k we are working over is infinite; for
otherwise we can pass to an infinite extension of k (for example, the algebraic
closure k̄ of k, or the field k(t) of rational functions over k).

Let the curves be given by the homogeneous equations

F1(X, Y, Z) = 0, F2(X,Y, Z) = 0,

of degrees n1, n2.
Suppose the curves have n1n2 + 1 points in common, say

P0, P1, . . . , Pn1n2 .

We can find a line ax+ by+ cz not passing through any of these points; and
we can take this line as the line at infinity. Thus we may assume that the
n1n2 + 1 points are all in the affine plane k2. In this way we can reduce the
problem to the affine case, in which the curves are given by affine equations

f1(x, y) = 0, f2(x, y) = 0,
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where f1, f2 are non-homogeneous polynomials of degrees ≤ n1, n2.
By making a further change of coordinates, if necessary, we may assume

that the n1n2 + 1 points
Pi = (xi, yi)

have distinct x-coordinates and distinct y-coordinates.
Now let us regard f1, f2 as polynomials in y, and let us compute their

resultant R(f1, f2). This is a polynomial of degree ≤ n1n2 in x.
For each xi the polynomials f1(xi, y), f2(xi, y) have a factor y − yi in

common. It follows that the resultant R(x) must vanish for these values of
x. Thus R(x) has more roots than its degree, and so must vanish identically.

But that implies that the polynomials f1(x, y), f2(x, y) have a factor in
common, say

f1(x, y) = m(x, y)g1(x, y), f2(x, y) = m(x, y)g1(x, y).

It follows that the original homogeneous polynomials have a factor in com-
mon:

F1(X, Y, Z) = M(X,Y, Z)G1(X, Y, Z), F2(X,Y, Z) = M(X, Y, Z)G1(X, Y, Z).

J

Remarks:

1. If the curves have a factor in common, and if the field we are working
over is infinite, then of course the curves have an infinity of points in
common.

2. The Proposition above is a very feeble form of Bezout’s Theorem, which
states in its fullness that if Γ1,Γ2 are curves in P2(k), where k is an
algebraically closed field, and Γ1,Γ2 have no factor in common, then∑

P∈Γ1∩Γ2

I(P ; Γ1,Γ2) = deg Γ1 deg Γ2.

In other words, the number of points of intersection, if each is counted
with due multiplicity, is equal to the product of the degrees.

There is a small addendum to Bezout’s Theorem which we shall find very
useful.

Proposition 2.6 Suppose the curves Γ1,Γ2 of degrees n1, n2 over k have
(n1n2 − 1) points over k in common, but have no factor in common. Then
they have a further point over k in common.
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Proof I When we eliminate Z say as above (in the proof of Bezout’s The-
orem) we are left with a homogeneous polynomial over k of degree n1n2 in
X, Y . We know that this polynomial has (n1n2 − 1) roots in k. It follows
that the last root is also in k, by the homogeneous analogue of the fact that
the sum of the roots of the polynomial

td + a1t
d−1 + · · ·+ ad = 0

is equal to −a1. J

In effect we have used a particular case of this result (with n1 = 1, n2 = 3)
in our assertion that if P,Q ∈ E then P ∗Q ∈ E ; the line PQ meets E in two
points over k, so it meets E in a third point over k.

2.9 Points of Inflection

Consider the curve

y2 + c1xy + c3y = x3 + c2x
2 + c4x+ c6,

or in homogeneous form,

F (X, Y, Z) = Y 2Z + c1XY Z + c3Y Z
2 −X3 − c2X

2Z − c4XZ
2 − c6Z

3 = 0.

This meets the line at infinity Z = 0 where

X3 = 0,

ie thrice at the point [0, 1, 0]. Thus the line at infinity is the tangent to the
curve at [0, 1, 0] — but it is more than that, it is a point of inflection.

Definition 2.3 A non-singular point P on the curve

Γ : F (X, Y, Z) = 0

is said to be a point of inflection (or flex) if the tangent Λ at P intersects Γ
with multiplicity at least 3:

I(P ; Λ,Γ) ≥ 3.

Proposition 2.7 Suppose P is a non-singular point on

Γ : F (X,Y, Z) = 0,
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where F (X, Y, Z) is a homogeneous polynomial of degree ≥ 2. Then P is a
point of inflection on Γ if and only if it satisfies the hessian equation

H(X, Y, Z) ≡ det

 ∂2F
∂X2

∂2F
∂X∂Y

∂2F
∂X∂Z

∂2F
∂X∂Y

∂2F
∂Y 2

∂2F
∂Y ∂Z

∂2F
∂X∂Z

∂2F
∂Y ∂Z

∂2F
∂Z2

 = 0.

Proof I Let P = [X, Y, Z]; and suppose Q = [X ′, Y ′, Z ′]. Each point of the
line PQ can be written in the form

uP + vQ = [uX + vX ′, uY + vY ′, uZ + vZ ′].

We can regard (u, v) as homogeneous coordinates on the line PQ. This line
meets Γ where

F (uP + vQ) = 0.

If degF = d, this expands to

udF (P ) + ud−1v

[
∂F

∂X
X ′ +

∂F

∂Y
Y ′ +

∂F

∂Z
Z ′
]

+

1

2
ud−2v2

[
∂2F

∂X2
X ′

2
+
∂2F

∂Y 2
Y ′

2
+
∂2F

∂Z2
Z ′

2
+ 2

∂2F

∂X∂Y
X ′Y ′ + 2

∂2F

∂X∂Z
X ′Z ′ + 2

∂2F

∂X∂Z
Y ′Z ′

]
+· · ·

Thus the line PQ will intersect Γ at P with multiplicity ≥ 3 if and only
if

L(X ′, Y ′, Z ′) ≡ ∂F

∂X
X ′ +

∂F

∂Y
Y ′ +

∂F

∂Z
Z ′ = 0

and

M(X ′, Y ′, Z ′) ≡ ∂2F

∂X2
X ′

2
+
∂2F

∂Y 2
Y ′

2
+
∂2F

∂Z2
Z ′

2
+2

∂2F

∂X∂Y
X ′Y ′+2

∂2F

∂X∂Z
X ′Z ′+2

∂2F

∂X∂Z
Y ′Z ′ = 0.

The first condition simply states that PQ is the tangent to Γ at P .
On setting Q = P ,

F (uP + vP ) ≡ 0.

Hence
M(P ) = 0.

Thus the equation
Q(X,Y, Z) = 0

represents a conic through P .

Lemma 1 The tangent to the conic M(X,Y, Z) = 0 at P coincides with the
tangent to Γ at P .
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Remark: It would be surprising if this were not so; for in that case we would
have defined in an intrinsic way a second line passing through any point P
of a curve. One might think of the normal to the curve at P . But angle is
not a projective invariant, so this would not make sense.

Proof of Lemma B To avoid confusion, let us for a moment set P = [X0, Y0, Z0].

Then the tangent to M(X, Y, Z) = 0 at P is(
∂2F

∂X2
X0 +

∂2F

∂X∂Y
Y0 +

∂2F

∂X∂Z
Z0

)
X+

(
∂2F

∂X∂Y
X0 +

∂2F

∂Y 2
Y0 +

∂2F

∂Y ∂Z
Z0

)
Y

+

(
∂2F

∂X∂Z
X0 +

∂2F

∂Y ∂Z
Y0 +

∂2F

∂Z2
Z0

)
Z = 0.

Now ∂F/∂X, ∂F/∂Y, ∂F/∂Z are all homogeneous polynomials of degree
d − 1. But recall that if F (X, Y, Z) is a homogeneous polynomial of degree
d then

∂F

∂X
X +

∂F

∂Y
Y +

∂F

∂Z
Z = dF (X,Y, Z).

Applying this with ∂F/∂X in place of F ,

∂2F

∂X2
X +

∂2F

∂X∂Y
Y +

∂2F

∂X∂Z
Z = (d− 1)

∂F

∂X
.

Similarly

∂2F

∂X∂Y
X +

∂2F

∂Y 2
Y +

∂2F

∂Y ∂Z
Z = (d− 1)

∂F

∂Y
∂2F

∂X∂Z
X +

∂2F

∂Y ∂Z
Y +

∂2F

∂Z2
Z = (d− 1)

∂F

∂Z
.

Thus the tangent to the conic M(X, Y, Z) at P is just

∂F

∂X
X +

∂F

∂Y
Y +

∂F

∂Z
Z = 0,

which is the tangent to Γ at P C

Now suppose P is a point of inflection. Then

L(X, Y, Z) = 0 =⇒M(X, Y, Z) = 0.

It follows that L is a factor of M , say

M(X, Y, Z) = L(X, Y, Z)L′(X, Y, Z),

where L′ is a second line. In particular the conic M(X, Y, Z) is degenerate.
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Lemma 2 The conic

C(X, Y, Z) ≡ aX2 + bY 2 + cZ2 + 2fY Z + 2gXZ + 2hY Z = 0

degenerates into 2 lines if and only if

detA = 0,

where

A =

 a h g
h b f
g f c

 = 0.

Proof of Lemma B Suppose

C(X, Y, Z) ≡ L1(X,Y, Z)L2(X, Y, Z).

Let the lines L1 = 0, L2 = 0 meet in the point (X0, Y0, Z0). Then the tangent
at (X0, Y0, Z0) is undefined. Thus

Av0 = 0,

where

v0 =

 X0

Y0

Z0

 .

Hence A is singular, ie detA = 0.
Conversely, suppose detA = 0. Then we can find X0, Y0, Z0 satisfying

the equation Av0 = 0. It follows that the tangent to Γ at any point P passes
through P0 = [X0, Y0, Z0]. But now take any point P . The tangent at P cuts
the conic C(X, Y, Z) = 0 twice at P and at P0. But a line can only cut a
conic twice. It follows that the line P0P lies wholly in the conic, which must
thus degenerate into 2 lines. C

Putting this together, if P is a flex, then the conic M(X, Y, Z) = 0 is
degenerate and so H(X, Y, Z) = 0.

Conversely, if H(X, Y, Z) = 0 then M(X, Y, Z) = 0 is degenerate. Since
the tangent to this conic at P is L(X, Y, Z) = 0, this line must be one of the
lines making up the conic:

M(X, Y, Z) = L(X, Y, Z)L1(X, Y, Z).

Thus L is a factor of M , and so P is a flex. J
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As we saw, the point [0, 1, 0] is a flex on an elliptic curve given by Weier-
strass’ equation. We shall always take this point as the zero element O of
the group on the curve. The other flexes are just the points of order 3 in the
group. Thus flexes play an important rôle in the theory.

The hessian curve of a cubic is itself a cubic. But 2 cubics meet in at most
9 points — as may be seen by considering the resultant of the 2 polynomials,
which is a homogeneous polynomial of degree 9 in 2 variables. It follows that
an elliptic curve has at most 9 flexes.

We shall see that an elliptic curve over the reals R has at most 3 flexes;
and the same is therefore true of an elliptic curve over the rationals Q (which
is our main focus of interest).

2.10 Milestones on the Road to Modern Ge-

ometry

Euclid (c325BC–c265BC) Whether the work of one man or a school, the
introduction of axiomatic methods in Euclid’s Elements surely marks
the greatest leap in the history of mathematics.

René Descartes (1596–1650) By representing a point P in the plane by
its coordinates (x, y), Descartes converted geometric into algebraic prob-
lems — the start of algebraic geometry.

Bernard Riemann (1826–1866) Although not explicitly geometrical, Rie-
mann’s study of what are today known as Riemann surfaces had a pro-
found influence on the theory of curves — in particular his definition
of the genus, the most important characteristic of a curve.

Felix Klein (1849–1925) In his Erlangen program Klein distinguished be-
tween different geometries according to their transformation groups —
as for example, Euclidean geometry, affine geometry and projective
geometry.

David Hilbert (1862–1943) The polynomials satisfied by the points on a
variety form an ideal in the ring k[x1, . . . , xn]. Hilbert showed in his
Finite Basis Theorem that every such ideal is generated by a finite
number of polynomials.

Severi (1879–1961) and the Italian School studied general algebraic va-
rieties, that is, the points satisfying a set of polynomial equations.
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André Weil (1906–1998) In his seminal work, The Foundations of Alge-
braic Geometry, Weil provided a secure foundation for the work of the
Italian school, and extended it to varieties over finite and other fields,
not just C.

Alexandre Grothendieck (1928–) In what is perhaps the greatest math-
ematical work of the 20th century, Grothendieck merged algebraic ge-
ometry with commutative algebra, by extending the notion of variety
to include the “scheme” of a commutative ring. For example, to the
integers Z there corresponds a ‘scheme’ — a generalized variety — over
the space

spec(Z) = {0, 2, 3, 5, . . . },

whose points correspond to primes p (more precisely, to prime ideals,
hence the inclusion of 0).
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Chapter 3

The Group on an Elliptic Curve

Every elliptic curve E(k) has a natural structure as an abelian group. We
will always represent this group additively, denoting the sum of two points
P,Q ∈ E(k) by P +Q.

The basic idea is that

P +Q+R = 0⇐⇒ P,Q,R are collinear.

But as we shall see, this is not quite sufficient to define the group structure.
Also, since this is the basis for the entire theory of elliptic curves we need to
ensure that we are on a firm foundation.

Proposition 3.1 Suppose P,Q are points on the elliptic curve E(k). Then
the line PQ (or the tangent at P if P = Q) meets E(k) again at a unique
point R.

Proof I Let the line PQ (or the tangent at P ) be

lX +mY + nZ = 0.

If n 6= 0 then we can eliminate Z by substituting

Z = − lX +mY

n

in the original cubic equation, giving a homogeneous cubic in X, Y :

a0X
3 + a1X

2Y + a2XY
2 + a3Y

3 = 0.

(If n = 0 then we eliminate X or Y in the same way instead.)
Two of the roots of this cubic are given by P,Q, leaving the third root

(which must be in the field k) to determine the point R. J
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Remark: When we speak of a root of a homogeneous polynomial in X, Y we
mean of course the ratio X0 : Y0; and when we say that the root is in k we
mean that we can find X0, Y0 ∈ k in this ratio.

The proposition that if n − 1 roots of a polynomial p(x) ∈ k[x] lie in k
then so does the nth root carries over unchanged to the homogeneous case.

3.1 Choice of zero point

Recall that the elliptic curve

E(k) : y2 + c1xy + c3y = x3 + c2x
2 + c4x+ c6

has just one point on the line at infinity, namely [0, 1, 0]. We will always
choose this as the zero point of our abelian group:

O = [0, 1, 0].

Accordingly, the inverse −P of any point P is the point where OP meets
E(k) again:

−P = O ∗ P.
This gives us the definition of P +Q.

Definition 3.1 Let E(k) be the elliptic curve

y2 + c1xy + c3y = x3 + c2x
2 + c4x+ c6.

The sum of two points P,Q ∈ E(k) is defined to be

P +Q = O ∗ (P ∗Q).

It is evident that this operation is commutative:

Q+ P = P +Q.

It is clear too that the point O serves as neutral element:

O + P = O ∗ (O ∗ P ) = P.

Also each point P has negation −P = O ∗ P , since

P + (O ∗ P ) = O ∗ (P ∗ (O ∗ P ))

= O ∗ (P ∗ (P ∗O))

= O ∗O
= O,
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since the tangent at O meets E again at O, as O is a point of inflection.
However, it is far from evident that the operation is associative:

(P +Q) +R = P + (Q+R)?

We shall prove this important result in the next Chapter. But for the moment
we shall assume that it is true, and look at some concrete examples of the
group on an elliptic curve.

First though, let us get an explicit expression for −P when

P = (x0, y0) = [x0, y0, 1].

The line OP is
X − x0Z = 0,

since this certainly goes through P and O = [0, 1, 0].
In affine terms this is the line

x = x0,

ie the line through P parallel to the y-axis.
Suppose the elliptic curve is in standard form

y2 = x3 + ax2 + bx+ c = 0.

In this case the line x = x0 meets the curve again at the point (x0,−y0).
Thus if the elliptic curve is given in standard form then

−(x, y) = (x,−y).

In the more general case

y2 + c1xy + c3y = x3 + c2x
2 + c4x+ c6

the line x = x0 meets the curve where

y2 + (c1x0 + c3)y − (x3
0 + c2x

2
0 + c4x+ c6) = 0.

One root of this equation for y is y0. If the other root is y1 then

y0 + y1 = −(c1x0 + c3),

ie

y1 = −y0 − c1x0 − c3.

Thus
−(x, y) = (x,−y − c1x− c3).
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3.2 Examples

1. Consider the curve
E(Q) : y2 = x3 + 1

over the rationals Q. There are 5 obvious points on this curve:

P = (−1, 0), Q = (0, 1), −Q = (0,−1), R = (2, 3), −R = (2,−3).

(These all have integer coordinates; but it is important to bear in mind
that we are interested in any rational solutions.)

Let us determine P +Q. Suppose the line PQ is

y = mx+ c.

The slope m is

m =
1− 0

0− (−1)
= 1.

Thus PQ is the line
y = x+ 1.

This meets the curve where

(x− 1)2 = x3 + 1.

We know two of the roots: −1, 0 from P,Q. It follows (by looking at
the coefficient of x2 that if the third root is x2 then

−1 + 0 + x2 = 1,

ie

x2 = 2.

Thus y2 = x2 + 1 = 3, ie

P ∗Q = (2, 3) = R.

It follows that
P +Q = −R = (2,−3).

Next let us determine 2R. To determine the slope at R note that

2y
dy

dx
= 3x2,
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ie

dy

dx
=

3x2

2y
.

In particular the slope at R is

m =
12

6
= 2;

and so the tangent at R is

y = 2x− 1.

This line meets the curve again where

(2x+ c)2 = x3 + 1.

Two of the roots of this are 2, 2 from R (twice). Thus if the other root
is x2 then (from the coefficient of x2)

2 + 2 + x2 = 22,

ie

x2 = 0.

Thus

R ∗R = (0,−1) = −Q,

and so

2R = Q.

Note that

−P = (−1, 0) = P,

ie

2P = 0;

the point P is of order 2.
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In fact it is clear that the point P = (x0, y0) on the curve

y2 = x3 + ax2 + bx+ c

is of order 2 if and only if y0 = 0, ie if and only if P lies on the x-axis.

More generally, suppose the curve is given by

y2 + c1xy + c3y = x3 + c2x
2 + c4x+ c6.

If P = (x0, y0) then as we saw

−P = (x0,−y0 − c1x0 − c3).

Thus P is of order 2 if and only if

2y0 + c1x0 + c3 = 0,

ie if and only if P lies on the ‘line of symmetry’

2y + c1x+ c3 = 0.

In either case, the line meets the curve in 0, 1 or 3 points. Thus there
are either 0, 1 or 3 points of order 2 on an elliptic curve.

Finally, let us determine 2Q. The slope at Q is

m =
0

2
= 0.

Thus the tangent at Q is y = 1. If this meets the curve again at (x2, y2)
then

0 + 0 + x2 = 02,

ie

x2 = 0.

Hence

Q ∗Q = Q,

ie

2Q = −Q,
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ie

3Q = 0.

Thus Q is of order 3, ie Q is a point of inflection on the curve. Since
P + Q = −R, while P is of order 2, it follows that ±R are of order 6;
and the 6 elements

{0, P,±Q,±R}

form a cyclic group of order 6.

We shall see later that these are the only rational points on this elliptic
curve:

E(Q) = C6.

In particular there are no integers such that

y2 = x3 + 1

except (x, y) = (−1, 0), (0,±1), (2,±3). However, this will require con-
siderable apparatus to establish.

The group on the elliptic curve in this case is finite. There is no known
algorithm to determine whether the group on a general elliptic curve
over Q is finite or infinite. There are techniques which are likely to
work in any given case, but there is no guarantee that they will work.

One important property of the group is known: Mordell’s Theorem
states that the group on an elliptic curve E over Q is finitely-generated.
In other words, there are points P1, . . . , Pr ∈ E such that every rational
point P ∈ E is expressible in the form

P = n1P1 + · · ·+ nrPr.

Our main aim in the first part of the course is to prove Mordell’s The-
orem.

2. Let us look at the same equation

E(F5) : y2 = x3 + 1

but now over the finite field F5. The curve is still non-singular, since

D = −4 = 1

in F5.
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We can easily find all the points on the curve. We have to find all (x, y)
with 0 ≤ x, y ≤ 4, or if we prefer x, y ∈ {0,±1,±2}, for which

y2 ≡ x3 + 1 mod 5.

In other words, we have to determine for each x whether or not x3 + 1
is a quadratic residue mod5.

The quadratic residues mod5 are 0, 1, 4. The results are given in the
following table:

x x3 + 1 y
0 1 ±1
1 2
2 4 ±2
−2 3
−1 0 0

We see that there are 6 points in the group, including the zero point
O = [0, 1, 0]:

O, (0,±1), (2,±2), (−1, 0).

There is only one abelian group of order 6, namely the cyclic group
C6 = Z/(6). Thus

E(F5) = C6.

There is just one element of order 2, namely P = (−1, 0), since this is
the only point of the curve on the x-axis y = 0.

Let us determine the order of Q = (0, 1). The method is exactly the
same as in the rational case. As there, the slope of the curve is given
by

dy

dx
=

3x2

2y
.

In particular, the slope at Q is m = 0, so that the tangent at Q is

y = 1.

Since this is the only point with y = 1 it follows that

Q ∗Q = Q,

and so

Q+Q = −Q,
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ie

3Q = 0.

Thus Q is of order 3, as also is −Q. The remaining 2 points must be of
order 6, since C6 has 1 element each of orders 1 and 2, and 2 elements
each of orders 3 and 6.

(You may feel a little queasy about using the differential calculus over
a finite field, or even the rationals. But in fact we are only using the
derivative in a formal or algebraic sense, as for example if f(x) is a
polynomial over k then

f(x)− f(a) ≡ (x− a)f ′(a) mod (x− a)2,

ie

f(x)− f(a) = (x− a)f ′(a) + (x− a)2g(x)

for some polynomial g(x).)

What is P +Q? We leave that to the reader.

Elliptic curves over finite fields are used in cryptography, both in cre-
ating codes and in trying to crack them.

More generally, such curves provide on of the most powerful tools for
trying to factorise large numbers.

Determining the number of points on an elliptic curve over a finite
field has been an important topic in the development of the theory of
elliptic curves, and many questions in this area remain open. If we take
an elliptic curve over the field Fp (where p 6= 2) in the form

E(Fp) : y2 = x3 + ax2 + bx+ c

then we may expect the cubic p(x) = x3 +ax2 +bx+c to be a quadratic
residue for about half the values x ∈ {0, 1, . . . , p − 1}. Each of these
will give two solutions ±y unless y = 0, in which case it gives one. To
these we must add the point O = [0, 1, 0]. Thus the ‘expected’ number
of solutions is about p+1. Hasse’s Theorem tells us that if the number
of points is actually p+ 1 +ap, then the ‘discrepancy’ ap is bounded by

|ap| < 2
√
p.
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The values of ap for the same equation but different primes p have
remarkable and mysterious properties, related to modular forms and
Fermat’s Last Theorem, which have still not been elucidated.

That is well beyond the scope of this course (although we shall have
something to say about modular forms), but there is one related topic
that we shall deal with.

It turns out that any elliptic curve E(Q) over the rationals can be ‘re-
duced modp’ to give a curve E(Fp) over the finite field Fp. This curve
may be singular for a finite set of so-called ‘bad’ primes (for that partic-
ular curve), but it will remain an elliptic curve for the remaining primes.
Furthermore it will emerge that there is a natural homomorphism

E(Q)→ E(Fp)

for each of these ‘good’ primes p; and the study of these homomor-
phisms is one of the many tools we shall have to hand for studying the
curve E(Q).

3. Let us look now at the elliptic curve

E(Q) : y2 = x3 − 2x.

We see that this contains the points

P = (0, 0), Q = (2, 2), −Q = (2,−2).

We know that P has order 2.

Let us determine 2Q. The slope is given by

2y
dy

dx
= 3x2 − 2,

ie

dy

dx
=

3x2 − 2

2y

At P ,

m =
10

4
=

5

2
.

Thus the tangent at P is

(y − 2) =
5

2
(x− 2),
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ie

5x− 2y − 6 = 0.

If this tangent meets the curve again at (x2, y2) then

2 + 2 + x2 = m2 =
25

4
,

ie

x2 =
9

4
.

Thus

P ∗ P =

(
9

4
,
21

8

)
,

and so

2P =

(
9

4
,−21

8

)
.

We shall show later that a point (x, y) of finite order on the elliptic
curve

y2 + c1xy + c3y = x3 + c2x
2 + c4x+ c6

necessarily has integer coordinates x, y ∈ Z. (This is quite difficult to
prove — though not as difficult as Mordell’s Theorem! Essentially we
have to show that as we successively double the point, 2Q, 4Q, 8Q, . . . ,
the denominator of the slope m gets larger and larger.)

It will follow from this that the point Q is of infinite order. In particular
the group E(Q) in this case is infinite.

4. Next, let us look at a curve in general Weierstrass format:

E(Q) : y2 − y = x3 − x.

We could bring this to standard form, as follows. Completing the square
on the left,

(y − 1/2)2 = x3 − x+ 1/4,
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ie

y2
1 = x3 − x+ 1/4

after the change of coordinate y1 = y − 1/2.

Note that an equation in standard form remains in standard form under
any change of coordinates of the form

x2 = a2x, y2 = a3y1,

since the coefficients of y2 and x3 will still be the same after such a
change. In the present case, if we take a = 2 the equation becomes

y2
2 = x3

2 − 16x2 + 16,

under the change of coordinates

x2 = 4x, y2 = 8y − 4.

This device can be used to bring any equation

E(Q) : y2 + c1xy + c3y = x3 + c2x
2 + c4x+ c6

with rational coefficients to an equation

y′2 = x′3 + ax′ + b

with integer coefficients a, b.

However, this is not necessarily the best policy, since the coefficients
a, b one finishes up with will in general be much larger than the original
coefficients.

In the present case, we shall stick with the original equation

E(Q) : y2 − y = x3 − x.

This curve contains a number of obvious points:

P = (0, 0), Q = (1, 0), R = (−1, 0), S = (0, 1), T = (1, 1), U = (−1, 1).

If P = (x, y) ∈ E then
−P = (x, 1− y).

Thus
−P = S, −Q = T, −R = U.
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Let us determine P +Q. The line PQ has slope

m =
0

1
= 0;

so PQ is the line
y = 0.

This meets the curve again at (−1, 0). Thus

P +Q = −(−1, 0) = (−1, 1),

ie

P +Q = U.

Now let us determine 2Q. The slope is given by

(2y − 1)
dy

dx
= 3x2 − 1,

ie

dy

dx
=

3x2 − 1

2y − 1
.

In particular, the slope at Q is

m =
2

−1
= −2.

Thus the tangent at Q is

y = −2x+ 2.

This meets the curve where

(−2x+ 2)2 − (−2x+ 2) = x3 − x.

Thus if the tangent meets E again at (x2, y2) then (looking as usual at
the coefficient of x2)

1 + 1 + x2 = m2 = 4,

and so
Q ∗Q = (2,−2).

Thus
2Q = −(2,−2) = (2, 3) = V.

We leave it to the reader to determine 2V . Is the order of Q finite or
infinite?
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5. Finally, let us look at the same equation over the field F2:

E(F2) : y2 − y = x3 − x.

First we must verify that this is an elliptic curve, ie that the curve
remains non-singular under ‘reduction mod2’.

The curve takes the homogeneous form (remember that in characterstic
2, −x = x, so that we do not need to worry about sign):

F (X,Y, Z) ≡ Y 2Z + Y Z2 +X3 +XZ2 = 0.

Hence

∂F

∂X
= X2 + Z2,

∂F

∂Y
= Z2,

∂F

∂Z
= Y 2.

Thus at a singular point, Y = Z = 0, ie the point would be [1, 0, 0],
which is not on the curve.

The projective plane P2(F2) contains just 7 points: 4 points in the
affine plane F2

2 , and 3 points on the line at infinity. (In general, the
projective plane P2(Fq), over a finite field with q elements, contains
q2 + q + 1 points.

It is trivial to see that E(F2) contains just 5 points: all 4 affine points
(0, 0), (0, 1), (1, 0), (1, 1) together with the point O = [0, 1, 0] at infinity.

The only abelian (or non-abelian) group with 5 elements is the cyclic
group of order 5. Thus

E(F2) = C5.

As an exercise, verify that if P = (0, 0) then 5P = 0.

3.3 Change of origin

It is perhaps worth noting that we can choose any element in an abelian
group A as neutral or zero element. More precisely, if a ∈ A then we can
define a new group operation on A by

x † y = x+ y − a.
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This operation is evidently commutative; and it is associative, since

(x † y) † z = x+ y + z − 2a = x † (y † z).

The element a acts as new zero element, since

x † a = x+ a− a = x;

while x has inverse 2a− x since

x † (2a− x) = a,

which is now the neutral element.
Thus we could have taken any point A ∈ E(k) on the elliptic curve as

zero element. However, unless A is a point of inflection we must lose the
geometric property that

P +Q+R = 0⇐⇒ P,Q,R are collinear.

In fact, if P,Q,R are collinear then

P †Q †R = P +Q+R− 2A = −2A,

so

P †Q †R = A⇐⇒ 3A = 0⇐⇒ A is a point of inflection.

As we shall see, an elliptic curve can have up to 9 points of inflection.
But in general the curve

E(k) : y2 + c1xy + c3y = x3 + c2x
2 + c4x+ c6

has just one point of inflection: O = [0, 1, 0].
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Chapter 4

The Associative Law

Theorem 4.1 The addition

P +Q = O ∗ (P ∗Q)

on the elliptic curve

E(k) : y2 + c1xy + c3y = x3 + c2x
2 + c4x+ c6

is associative:
P + (Q+R) = (P +Q) +R.

Proof I We have

P + (Q+R) = O ∗ (P ∗ (Q+R)) , (P +Q) +R = O ∗ ((P +Q) ∗R) .

Since
O ∗ (O ∗ P ) = P,

it follows that
O ∗ A = O ∗B ⇐⇒ A = B.

Thus it is sufficient to show that

P ∗ (Q+R) = (P +Q) ∗R,

ie

P ∗ (O ∗ (Q ∗R)) = (O ∗ (P ∗Q) ∗R.

Lemma 3 The associative law holds if and only if

(P ∗Q) ∗ (R ∗ S) = (P ∗R) ∗ (Q ∗ S)

for any four points P,Q,R, S ∈ E(k).
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Proof of Lemma B Suppose the associative law holds, so that E(k) is an

additive group. Recall that

P ∗Q = −(P +Q).

Thus

(P ∗Q) ∗ (R ∗ S) = − ((P ∗Q) + (R ∗ S))

= − (−(P +Q)− (R + S))

= (P +Q) + (R + S).

Similarly,

(P ∗R) ∗ (Q ∗ S) = (P +R) + (Q+ S)

= (P +Q) + (R + S)

= (P ∗Q) ∗ (R ∗ S).

Conversely, if this relation holds for all P,Q,R, S then in particular, on
setting P = O,

which as we have seen is equivalent to the associative law. C

This reduces the theorem to a rather complicated geometric result, in-
volving 10 points on the curve:

X1 = P, X2 = Q, X3 = R, X4 = S,

X5 = P ∗Q, X6 = R ∗ S, X7 = P ∗R, X8 = Q ∗ S,
X9 = X5 ∗X6, X10 = X7 ∗X8.

The following are collinear:

`1 = X1X2X5, `2 = X3X4X6, `3 = X1X3X7, `4 = X2X4X8, `5 = X5X6X9, `6 = X7X8X10.

We have to show that
X9 = X10.

We shall establish this identity for any non-singular cubic curve.
The basic idea is to use pencils of cubics. Suppose

Γ1 : F1(X, Y, Z) = 0, Γ2 : F2(X, Y, Z) = 0,

are two cubic curves. By the pencil defined by Γ1,Γ2 we mean the family of
cubic curves

Γr,s : rF1(X, Y, Z) + sF2(X,Y, Z) = 0.
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This is a one-dimensional pencil, since each cubic in the family is determined
by the ratio [r, s]. More generally, we can consider two-dimensional pencils

Γr,s,t : rF1(X, Y, Z) + sF2(X, Y, Z) + tF3(X,Y, Z) = 0,

etc.
Note that a general cubic Γ (we are not concerned with singularity or

non-singularity for the moment) is defined by 10 coefficients:

Γ : a1X
3+a2X

2Y+a3X
2Za4XY

2+a5XY Z+a6XZ
2+a7Y

3+a8Y
2Z+a9Y Z

2+a10Z
3 = 0.

The cubic is unchanged if we multiply all the cubics by the same scalar
ρ ∈ k×, so we may say that the cubics form a projective space of dimension
9.

We can always find a cubic passing through any 9 points, since m simul-
taneous homogeneous linear equations in n > m unknowns always have a
non-zero solution.

In general there will be just one such cubic; but there may well be more
than one for some sets of 9 points.

Note that three lines `,m, n define a cubic

Γ = `mn.

So our pencil could perfectly well consist of cubics

Γr,s = r`1m1n1 + s`2m2n2,

where `1,m1, n1, `2,m2, n2 are 6 lines.
J
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Chapter 5

The p-adic Case

5.1 The p-adic valuation on Q

The absolute value |x| on Q defines the metric, or distance function,

d(x, y) = |x− y|.

Surprisingly perhaps, there are other metrics on Q just as worthy of study.

Definition 5.1 Let p be a prime. Suppose

x =
m

n
∈ Q,

where m,n ∈ Z with gcd(m,n) = 1. Then we set

‖x‖p =


0 if x = 0,

p−e if pe ‖ m,
pe if pe ‖ n.

We call the function x 7→ ‖x‖p the p-adic valuation on Q.

Another way of putting this is: If x ∈ Q, x 6= 0, then we can write

x =
m

n
pe

where p 6 | m,n. The p-adic value of x is given by

‖x‖p = p−e.

Note that all integers are quite small in the p-adic valuation:

x ∈ Z =⇒ ‖x‖p ≤ 1.
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High powers of p are very small:

pn → 0 as n→∞.

The following result is immediate.

Proposition 5.1 1. ‖x‖p ≥ 0; and ‖x‖p = 0⇐⇒ x = 0;

2. ‖xy‖p = ‖x‖p‖y‖p;

3. ‖x+ y‖p ≤ max(‖x‖p, ‖y‖p).

From (3) we at once deduce

Corollary 1 The p-adic valuation satisfies the triangle inequality:

3’ ‖x+ y‖p ≤ ‖x‖p + ‖y‖p.

A valuation on a field k is a map

x 7→ ‖x‖ : k → R

satisfying (1), (2) and (3’). A valuation defines a metric

d(x, y) = ‖x− y‖

on k; and this in turn defines a topology on k.

Corollary 2 If ‖x‖p 6= ‖y‖p then

‖x+ y‖p = max(‖x‖p, ‖y‖p).

Corollary 3 In a p-adic equation

x1 + · · ·+ xn = 0 (x1, . . . , xn ∈ Qp)

no term can dominate, ie at least two of the xi must attain max ‖xi‖p.

To emphasize the analogy between the p-adic valuation and the familiar
valuation |x| we sometimes write

‖x‖∞ = |x|.
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5.2 p-adic numbers

The reals R can be constructed from the rationals Q by completing the latter
with respect to the valuation |x|. In this construction each Cauchy sequence

{xi ∈ Q : |xi − xj| → 0 as i, j →∞}

defines a real number, with 2 sequences defining the same number if |xi−yi| →
0.

(There are 2 very different ways of constructing R from Q: by completing
Q, as above; or alternatively, by the use of Dedekind sections. In this each
real number corresponds to a partition of Q into 2 subsets L,R where

l ∈ L, r ∈ R =⇒ l < r.

The construction by completion is much more general, since it applies to
any metric space; while the alternative construction uses the fact that Q is
an ordered field. John Conway, in On Numbers and Games, has generalized
Dedekind sections to give an extraordinary construction of rationals, reals
and infinite and infinitesimal numbers, starting ‘from nothing’. Knuth has
given a popular account of Conway numbers in Surreal Numbers.)

We can complete Q with respect to the p-adic valuation in just the same
way. The resulting field is called the field of p-adic numbers, and is denoted
by Qp. We can identify x ∈ Q with the Cauchy sequence (x, x, x, . . . ). Thus

Q ⊂ Qp.

To bring out the parallel with the reals, we sometimes write

R = Q∞.

The numbers x ∈ Qp with ‖x‖p ≤ 1 are called p-adic integers. The p-adic
integers form a ring, denoted by Zp. For if x, y ∈ Zp then by property (3)
above,

‖x+ y‖p ≤ max(‖x‖p, ‖y‖p) ≤ 1,

and so x+ y ∈ Zp. Similarly, by property (1),

‖xy‖p = ‖x‖p‖y‖p ≤ 1,

and so xy ∈ Zp.
Evidently

Z ⊂ Zp.
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More generally,

x =
m

n
∈ Zp

if p 6 | n. (We sometimes say that a rational number x of this form is p-
integral.) In other words,

Q ∩ Zp = {m
n

: p 6 | n}.

Evidently the p-integral numbers form a sub-ring of Q.
Concretely, each element x ∈ Zp is uniquely expressible in the form

x = c0 + c1p+ c2p
2 + · · · (0 ≤ ci < p).

More generally, each element x ∈ Qp is uniquely expressible in the form

x = c−ip
−i + c−i+1p

−i+1 + · · ·+ c0 + c1p+ · · · (0 ≤ ci < p).

We can think of this as the p-adic analogue of the decimal expansion of a
real number x ∈ R.

Suppose for example p = 3. Let us express 1/2 ∈ Q3 in standard form.
The first step is to determine if

1

2
≡ 0, 1 or 2 mod 3.

In fact 22 ≡ 1 mod 3; and so

1

2
≡ 2 mod 3.

Next

1

3

(
1

2
− 2

)
= −1

2
≡ 1 mod 3

ie

1

2
− 2 ≡ 1 · 3 mod 32.

Thus

1

2
≡ 2 + 1 · 3 mod 32
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For the next step,

1

3

(
−1

2
− 1

)
= −1

2
≡ 1 mod 3

giving

1

2
≡ 2 + 1 · 3 + 1 · 32 mod 33

It is clear that this pattern will be repeated indefinitely. Thus

1

2
= 2 + 3 + 32 + 33 + · · · .

To check this,

2 + 3 + 32 + · · · = 1 + (1 + 3 + 32 + · · · )

= 1 +
1

1− 3

= 1− 1

2

=
1

2
.

As another illustration, let us expand 3/5 ∈ Q7. We have

3

5
≡ 2 mod 7

1

7

(
3

5
− 2

)
= −1

5
≡ 4 mod 7

1

7

(
−1

5
− 4

)
= −3

5
≡ 5 mod 7

1

7

(
−3

5
− 5

)
= −4

5
≡ 2 mod 7

1

7

(
−4

5
− 2

)
= −2

5
≡ 1 mod 7

1

7

(
−2

5
− 1

)
= −1

5
≡ 4 mod 7

We have entered a loop; and so (in Q7)

3

5
= 2 + 4 · 7 + 5 · 72 + 2 · 73 + 1 · 74 + 4 · 75 + 5 · 76 + · · ·
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Checking,

1 +
(
1 + 4 · 7 + 5 · 72 + 2 · 7

) 1

1− 74
= 1− 960

2400

= 1− 2

5

=
3

5
.

It is not difficult to see that a number x ∈ Qp has a recurring p-adic
expansion if and only if it is rational (as is true of decimals).

Let x ∈ Zp. Suppose ‖x‖p = 1. Then

x = c+ yp,

where 0 < c < p and y ∈ Zp. Suppose first that c = 1, ie

x = 1 + yp.

Then x is invertible in Zp, with

x−1 = 1− yp+ y2p2 − y3p3 + · · · .

Even if c 6= 1 we can find d such that

dc ≡ 1 mod p.

Then

dx ≡ dc ≡ 1 mod p,

say

dx = 1 + py,

and so x is again invertible in Zp, with

x−1 = d
(
1− yp+ y2p2 − · · ·

)
.

Thus the elements x ∈ Zp with ‖x‖p = 1 are all units in Zp, ie they have
inverses in Zp; and all such units are of this form. These units form the
multiplicative group

Z
×
p = {x ∈ Zp : ‖x‖p = 1}.
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5.3 In the p-adic neighbourhood of 0

Recall that an elliptic curve E(k) can be brought to Weierstrassian form

y2 + c1xy + c3y = x3 + c2x
2 + c4x+ c6

if and only if it has a flex defined over k. This is not in general true for
elliptic curves over Qp. For example, the curve

X3 + pY 3 + p2Z3 = 0

has no points at all (let alone flexes) defined over Qp. For if [X, Y, Z] were a
point on this curve then

‖X3‖p = p3e, ‖pY 3‖p = p3f−1, ‖p2Z3‖p = p3g−2

for some integers e, f, g. But if a, b, c ∈ Qp and

a+ b+ c = 0

then two (at least) of a, b, c must have the same p-adic value, by Corollary 3
to Proposition 5.1.

On the other hand, Qp is of characteristic 0; so if E(Qp) is Weierstrassian
— as we shall always assume, for reasons given earlier — then it can be
brought to standard form

y2 = x3 + bx+ c.

In spite of this, there is some advantage in working with the general Weier-
strassian equation, since — as we shall see in Chapter 6 — this allows us to
apply the results of this Chapter to study the integer points (that is, points
with integer coordinates) on elliptic curves over Q given in general Weier-
strassian form. Such an equation over Q can of course be reduced to standard
form; but the reduction may well transform integer to non-integer points.

As in the real case, we study the curve in the neighbourhood of 0 = [0, 1, 0]
by taking coordinates X,Z, where

(X,Z) = [X, 1, Z].

In these coordinates the elliptic curve takes the form

E(Qp) : Z + c1XZ + c3Z
2 = X3 + c2X

2Z + c4XZ
2 + c6Z

3.

As in the real case, if Z(P ) is small then so is X(P ).
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Proposition 5.2 If P ∈ E(Qp) then

‖Z‖p < 1 =⇒ ‖X‖p < 1;

and if this is so then
‖Z‖p = ‖X‖3

p.

Proof I Suppose ‖Z‖p < 1. Let

‖X‖p = pe.

If e ≥ 0 then X3 will dominate; no other term can be as large, p-adically
speaking.

Thus e < 0, ie ‖X‖p < 1; and now each term

‖c1XZ‖p, ‖c3Z
2‖p, ‖c2X

2Z‖p, ‖c4XZ
2‖p, ‖c6XZ‖p < ‖Z‖p.

Only X3 is left to balance Z. Hence

‖Z‖p = ‖X3‖p = ‖X‖3
p.

J

Definition 5.2 For each e > 0 we set

E(pe) = {(X,Z) ∈ E : ‖X‖p ≤ p−e, ‖Z‖p ≤ p−3e}.

Recall that in the real case, we showed that Z could be expressed as a
power-series in X,

Z = X3 − c1X
4 + (c2

1 + c2)X5 + · · · .

valid in a neighbourhood of O = [0, 1, 0]. It follows that

F (X,Z(X)) = 0

identically, where

F (X,Z) = Z + c1XZ + c3Z
2 − (X3 + c2X

2Z + c4XZ
2 + c6Z

3).

This identity must hold in any field, in particular in Qp.
Note that in the p-adic case, convergence is much simpler than in the real

case. A series in Qp converges if and only if its terms tend to 0:∑
ar convergent ⇐⇒ ar → 0.
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Remember too that in the p-adic valuation integers are small,

x ∈ Z =⇒ ‖x‖p ≤ 1.

Thus a power-series
a0 + a1x+ a2x

2 + · · ·
where ai ∈ Z—or more generally, ai ∈ Zp—will converge for all x with
‖x‖p < 1.

Proposition 5.3 Suppose ‖Z‖p < 1. Then we can express Z as a power-
series in X,

Z = X3 + a1X
4 + a2X

5 + · · ·
where

1. a1 = −c1, a2 = c2
1 + c2, c3 = −(c3

1 + 2c1c3 + c3);

2. each coefficient ai is a polynomial in c1, c2, c3, c4, c6 with integer coeffi-
cients;

3. the coefficient ai has weight i, given that ci is ascribed weight i for
(i = 1− 4, 6.

Proof I By repeatedly substituting for Z on the right-hand side of the equa-
tion

Z = X3 + c2X
2Z + c4XZ

2 + c6Z
3 − (c1XZ + c3Z

2)

we can successively determine more and more terms in the power series. Thus
suppose we have shown that

Z = X3
(
1 + a1X + · · ·+ an−1X

n−1
)
.

On substituting for Z on the right-hand side of the equation and comparing
coefficients of Xn+3,

an = c2an−2 + c4

∑
i+j=n−4

aiaj + c6

∑
i+j+k=n−6

aiajak − c1an−1 − c3

∑
i+j=n−3

aiaj,

from which the result follows. J

Corollary If the elliptic curve is given in standard form

y2 = x3 + ax2 + bx+ c

then
Z = x3 + d2X

5 + d4X
7 + · · · ,

where
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1. only odd powers of X appear, ie di = 0 for i odd;

2. d2 = a, d4 = a2 + b, d6 = a3 + 3ab+ c;

3. each coefficient d2i is a polynomial in a, b, c with integer coefficients;

4. the coefficient d2i has weight i, given that a, b, c are ascribed weights
2,4,6 respectively;

Proof I We note that in the standard case the (X,Z)-equation

Z = X3 + aX2Z + bXZ2 + cZ3

is invariant under the reflection (X,Z) 7→ (−X,−Z) (corresponding to P 7→
−P ). Thus

Z(−X) = −Z(X),

from which the absence of terms of even degree X2i follows. J

As in the real case, the sum of 2 points near O is defined by a function
S(X1, X2), where

X(P1 + P2) = S(X(P1), X(P2)).

Proposition 5.4 Suppose ‖X1‖p, ‖X2‖p < 1. Then we can express S(X1, X2)
as a double power-series in X1, X2,

S(X1, X2) = X1 +X2 + c1X1X2 + · · ·

=
∑
i

Si(X1, X2)

=
∑
i,j

sijX
i
1X

j
2

where

1. Si(X1, X2) is a symmetric polynomial in X1, X2 of degree i;

2. S1(X1, X2) = X1 +X2, S2(X1, X2) = c1X1X2;

3. the coefficient sjk of XjXk is a polynomial in c1, c2, c3, c4, c6 with inte-
gral coefficients.

4. all the coefficients in Si(X1, X2) have weight i.
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Proof I As in the real case, let the line

P1P2 : Z = MX +D

meet E again in P3 = (X3, Z3), ie

P3 = P1 ∗ P2.

Then X1, X2, X3 are the roots of the equation

X3 + c2X
2(MX +D) + c4X(MX +D)2 + c6(MX +D)3

− (MX +D)− c1X(MX +D)− c3(MX +D)2 = 0.

Hence

X1 +X2 +X3 = −coeff of X2

coeff of X3

=
c1M + 2c3M

2 − (c2 + c4M + c6M
2)D

1 + c2M + c4M2 + c6M3

Now

M =
Z2 − Z1

X2 −X1

=
X3

2 −X3
1

X2 −X1

− c1
X4

2 −X4
1

X2 −X1

+ · · ·

= X2
1 +X1X2 +X2

2 − c1(X3
1 +X2

1X2 +X1X
2
2 +X3

2 ) + · · · ,

D =
X2Z1 −X1Z2

X2 −X1

= X1X2

(
X2

2 −X2
1

X2 −X1

− c1
X3

2 −X3
1

X2 −X1

+ · · ·
)

= X1X2

(
X1 +X2 − c1(X2

2 +X1X2 +X2
2 ) + · · ·

)
.

Thus M,D are both expressible as symmetric power-series in X1, X2; and

‖M‖p ≤ p−2, ‖D‖p ≤ p−3,

or more precisely,

M ≡ X2
1 +X1X2 +X2

2 mod p3

D ≡ X1X2(X1 +X2) mod p4.
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Hence
X1 +X2 +X3 ≡ 0 mod p2.

More precisely,

X1 +X2 +X3 ≡ c1(X2
1 +X1X2 +X2

2 ) mod p3,

ie

X3 ≡ −(X1 +X2) + c1(X2
1 +X1X2 +X2

2 ) mod p3.

In particular,

‖X3‖p ≤ p−1,

and so

‖Z3‖p = ‖MX3 +D‖ ≤ p−3,

ie

P1, P2 ∈ E(p) =⇒ P3 ∈ E(p).

Recall that
P1 + P2 = O ∗ (P1 ∗ P2) = O ∗ P3.

By our formulae above, with O,X3 in place of X1, X2,

X(O ∗ P3) ≡= −X3 mod p2,

or more precisely

X(O ∗ P3) ≡= −X3 + c1X
2
3 mod p3,

Hence
X(P1 + P2) = X1 +X2 mod p2,

or more precisely

X(P1 + P2) = X1 +X2 − c1(X2
1 +X1X2 +X2

2 ) + c1(X1 +X2)2 mod p3

= X1 +X2 + c1X1X2 mod p3
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Finally, we turn to the normal coordinate function θ(X), defined as in
the real case by

dθ

dX
=

1

∂F/∂Z

=
1

1 + c1X + 2c3Z − c2X2 − 2c4XZ − 3c6Z2

Proposition 5.5 Suppose ‖X‖p < 1. Then we can express θ as a power-
series in X,

θ = X +
c

2
X2 + · · ·

=
∑

tnX
n+1

where

1. t1 = 1, t2 = −c1/2;

2. for each i, iti is a polynomial in c1, c2, c3, c4, c6 with integral coefficients;

3. ti is of weight i.

Proof I Since

dθ

dX
=

1

1 + c1X + 2c3Z − c2X2 − 2c4XZ − 3c6Z2

= 1− (c1X + 2c3Z − c2X
2 − 2c4XZ − 3c6Z

2)

+ (c1X + 2c3Z − c2X
2 − 2c4XZ − 3c6Z

2)2 + · · ·

the coefficients in the power-series for dθ/dX are integral polynomials in the
ci. It follows on integration that the coefficients ti in the power-series for
θ(X) have at worst denominator i.

It remains to show that this power series converges for ‖X‖p < 1.

Lemma 4 For all i,
‖1/i‖p ≤ i.

Proof of Lemma B Suppose

‖i‖p = p−e.
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Then

pe | i =⇒ pe ≤ i

=⇒ ‖1/i‖ ≤ i.

C

If now ‖X‖p < 1 then

‖X‖p ≤
1

p
;

and so

‖tiX i‖p ≤
i

pi
,

which tends to 0 as i→∞. The power-series is therefore convergent. J

Note that
pi ≥ 2i = (1 + 1)i > i2/2

if i ≥ 2, while if p is odd, ‖1/2‖p = 1. Thus

‖X‖p ≤ p−1 =⇒ ‖X i/i‖p ≤ p−2 for i ≥ 2 (p odd)

‖X‖2 ≤ 2−2 =⇒ ‖X i/i‖2 ≤ 2−3 for i ≥ 2 (p = 2).

So if p is odd,

θ(X) = X +O(p2) if ‖X‖p ≤ p−1;

while if p = 2,

θ(X) = X +O(23) if ‖X‖2 ≤ 2−2.

That is why in our discussion below the argument often applies to P ∈ E(p)

if p is odd, while if p = 2 we have to restrict P to E22 .

Theorem 5.1 For each power pe, where e ≥ 1,

E(pe)(Qp)

is a subgroup of E(Qp). Moreover the map

θ : E(pe)(Qp)→ peZp

is an isomorphism (of topological abelian groups), provided e ≥ 2 if p = 2.
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Proof I The identity

θ(S(X1, X2) = θ(X1) + θ(X2),

which we established in the real case, must still hold; and we conclude from
it, as before, that

θ(P1 + P2) = θ(P1) + θ(P2)

whenever
P1, P2 ∈ E(pe)(Qp).

It follows from this that E(pe) is a subgroup; and that

θ : E(pe) → peZp

is a homomorphism, provided e ≥ 2 if p = 2.
Since

θ(X) = X − c1X
2/2 + · · · ,

we have
‖θ(X)‖p = ‖X‖p

for all ‖X‖p ≤ p−e. In particular

θ(X) = 0⇐⇒ X = 0.

Hence θ is injective.
It is also surjective, as the following Lemma will show.

Lemma 5 The only closed subgroups of Zp are the subgroups

pnZp (n = 0, 1, 2, . . . ),

together with {0}. In particular, every closed subgroup of Zp, apart from {0},
is in fact open.

Proof of Lemma B Z is a dense subset of Zp:

Z = Zp.

For the p-adic integer

x = c0 + c1p+ c2p
2 + · · · (ci ∈ {0, 1, . . . , p− 1})

is approached arbitrarily closely by the (rational) integers

xr = c0 + c1p+ · · ·+ crp
r.
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Now suppose S is a closed subgroup of Zp. Let s ∈ S be an element of
maximal p-adic valuation, say

‖s‖ = p−e.

Then
s = peu

where u is a unit in Zp, with inverse v, say. Given any ε > 0, we can find
n ∈ Z such that

‖v − n‖ < ε.

Then

ns− pe = pe(nu− 1)

= peu(n− v);

and so
‖ns− pe‖ < ε.

Since ns ∈ S and S is closed, it follows that

pe ∈ S.

Hence
peZ = peZp ⊂ S.

Since s was a maximal element in S, it follows that

S = peZp.

C

It follows from this Lemma that im θ is one of the subgroups pmZp. But
since

‖X‖ = p−e =⇒ ‖θ(X)‖ = p−e,

im θ must in fact be peZp, ie θ is surjective.
A continuous bijective map from a compact space to a hausdorff space is

necessarily a homeomorphism. (This follows from the fact that the image of
every closed, and therefore compact, subset is compact, and therefore closed.)
In particular, θ establishes an isomorphism

E(pe)
∼= peZp ∼= Zp.

J

It follows from this Theorem that E(pe) is torsion-free, since Zp is torsion-
free. Thus there are no points of finite order on E close to O, a result which
we shall exploit in the next Chapter.
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5.4 The Structure of E(Qp)

We shall not use the following result, but include it for the sake of complete-
ness.

Theorem 5.2 Let F ⊂ E(Qp) be the torsion subgroup of the elliptic curve
E(Qp). Then

E(Qp) ∼= F ⊕ Zp.

Proof I The torsion subgroup F splits (uniquely) into its p-component Fp
and the sum Fp′ of all components Fq with q 6= p:

F = Fp ⊕Fp′ .

(See Appendix A for details.) Explicitly,

Fp = {P ∈ E : pnP = 0 for some n},
Fp′ = {P ∈ E : mP = 0 for some d with gcd(m, p) = 1}.

(We write E for E(Qp)).
We also set

Ep = {P ∈ E : pnP → O as n→∞}.
Evidently

Ep ⊃ E(p).

Since E(p) is an open (and therefore closed) subgroup of E , it follows that the
same is true of Ep.

Lemma 6 pnEp = E(pe) for some n, e > 0.

Proof of Lemma B For each P ∈ Ep,

pnP ∈ E(p)

for some n > 0 since pnP → O and E(p) is an open neighbourhood of O.
Hence the open subgroups p−nE(p) cover Ep. Since Ep is compact, it follows
that p−nE(p) ⊃ Ep for some n, ie

pnEp ⊂ E(p)
∼= Zp.

But by Lemma 5 to Theorem 5.1, the only closed subgroups of Zp are the
peZp, which correspond under this isomorphism to the subgroups E(pe) of E(p).

We conclude that
pnEp = E(pe)

for some e. C
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Lemma 7 Suppose A is a finite p-group; and suppose gcd(m, p) = 1. Then
the map ψ : A→ A under which

a 7→ ma

is an isomorphism.

Proof of Lemma B Suppose a ∈ kerA, ie

ma = 0.

Then order(a) | m. But by Lagrange’s Theorem, order(a) = pe for some e.
Hence order(a) = 1, ie a = 0.

Thus ψ is injective; and it is therefore surjective, by the Pigeon-Hole
Principle. Hence ψ is an isomorphism. C

It is not difficult to extend this result to Ep, which is in effect a kind of
topological p-group.

Lemma 8 Suppose gcd(m, p) = 1. Then the map ψ : Ep → Ep under which

a 7→ ma

is an isomorphism.

Proof of Lemma B Suppose P ∈ kerψ, ie

mP = 0.

By Lemma 1,
pnEp ⊂ E(p2)

∼= Zp

for some n.
But Zp is torsion-free. Thus

mP = 0 =⇒ m(pnP = 0) =⇒ pnP = 0.

Hence
m, pn | order(P ) =⇒ order(P ) = 1 =⇒ P = 0

since gcd(m, pn) = 1. Thus
kerψ = 0,

ie ψ is injective.
Now suppose P ∈ Ep. We have to show that P = mQ for some Q ∈ Ep.
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Since Ep/pnEp is a finite p-group we can find Q ∈ Ep such that

mQ ≡ P mod pnEp

ie

mQ = P +R,

where
R ∈ pnEp ∼= Zp.

Now the map
P 7→ mP : Zp → Zp

is certainly an isomorphism, since m is a unit in Zp with inverse m−1 ∈ Zp.
In particular we can find S ∈ pnEp with

mS = R.

Putting all this together,

P = mQ+R = mQ+mS = m(Q+ S).

Thus the map ψ is surjective, and so an isomorphism. C

Lemma 9 E(Qp) = Fp′ ⊕ Ep.

Proof of Lemma B Suppose

P ∈ Fp′ ∩ Ep,

say
mP = O,

where gcd(m, p) = 1.
On considering p mod m as an element of the finite group

(Z/m)× = {r mod m : gcd(r,m) = 1},

it follows by Lagrange’s Theorem that

pr ≡ 1 mod m

for some n > 0. But then
prP = P ;
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and so
pnP → O =⇒ P = O.

Now suppose P ∈ E . Since E is compact, and Ep is open, E/Ep is finite
(eg since E must be covered by a finite number of Ep-cosets). Let the order
of this finite group be mpe, where gcd(m, p) = 1.

We can find u, v ∈ Z such that

um+ vpe = 1;

and then
P = Q+R,

where
Q = u(mP ), R = v(peP ).

Now
peQ = u(mpeP ) ∈ Ep.

Hence

pnQ→ 0 as n→∞

ie

Q ∈ Ep.

On the other hand,
mR = v(mpeP ) ∈ Ep.

Hence by Lemma 8, there is a point S ∈ Ep such that

mR = mS,

and so

T = R− S ∈ Fp′ .

Putting these results together,

P = T + (Q+ S),

with T ∈ Fp′ and Q+ S ∈ Ep. C

Lemma 10 Fp ⊂ Ep.
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Proof of Lemma B Suppose

P = Q+R ∈ Fp,

where Q ∈ Fp′ , R ∈ Ep. Then

pnP = 0 =⇒ pnQ = 0, pnR = 0,

since the sum is direct. But

pnQ = 0 =⇒ order(Q) | pn =⇒ order(Q) = 1 =⇒ Q = 0,

since the order of Q is coprime to p by the definition of Fp′ . Thus

P = R ∈ Ep.

C

It remains to split Ep into Fp and a subgroup isomorphic to Zp.
Consider the surjection

ψ : Ep → E(pe)
∼= Zp.

Let us choose a point
P0 ∈ Epe \ E(pe+1),

eg if we identify E(pe) with Zp we might take the point corresponding to
1 ∈ Zp. Now choose a point P1 such that

ψ(P1) = P0;

and let
E1 = 〈P1〉

be the closure in Ep of the subgroup generated by P1. We shall show that
the restriction

ψ1 = ψ | E1 : E1 → E(pe)

is an isomorphism, so that

E1
∼= E(pe)

∼= Zp.

Certainly ψ1 is surjective. For E1 is compact, and so its image is closed;
while 〈P0〉 > is dense in E(pe)

∼= Zp.
Suppose

Q ∈ kerψ1 = kerψ ∩ E1.
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By definition, Q is the limit of points in 〈P1〉, say

niP1 → Q,

where ni ∈ Z. But then, since ψ is continuous,

niP0 → ψ(Q) = 0.

Hence
ni → 0

in Zp. But then it follows that

niP1 → 0

in Ep, since ⋂
pnEp = 0.

Hence Q = 0, ie kerψ1 = 0.
It remains to show that

Ep = Fp ⊕ E1.

Suppose P ∈ Ep. Then
ψ(P ) = ψ(Q),

for some Q ∈ E1. In other words,

pn(P −Q) = 0.

Thus

R = P −Q ∈ Fp

On the other hand, if
Fp ∩ E1 = 0,

since as we have seen,
E1
∼= E(pe)

∼= Zp,

and Zp is torsion-free.
We have shown therefore that

E = Fp′ ⊕ Ep
= Fp′ ⊕ (Fp ⊕ E1)

= (Fp′ ⊕Fp)⊕ E1

= F ⊕ E1

∼= F ⊕ Zp.
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Remark: We can regard Ep as a Zp-module; for since pnP → O we can define
xP unambiguously for x ∈ Zp:

ni → x =⇒ niP → xP.

Moreover, Ep is a finitely-generated Zp-module; that follows readily from
the fact that E(p)

∼= Zp is of finite index in Ep.
The Structure Theorem for finitely-generated abelian groups, ie Z-modules,

extends easily to Zp-modules; such a module is the direct sum of copies of
Zp and cyclic groups Z/(pe). (This can be proved in much the same way as
the corresponding result for abelian groups.)

Effectively, therefore, all we proved above was that the factor Zp oc-
curred just once, which simply reflects the fact that we are dealing with a
1-dimensional curve.
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Chapter 6

Points of Finite Order

6.1 The Torsion Subgroup

The elements of finite order in an abelian group A form a subgroup F ⊂ A,
since

a, b ∈ F =⇒ ma = 0, nb = 0 =⇒ mn(a+ b) = 0 =⇒ a+ b ∈ F.

This subgroup F is commonly called the torsion subgroup of A. (See Ap-
pendix A for further details.)

It turns out to be much easier to determine the torsion subgroup F ⊂
E(Q) of an elliptic curve than it is to determine the rank of the curve — that
is, the number of copies of Z in

E(Q) = F ⊕ Z⊕ · · · ⊕ Z.

In effect the discussion below provides a simple algorithm for determining F ,
while there is no known algorithm for determining the rank.

Proposition 6.1 The torsion subgroup of an elliptic curve E(Q) is finite, ie
E has only a finite number of points of finite order.

Proof I Suppose E has equation

y2 + c1xy + c3y = x3 + c2x
2 + c4x+ c6,

where ci ∈ Q. Choose an odd prime p not appearing in the denominators of
the ci, and consider the p-adic curve E(Qp). Any point P ∈ E(Q) of finite
order will still have finite order in E(Qp).

We know that E(Qp) has an open subgroup

E(p)(Qp) ∼= Zp.
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The only point of finite order in this subgroup is 0 (since Zp has no other
elements of finite order).

It follows that any coset

P + E(p)(Qp)

contains at most one element of finite order. For if there were two, say P,Q,
then P −Q would be a point of finite order in the subgroup.

But E(Qp) is compact, since it is a closed subspace of the compact space
P

2(Qp). Hence it can be covered by a finite number of cosets

P1 + E(p)(Qp), . . . , Pr + E(p)(Qp).

Since each coset contains at most 1 point of finite order, the number of such
points is finite. J

Remark: We shall prove in Chapter 8 the much deeper result that the group
E(Q) of an elliptic curve over Q is finitely-generated (Mordell’s Theorem),
from which the finiteness of F follows, as shown in Appendix A.

6.2 Lessons from the Real Case

Proposition 6.2 Suppose F is the torsion subgroup of the elliptic curve
E(Q). Then

F ∼= Z/(n) or F ∼= Z(2n)⊕ Z/(2).

Proof I We know that

E(R) ∼= T or T⊕ Z/(2).

Since
E(Q) ⊂ E(R),

it follows that
F ⊂ T or T⊕ Z/(2).

Lemma Every finite subgroup of T is cyclic; and there is just one such
subgroup of each order n.

Proof of Lemma B The torsion subgroup of

T = R/Z
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is
F = Q/Z.

For if t̄ ∈ T is of order n then nt ∈ Z, say nt = m, ie t = m/n ∈ Q.
Conversely, if t ∈ Q, say t = m/n, then nt̄ = 0, and so t̄ ∈ F .

Suppose
A ⊂ Q/Z

is a finite subgroup 6= 0. Since each t̄ ∈ T has a unique representative
t ∈ [−1/2, 1/2), A has a smallest representative t = m/n > 0, where we may
assume that m,n > 0, gcd(m,n) = 1.

In fact n = 1; for we can find u, v,∈ Z such that

um+ vn = 1,

and then

1

n
= u

m

n
+ v,

ie

1

n
≡ u

m

n
mod Z

Thus
1

n
∈ A.

Since 1/n ≤ m/n, this must be our minimal representative: n = 1.
Now every element t̄ ∈ A must be of the form m/n; for otherwise we

could find a representative

t−m/n ∈ (0, 1/n),

contradicting our choice of 1/n as minimal representative of A.
We conclude that

A =

{
0,

1

n
,

2

n
, . . . ,

n− 1

n

}
∼= Z/(n).

Moreover, our argument shows that this is the only subgroup of A of order
n. C

Since this is the only subgroup of T of order n we can write

Z/(n) ⊂ T
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without ambiguity, identifying

r mod n←→ r/n mod Z

This establishes the result if F ⊂ T. It remains to consider the case

A ⊂ T⊕ Z/(2).

By the Lemma, A ∩ T is cyclic, say

A ∩ T = Z/(n).

Thus
Z/(n) ⊂ A ⊂ Z/(n)⊕ Z/(2).

Since Z/(n) is of index 2 in Z/(n)⊕ Z/(n) it follows that

A = Z/(n) or A = Z/(n)⊕ Z/(2).

If n is odd then
Z/(n)⊕ Z/(2) ∼= Z/(2n)

by the Chinese Remainder Theorem. Thus either A is cyclic or else

A ∼= Z/(n)⊕ Z/(2)

with n even. J

Mazur has shown that in fact the torsion group of an elliptic curve can
only be one of a small number of groups, namely

Z/(n) (n = 1− 10, 12) and Z/(2n)⊕ Z/(2) (n = 1− 5).

6.2.1 Elements of order 2

We can distinguish between the two cases in Proposition 6.2 by considering
the number of points of order 2. For Z/(n) has no points of order 2 if
n is odd, and just one point if n is even, say n = 2m, namely m mod n;
while Z/(2n)⊕ Z/(2) has three points of order 2, namely (n mod 2n, 0 mod
2), (n mod 2n, 1 mod 2), (0 mod 2n, 1 mod 2).

Proposition 6.3 The point P = (x, y) on the elliptic curve

E(Q) : y2 = x3 + ax2 + bx+ c (a, b, c ∈ Q)

has order 2 if and only if y = 0. There are either 0, 1 or 3 points of order 2.
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Proof I If P = (x, y) then −P = (x,−y). Thus 2P = 0, ie −P = P , if and
only if y = 0.

Thus there are as many elements of order 2 as there are roots of f(x) =
x3 + ax2 + bx + c in Q. But if 2 roots α, β ∈ Q then the third root γ ∈ Q,
since

α + β + γ = −a.

J

In determining whether

p(x) = x3 + ax2 + bx+ c

has 0, 1 or 3 rational roots, one idea is very important: if a, b, c ∈ Z then
every rational root r of p(x) is in fact integral, and r | n. (For on substituting
r = m/n and multiplying by n3, each term is divisible by n except the first.)
This usually reduces the search for rational roots to a number of simple cases.

We may also note that if a, b, c ∈ Z then a necessary — but not sufficient
— condition for p(x) to have 3 rational roots is that the discriminant D
should be a perfect square: D = d2. For

D = [(α− β)(β − γ)(γ − α)]2 .

6.2.2 Elements of order 3

In any abelian group, the elements of order p (where p is a prime), together
with 0, form a subgroup; for

pa = 0, pb = 0 =⇒ p(a+ b) = 0.

We can consider this subgroup as a vector space over the finite field GF(p).

Proposition 6.4 If p is an odd prime then there are either no points of order
p on the elliptic curve E(Q), or else there are exactly p − 1 such elements,
forming with 0 the group Z/(p).

Proof I An element of T ⊕ Z/(2) of odd order p is necessarily in T. Thus
the result follows from Proposition 6.2 and the Lemma in the proof of that
Proposition. J

The elements of order 3 have a particularly simple geometric description.

Proposition 6.5 A point P 6= 0 on the elliptic curve E(Q) has order 3 if
and only if it is a point of inflexion. There are either 0 or 2 such points.
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Proof I Suppose P has order 3, ie

P + P + P = 0.

From the definition of addition, this means that the tangent at P meets E in
3 coincident points P, P, P . In other words, P is a point of inflexion.

It follows from the previous Proposition that there are either 0 or 2 such
flexes. J

Remark: The point 0 is of course a flex (by choice); so there are either 1 or
3 flexes on the elliptic curve E(Q) given by a general Weierstrass equation.

6.3 Points of Finite Order are Integral

Theorem 6.1 Suppose P = (x, y) is a point of finite order on the elliptic
curve

E(Q) : y2 + c1xy + c3y = x3 + c2x
2 + c4x+ c6,

where c1, c2, c3, c4, c6 ∈ Z. Then either 2P = 0 or x, y ∈ Z.

Proof I

Lemma 1 For each prime p, if (x, y) ∈ E(Qp) then

‖x‖p ≤ 1⇐⇒ ‖y‖p ≤ 1.

Proof of Lemma B If ‖x‖p ≤ 1 but ‖y‖p > 1 then y2 will dominate the

equation. On the other hand, if ‖x‖p > 1 but ‖y‖p ≤ 1 then x3 will dominate
the equation. C

On combining these results for all primes,

x ∈ Z⇐⇒ y ∈ Z.

(This last result is easily proved directly; for if x ∈ Z then the equation
for E can be regarded as a monic quadratic equation for y with integral
coefficients; and any rational solution for y is therefore integral; and similarly
if y ∈ Z then the equation for E can be regarded as a monic cubic equation
for x with integral coefficients; and any rational solution for x is therefore
integral.)

Lemma 2 If P = (x, y) ∈ E(Qp) then either x, y ∈ Zp or else P ∈ E(p).
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Proof of Lemma B The equation of the curve in (X,Z)-coordinates is

Z + c1XZ + c3Z
2 = X3 + c2X

2Z + c4XZ
2 + c6Z

3.

Suppose P /∈ E(p), ie

‖X‖p ≥ 1 or ‖Z‖p ≥ 1.

In fact
‖X‖p ≥ 1 =⇒ ‖Z‖p ≥ 1;

for if ‖X‖p ≥ 1 but ‖Z‖p < 1 then X3 would dominate the equation. Thus

‖Z‖p ≥ 1

in either case.
Since y = 1/Z

‖Z‖p ≥ 1 =⇒ ‖y‖p ≤ 1.

Hence
x, y ∈ Zp

by Lemma 1. C

Lemma 3 1. If p is odd then E(p) is torsion-free (ie has no elements of
finite order except 0).

2. E(22) is torsion-free.

Proof of Lemma B This follows at once from the fact that

E(p)
∼= Zp (p odd), E(22)

∼= Z2,

as we saw in Chapter 5. C

Lemma 4 If P ∈ E(2) then 2P ∈ E(22).

Proof of Lemma B Suppose P = (X,Z). Recall that although E(2) was

defined as
E(2) =

{
(X,Z) ∈ E : ‖X‖2, ‖Z‖2 < 2−1

}
,

in fact it follows from the equation

Z(1 + c1X + c2Z) = X3 + c2X
2Z + c4XZ

2 + C6Z
3
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that
(X,Z) ∈ E(2) =⇒ ‖Z‖2 ≤ 2−3.

(More generally, although E(pe) is defined as

E(pe) =
{

(X,Z) ∈ E : ‖X‖p < p−e, ‖Z‖ < 1
}
,

in fact
(X,Z) ∈ E(pe) =⇒ ‖Z‖p ≤ p−3e

by induction on e.)
The tangent at P is

Z = MX +D

where

M =
∂F/∂X

∂F/∂Z

=
c1Z − (3X2 + 2c2XZ + 3c4Z

2)

1 + c1X + 2c3Z − (c2X2 + 2c4XZ + 3c6Z2)
.

The term 3X2 dominates the numerator, while the term 1 dominates the
numerator. It follows that

‖M‖2 ≤ 2−2.

Hence
‖D‖2 = ‖Z −MX‖2 ≤ 2−3.

The tangent meets E where

(MX +D)(1 + c1X + c3(MX +D))

= X3 + c2X
2(MX +D) + c4X(MX +D)2 + c6(MX +D)3.

Thus if the tangent meets E again at (X1, Z1) then

2X +X1 = −coeff of X2

coeff of X3

=
c1M + c3M

2 − (c2 + 2c4M + 3c6M
2)D

1 + c2M + c4M2 + c6M3
.

Hence
‖X1‖2 ≤ 2−2.

Since
‖Z1‖ = ‖MX1 +D‖ ≤ 2−4,
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it follows that
(X1, Z1) ∈ E(22).

We conclude that
2P = −(X1, Z1) ∈ E(22),

since E(22( is a subgroup of E . C

Now suppose P = (x, y) ∈ E(Q) is of finite order.
For each odd prime p,

P /∈ E(p)

by Lemma 3. Thus
x, y ∈ Zp

by Lemma 2.
Since 2P is of finite order,

P ∈ E(2) =⇒ 2P ∈ E(22) =⇒ 2P = 0,

by Lemmas 4 and 3. Thus if 2P 6= 0 then

x, y ∈ Z2,

by Lemma refIntegrality.
Putting these results together, we conclude that either 2P = 0 or else

x, y ∈ Zp for all p =⇒ x, y ∈ Z.

J

Corollary If P = (x, y) is a point of finite order on the elliptic curve

y2 = x3 + ax2 + bx+ c

then x, y ∈ Z.

Proof I After the Proposition we need only consider the case

2P = 0 =⇒ y = 0 =⇒ x3 + ax2 + bx+ c = 0.

Since a rational root of a monic polynomial with integral coefficients is nec-
essarily integral, it follows that x ∈ Z. J

Recall that if P = (x, y) is a point of

E(Q) : y2 + c1xy + c3y = x3 + c2x
2 + c4x+ c6
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then
−P = (x,−y − c1x− c3).

For by definition, −P is the point where the line OP meets the curve
again. But the lines through O are just the lines

x = c

parallel to the y-axis (together with the line Z = 0 at infinity). This is clear
if we take the line in homogeneous form

lX +mY + nZ = 0.

This passes through O = [0, 1, 0] if m = 0, giving

x = X/Z = −n/l.

Thus −P is the point with the same x-coordinate as P , say

−P = (x, y1).

But y, y1 are the roots of the quadratic

y2 + y(c1x+ c3)− (x3 + c2x
2 + c4x+ c6).

Hence

y + y1 = −(c1x+ c3),

ie

y1 = −y − c1x− c3.

It follows that

2P = 0⇐⇒ −P = P

⇐⇒ y = −y − c1x− c3

⇐⇒ 2y + c1x+ c3 = 0.

Example: Consider the curve

E(Q) : y2 + xy = x3 + 4x2 + x.

If P = (x, y) is of order 2 then

2y + x = 0.
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This meets the curve where

x2/4− x2/2 = x3 + 4x2 + x,

ie

4x3 + 17x2 + 4x = 0.

This has roots 0,−1/4,−4. Thus the curve has three points of order 2,
namely (0, 0), (−1/4, 1/8), (4, 2).

6.4 Points of Finite Order are Small

Theorem 6.2 (Nagell-Lutz) Suppose the elliptic curve E(Q) has equation

y2 = f(x),

where
f(x) ≡ x3 + ax2 + bx+ c (a, b, c ∈ Z);

and suppose P = [x, y, 1] ∈ E is a point of finite order. Then either y = 0,
or

y2 | ∆(f),

where
∆ = 8a3c− a2b2 − 18abc+ 4b3 + 27c2

is the discriminant of f(x).

Proof I We start by proving the weaker result

y | ∆(f),

since this brings out the basic idea in a more direct way.
Suppose P = (x, y) is a point of finite order. Then so is 2P = (x1, y1).

Thus by Proposition ,
x, y, x1, y1 ∈ Z.

Recall that
2x+ x1 = −a+m2,

where

m =
f ′(y)

2y
.
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Since a ∈ Z, it follows that

m2 ∈ Z =⇒ m ∈ Z =⇒ 2y | f ′(x).

On the other hand
y | f(x)

since y2 = f(x). Thus
y | f(x), f ′(x).

Recall that the resultant R(f, g) of two polynomials

f(x) = a0x
m + a1x

m−1 + · · ·+ am, g(x) = b0x
n + b1x

n−1 + · · ·+ bn

is the determinant of the (m+ n)× (m+ n) matrix

R(f, g) =



a0 a1 a2 . . . am 0 . . . 0
0 a0 a1 . . . am−1 am . . . 0

. . .
0 0 0 . . . . . . am−1 am
b0 b1 b2 . . . bn 0 . . . 0
0 b0 b1 . . . bn−1 bn . . . 0

. . .
0 0 0 . . . . . . bn−1 bn


We saw earlier that R(f, g) = 0 is a necessary and sufficient condition

for f(x), g(x) to have a root in common. Our present use of the resultant,
though related, is more subtle.

Lemma 1 Suppose f(x), g(x) ∈ Z[x]. Then there exist polynomials u(x), v(x) ∈
Z[x] such that

u(x)f(x) + v(x)g(x) = R(f, g).

Proof of Lemma B Let us associate to the polynomials

u(x) = c0x
n−1 + c1x

n−2 + · · ·+ cn−1, v(x) = d0x
m−1 + d1x

m−2 + · · ·+ dm−1

(of degrees < n and < m) the (m+ n)-vector

c0

c1
...

cn−1

d0

d1
...

dm−1


.
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It is readily verified that if

u(x)f(x) + v(x)g(x) = e0x
mn−1 + · · ·+ em+n−1,

then the ek are given by the vector equation

R(f, g)



c0

c1
...

cn−1

d0

d1
...

dm−1


=


e0

e1
...

em+n−1

 .

We are looking for integers ci, dj such that
e0

e1
...

em+n−1

 =


0
...
0

R(f, g)


The existence of such integers follows at once from the following Sub-

lemma. (For simplicity we prove the result with detA as first coordinate
rather than last; but it is easy to see that this does not matter.)

Sublemma Suppose A is an n × n-matrix with integer entries. Then we
can find a vector v with integer entries such that

A

v1
...
vn

 =


detA

0
...
0

 .

Proof of Lemma B On expanding detA by its first column,

detA = a11A11 + a21A21 + · · ·+ an1An1,

where the Ai1’s are the corresponding co-factors. On the other hand, if i 6= n
then

a1iA11 + a2iA21 + · · ·+ aniAn1 = 0,
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since this is the determinant of a matrix with two identical columns.
Thus the vector

v =


A11

A21
...

An1


has the required property. C

C

We apply this Lemma to the polynomials f(x), f ′(x), recalling that

R(f, f ′) = −D(f).

Thus we can find polynomials u(x), v(x) ∈ Z[x] such that

u(x)f(x) + v(x)f ′(x) = D.

Hence
y | f(x), f ′(x) =⇒ y | D.

Turning now to the full result, suppose again the P = (x, y) is of finite
order, and that 2P = (x1, y1). We know that x, y, x1, y1 ∈ Z.

Lemma 2 The x-coordinate of 2P is

−g(x)

4y2
,

where
g(x) = x4 − 2bx2 − 8cx− 4ac+ b2.

Proof of Lemma B Recall that

x(2P ) = 2x+ a−m2,

where

x =
f ′(x)

2y
.

Thus

x(2P ) =
4y2(2x+ a)− f ′(x)2

4y2

=
4(x3 + ax2 + bx+ c)(2x+ a)− (3x2 + 2ax+ b)2

4y2
,
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which yields the given result on simplification. C

It follows from the lemma that

y2 | g(x);

Thus
y2 | f(x), g(x)

since y2 = f(x).

Lemma 3 There exist polynomials u(x), v(x) ∈ Z[x] of degrees 3, 2 such that

u(x)f(x) + v(x)g(x) = D.

Proof of Lemma B For simplicity we are going to prove the result in the case

a = 0. We leave it to the reader to establish the general result.
Let us see if we can find u(x), v(x) ∈ Q[x] of the form

u(x) = x3 +Bx+ C, v(x) = x2 +D

such that
u(x)f(x)− v(x)g(x) = const.

The coefficients of x6 and x5 on the left both vanish. Equating the coef-
ficients of x4, x3, x2, x yield

x4 : b+B = −2b+D =⇒ D = B + 3b
x3 : c+ C = −8c =⇒ C = −9c
x2 : Bb = b2 − 2Db => 2D +B = b
x : Bc+ Cb = −8Dc =⇒ B − 9b = −8D.

Substituting for D in the third equation gives

B = −5b/3, D = 4b/3.

The final equation then reduces to

−5b/3− 9b = −32b/3,

which is an identity.
Accordingly, we take

u(x) = 3x3 − 5bx− 27c, v(x) = 3x2 + 4b,
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and then
u(x)f(x)− v(x)g(x) = −27c2 − 4b2 = D,

as required C

The result now follows as before; since x, y ∈ Z,

y2 | f(x), g(x) =⇒ y2 | D.

J

Remark: The resultant of f(x), g(x) turns out to be

R(f, g) = −D2,

so our earlier Lemma would be insufficient. It is not entirely clear (to me at
least) why we can find u(x), v(x) — of lower degrees than expected — such
that

u(x)f(x) + v(x)g(x) = D.

6.5 Examples

In these examples we compute the torsion group F of various elliptic curves
E(Q).

1. We look first at the curve

E(Q) : y2 = x3 + 1.

Recall that the discriminant of the polynomial

p(x) = x3 + bx+ c

is
D = −

(
4b3 + 27c2

)
.

Thus in the present case
D = −27.

It follows from Nagell-Lutz (Theorem 6.2) that

y = 0,±1,±3.

There is just one point of order 2, ie with y = 0, namely (−1, 0).
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If y = ±1 then x = 0, giving the two points (0,±1).

If y = ±3 then x3 = 8, giving the two points (2,±3).

It remains to determine which of these points (0,±1), (2,±3) is of finite
order – remembering that the Nagell-Lutz condition y2 | D is necessary
(if y 6= 0) but by no means sufficient.

The tangent at P = (0, 1) has slope

m =
p′(x)

2y
=

3x2

2y
= 0.

Thus the tangent at P is
y = 1.

This meets E where
x3 = 0,

ie thrice at P . In other words P is a flex, and so of order 3.

Turning to the point (2, 3) we have

m =
3x2

2y
= 2.

and so the tangent at this point is

y = 2x− 1,

which meets E again at (0,−1). Thus

2(2, 3) = −(0,−1) = (0, 1).

We conclude that (2, 3) (and (2,−3) = −(2, 3)) are of order 6, and

F = Z/(6).

2. Consider the curve
E(Q) : y2 = x3 − 1.

Again, D = −27, and there is one point (1, 0) of order 2.

But now

y = ±1 =⇒ x3 = 2,

y = ±3 =⇒ x3 = 10,

neither of which has solutions in Z. We conclude that

F = Z/(2).
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3. Suppose F is the torsion subgroup of

E(Q) : y2 = x3 + x

We have
D = −4,

and so
y = 0,±1,±2.

There is just one point of order 2, ie with y = 0, namely (0, 0).

If y = ±1 then
x3 + x− 1 = 0.

Note that a rational root α ∈ Q of a monic polynomial

xn + a1x
n−1 + · · ·+ an

with integral coefficients ai ∈ Z is necessarily integral: α ∈ Z. And
evidently α | an. Thus in the present case the only possible rational
roots of the equation are x = ±1; and neither of these is in fact a root.

If y = ±2 then
x3 + x− 4 = 0.

The only possible solutions to this are x = ±1,±2,±4; and it is readily
verified that none of these is in fact a solution.

We conclude that
F = Z/(2).

4. Consider the curve
y2 = x3 − x2.

This curve is singular, since p(x) = x3 − x2 has a double root, (and so
D = 0). Thus it is not an elliptic curve, and so is outside our present
study, although we shall say a little about singular cubic curves in the
next Chapter.

5. Consider the curve
E(Q) : y2 − y = x3 − x.

This has 6 obvious integral points, namely (0, 0), (0, 1), (1, 0), (1, 1), (−1, 0), (−1, 1).

We can bring the curve to standard form by setting y1 = y − 1/2, ie
y = y1 +1/2, to complete the square on the left. The equation becomes

y2
1 = x3 − x+ 1/4.
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Now we can make the coefficients integral by the transformation

y2 = 23y1, x2 = 22x,

giving
y2

2 = x3
2 − 24x2 + 26/4,

since the coefficient of x has weight 4, while the constant coefficient has
weight 6. (In practice it is probably easier to apply this transformation
first, and then complete the square; that way our coefficients always
remain integral.) Our new equation is

y2
2 = x3

2 − 16x2 + 16,

with discriminant

D = −(4 · 212 + 27 · 28)

= −28(64 + 27)

= −2891.

By Nagell-Lutz, if (x2, y2) ∈ F then x2, y2 ∈ Z and

y2 = 0,±1,±2,±4,±8,±16.

Note however that if P is not of order 2, ie y2 6= 0, then

y =
y2 − 4

8
∈ Z

by Theorem 6.2. Only the cases y2 = ±4 satisfy this condition. Thus
we only have to consider

y2 = 0,±4.

If y2 = 0 then
x3

2 − 16x2 + 16 = 0.

But

16 | x3
2 =⇒ 4 | x2

=⇒ 32 | x3
2, 16x2

=⇒ 32 | 16,

which is absurd. Thus there are no points of order 2 on E .
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Finally, if y2 = ±4 then

16 = x3
2 − 16x2 + 16 =⇒ x3

2 − 16x2 = 0 =⇒ x2 = 0,±4.

This gives the 6 ‘obvious’ points we mentioned at the beginning.

It remains to determine which of these points are of finite order.

Reverting to the original equation, suppose P = (0, 0). We have

(2y − 1)
dy

dx
= 3x2 − 1,

ie

dy

dx
=

3x2 − 1

2y − 1
.

Thus the tangent at P has slope m = 1, and so is

y = x.

This meets the curve again at (1, 1). Hence

2(0, 0) = −(1, 1) = (1, 0).

The tangent at (1, 0) has slope m = −2, and so is

y = −2x+ 2,

which meets E where

(−2x+ 2)2 − x(−2x+ 2) = x3 − x,

ie

x3 − 6x2 + 9x− 4 = 0.

We know this has two roots equal to 1. The third root must satisfy

2 + x = 6,

ie

x = 4.
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At this point
y = −2x+ 2 = −6.

We know that this point (4,−6) is not of finite order, by Nagell-Lutz.
It follows that (1, 0) is of infinite order. Hence so is (0, 0) since 2(0, 0) =
(1, 0); and so too are (1, 1) = −(1, 0) and (0, 1) = −(0, 0)

It remains to consider the points (−1, 0 and (−1, 1) = −(−1, 0). Note
that if these are of finite order then they must be of order 3 (since there
would be just 3 points in F ), ie they would be flexes.

The tangent at P = (−1, 0) has slope m = −2, and so is

y = −2x− 2.

This meets E where

(−2x− 1)2 − x(−2x− 1) = x3 − x.

We know that this has two roots -1. Hence the third root is given by

−2 + x = 6,

ie

x = 8,

as before. At this point

y = −2x+ 2 = −14.

So
2(−1, 0) = −(8,−14).

Again, we know by Nagell-Lutz that this point is of infinite order, and
so therefore is (−1, 0) and (−1, 1) = −(−1, 0).

To verify that P = (4,−6), for example, is not of finite order, we may
note that the tangent at this point has slope

m = −47

11
.

But the tangent
y = mx+ d
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at P meets the curve again where

(mx+ d)2 − x(mx+ d) = x3 − x,

ie at a point (x1, y1) with

2 · 4 + x1 = m2 −m.

By Nagell-Lutz, x1 ∈ Z (since we have seen that there are no points of
order 2), and so m2 −m ∈ Z, which is manifestly not the case.

We conclude that the torsion-group of this curve is trivial:

F = {0}.
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Chapter 7

Reduction modulo p

7.1 The reduction map

One serendipitous consequence of our adoption of projective (rather than
affine) geometry is that this allows us to ‘reduce’ rational points modulo a
prime p.

Proposition 7.1 Suppose p is a prime. For each dimension n we can define
a map

Πp : Pn(Q)→ P
n(GFp)

as follows: Any point P ∈ Pn(Q) can be expressed in the form

P = [X0, X1, . . . , Xn]

where X0, X1, . . . , Xn ∈ Z and not all Xi are divisible by p. We set

Πp(P ) = P̄ = [X0 mod p,X1 mod p, . . . , Xn mod p].

Proof IWe can ensure that the coordinatesXi are all integral, by multiplying
by the lcm of the denominators; and then we can ensure that not all the Xi

are divisible by p by dividing by the highest power of p dividing all the Xi.
It remains to show that the resulting point P̄ ∈ Pn(GFp) is uniquely

determined by the point P . Suppose we have two such expressions for P :

P = [X0, X1, . . . , Xn] = [X ′0, X
′
1, . . . , X

′
n].

Then
[X ′0, X

′
1, . . . , X

′
n] = ρ[X0, X1, . . . , Xn]

for some ρ ∈ Q×. Let

ρ =
r

s
,
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where gcd(r, s) = 1. Then
rX ′i = sXi

for all i. Clearly p 6| r; for otherwise p | Xi for all i. Similarly p 6| s. But then

r̄X ′i = s̄Xi

ie

[X ′0, X
′
1, . . . , X

′
n] = ρ̄[X0, X1, . . . , Xn],

where ρ̄ = r̄/s̄.
Thus the two representations of P give the same point P̄ . J

Definition 7.1 We call the map

P
n(Q)→ P

n(GFp) : P 7→ P̃

reduction modulo p.

It is not necessary to choose integral coordinates for reduction; it is suf-
ficient that they be p-integral, that is, of the form c = a/b, where a, b are
integers with p 6 | b. Note that if b is p-integral then the ‘remainder’ c̃ = ã/b̃
modulo p is well-defined. The following result is readily verified.

Proposition 7.2 Suppose

P = [X0, . . . , Xn],

where X0, . . . , Xn are p-integral but X̄0, . . . , X̄n do not all vanish. Then

P̄ = [X̄0, . . . , X̄n].

Proposition 7.3 Each line ` in P2(k) defines a line ¯̀ in P2(GFp); and

P ∈ ` =⇒ P̄ ∈ ¯̀.

More generally, each curve Γ in P2(k) defines a line Γ̄ in P2(GFp); and

P ∈ Γ =⇒ P̄ ∈ Γ̄.

Proof I Suppose ` is the line

aX + bY + cZ = 0.
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We can ensure that a, b, c are integral, by multiplying by the lcm of their
denominators, and we can ensure that a, b, c are not all divisible by p, by
dividing a, b, c by a suitable power of p; and then we set

¯̀ : āX + b̄Y + c̄Z = 0.

If now P = [X, Y, Z] where X, Y, Z are all integers, but not all are divisible
by p, then

aX + bY + cZ = 0 =⇒ āX̄ + b̄Ȳ + c̄Z̄ = 0.

Thus P lies on the line

¯̀ : āX + b̄Y + c̄Z = 0.

Now suppose Γ is a curve in P2(Q), given by the homogeneous polynomial
equation

F (X, Y, Z) = 0.

We can ensure that all the coefficients of F are integral, but not all divisible
by p; and then we can define he polynomial

F̄ [X, Y, Z] ∈ GFp[X, Y, Z],

by taking each coefficient of F mod p.
Suppose P = [X, Y, Z] where X,Y, Z ∈ Z but not all are divisible by p.

Then

P ∈ Γ⇐⇒ F (X, Y, Z) = 0 =⇒ F̄ (X̄, Ȳ , Z̄) = 0⇐⇒ P̄ ∈ Γ̄.

J

7.1.1 Reduction of Elliptic Curves

Definition 7.2 We say that the elliptic curve E(Q) has good reduction mod
p if Ẽ is elliptic, ie non-singular.

We often say that E has good reduction at p.
Consider the elliptic curve

E(Q) : y2 = x3 + ax2 + bx+ c,

where a, b, c ∈ Z (or, more generally, a, b, c are p-integral).
Reduction modulo p gives the curve

Ẽ : y2 = x3 + ãx2 + b̃x+ c̃

over the finite field GFp.
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Proposition 7.4 The reduction Ẽ of E modulo p is good if and only if p 6= 2
and

p 6 | D,
where

D = −4a3c+ a2b2 + 18abc− 4b3 − 27c2

is the discriminant of the polynomial p(x) = x3 + ax2 + bx+ c:

Proof I If p = 2 then Ē is necessarily singular.
Suppose p 6= 2. We know in this case that Ē is elliptic (non-singular) if

and only if D(Ē) 6= 0. The result follows since

D(Ē) = D(E) mod p.

J

Theorem 7.1 Suppose the elliptic curve E(Q) has good reduction modulo p.
Then the map

E(Q)→ E(GFp) : P 7→ P̃

is a homomorphism.

Proof I The zero point on E certainly maps into the zero point on Ẽ :

[0, 1, 0] 7→ [0, 1̃, 0].

Suppose the 3 points P,Q,R ∈ E(Q) satisfy

P +Q+R = 0.

In other words P,Q,R lie on a line

l : ax+ by + cz = 0.

Let l̃ be the reduction of l modulo p. Evidently l̃ is a line in P2(GFp), which
contains P̃ , Q̃, R̃ by Proposition ??.

We need to be a little careful at this point. If P̃ , Q̃, R̃ are distinct then it
follows that

P̃ + Q̃+ R̃ = 0.

But can we be certain of this conclusion if 2 or all 3 of these points coincide?
It’s not difficult to see that we can.

Lemma 4 Suppose the line l meets the curve Γ ⊂ P2(Q) of degree n in the
n rational points P1, . . . , Pn (each repeated according to multiplicity). Then
l̃ meets Γ̃ in P̃1, . . . , P̃n (each repeated according to multiplicity).
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Proof of Lemma B Choose 2 points

Q = [x, y, z], R = [x′, y′, z′]

on l such that Q̃ 6= R̃. We may suppose that x, y, z, x′, y′, z′ ∈ Z and that
each triple x, y, z and x′, y′, z′ is coprime. the line l takes the parametric form

P (s, t) = sQ+ tR = [sx+ tx′, sy + ty′, sz + tz′].

This will meet the curve Γ where

f(s, t) = F (sQ+ tR) = 0.

This is a homogeneous equation of degree n in s, t, which by hypothesis has
roots (s1, t1), . . . , (sn, tn) corresponding to the points P1, . . . , Pn. We may
suppose that s1, . . . , sn, t1, . . . , tn ∈ Z, and that each pair (s1, t1), . . . , (sn, tn)
is coprime. Now

f(s, t) = c(st1 − ts1) · · · (stn − tsn)

for some c ∈ Q.
C

Thus
P +Q+R = 0 =⇒ P̄ + Q̄+ R̄ = 0.

Since it is readily verified that

−P = −P̄ ,

it follows that the map is a homomorphism.
J

Theorem 7.2 Suppose the elliptic curve

E(Q) : y2 = x3 + ax2 + bx+ c

has good reduction at the prime p. Let T ⊂ E(Q) be the torsion subgroup
(formed by the points of finite order). Then the reduction map

ρ : E(Q)→ E(GFp),

sends T injectively onto a subgroup of E(GFp).
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Proof I We know by the Nagell-Lutz Theorem 6.1 that the non-zero points

P = (X, Y ) ∈ T

all have integral coordinates: X, Y ∈ Z. It follows that

P̃ = [X̃, Ỹ , 1] = (X̃, Ỹ )

This can never be O. (It is always finite.) Thus

ker ρ = {0},

and so ρ is injective. J

7.2 An example

By Theorem 7.2, the torsion subgroup T of E(Q) has an isomorphic image
in E(GFp) for every good prime p. We can often exploit this to determine
T .

In general, the Nagell-Lutz Theorem provides a surer method of deter-
mining T . But there may be cases where the method below is quicker.

As an illustration, let us look at the curve

E(Q) : y2 = x3 + x+ 1.

Since
D = −31.

E has good reduction at all odd primes p except 31.
Consider first reduction at p = 3 If (x, y) ∈ E(GF3) then x3 +x+ 1 must

be a quadratic residue modulo 3, ie

x3 + x+ 1 = 0 or 1 mod 3.

This does not hold if x = 2 = −1; but it does hold in the other 2 cases

x = 0 and x = 1.

When x = 0 we have y = ±1. When x = 1 we have y = 1.
It follows that

E(GF3) = {(0, 1), (0,−1), (1, 0), [0, 1, 0]}.
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We know that the point (X, Y ) has order 2 if and only if Y = 0. In this case
there is just 1 such point, namely (1, 0). Thus E(GF3) is of order 4, and has
1 element of order 2. Consequently,

E(GF3) ∼= Z/(4).

New consider the curve defined by the same equation over GF5. We have

x3 + x+ 1 = 0, 1 or 4 mod 5.

This does not hold if x = 1 mod 5. The other cases yield the points:

(0,±1), (2,±1)m (3,±1), (4± 2).

Thus
|E(GF5)| = 9,

and so
E(GF5) = Z/(3)⊕ Z/(3) or Z/(9).

We leave it to the reader to determine which is the case.
This does not affect our present purpose, since in either case

T ⊂ E(GF3), T ⊂ E(GF5) =⇒ T = {O},

by Lagrange’s Theorem.

7.3 Singular cubic curves

Recall that a curve Γ in P2(k) is said to be degenerate if its equation factorizes:

Γ = `C,

where ` is a line and C a conic.

Proposition 7.5 A non-degenerate cubic curve has at most one singularity.

Proof I

Lemma 5 If P is a singular point on the non-degenerate curve Γ then every
line through P meets Γ least twice at P .
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Proof of Lemma B We may assume (after a suitable projective transforma-

tion) that the equation has no terms of the first order:

Γ : ax2 + 2hxy + by2 +O(x3, y3).

But any line y = mx through P meets Γ where

(a+ 2hm+ bm2)y2 +O(x3, y3),

with a double root (at least) at y − 0, ie at (0, 0). C

Now suppose P,Q are singularities. Then the line PQ meets Γ tiwce at
P and twice at Q, by the Lemma. Thus the line meets Γ four times, which
is impossible. Hence there is at most one singularity. J

Singularities on cubic curves divide into two kinds: nodes and cusps.
These are distinguished as follows: Let us move the singularity to (0, 0).
Then

F (X, Y, Z) = aX2 + 2hXY + bY 2 +O(X, Y )3.

Definition 7.3 A singularity on a cubic curve is said to be a node if the
second order terms split into distinct factors:

aX2 + 2hXY + bY 2 = a(X + αY )(X + βY ),

where α 6= β; it is said to be a cusp if α = β, ie if the second order terms
form a perfect square.

Definition 7.4 Suppose E(Q) is an elliptic curve. Then we say that E is
stable at p if the reduction modp is good. We say that E is semi-stable at p
if the reduction is bad but the singularity in Ē is a node. We say that E is
unstable at p if the reduction is bad and the singularity in Ē is a cusp.

7.3.1 Nodes and cusps

Suppose we have a cubic curve

Γ(k) : y2 + c1xy + c3y = x3 + c2x
2 + c4x+ c6;

and suppose char(k) 6= 2, 3. Then we can bring the curve to the form

y2 = x3 + ax2 + bx+ c.

Now suppose Γ has a singularity. We know that there is just one singular
point, and that it is a point (α, 0) on the line y = 0, where α is a double or
triple root of

p(x) = x3 + ax2 + bx+ c.
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This root α ∈ k. For if α is a double root then gcd(p(x), p′(x)) = x− α,
and we can compute this gcd by Euclid’s algorithm within the ring k[x];
while if α is a triple root then 3α = −b.

Thus we may assume that α = 0, after the transformation x 7→ x− α.
Our equation now takes the form

y2 = x3 + ax2.

Note that the second-order terms are y2 − ax2. This has distinct factors
unless a = 0. Thus by the definition above, the singularity is a cusp if a = 0,
and a node if a 6= 0. (This accords with the look of the curve if k = R.)

Let us consider the case where the singularity is a cusp first. Our equation
is

y2 = x3.

We parametrize Γ \ {(0, 0)} by the map

k → Γ : t 7→

{
(t−2, t−3) if t 6= 0,

[0, 1, 0] if t = 0.

In other words,
P (t) = [t, 1, t3]

for all t ∈ k.
Suppose the points P,Q,R with parameters p, q, r lie on the line

aX + bY + cZ = 0.

Then p, q, r are the roots of

at+ b+ ct3 = 0.

Since the coefficient of t2 is 0,

p+ q + r = 0.

Thus from our definition of addition on Γ \ {(0, 0)},

P +Q+R = 0⇐⇒ p+ q + r = 0.

In addition, tt is readily verified that

−P (t) = P (−t).
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It follows that the map

k → Γ \ {(0, 0)} : t 7→ P (t)

is an isomorphism. Thus the group on Γ\{(0, 0)} is isomorphic to the additive
group of k.

Now let us consider the case where the singularity is a node. For simplicity
let us take the curve

y2 = x3 + x2.

This has a node at (0, 0) with ‘quasi-tangents’ y = ±x.
The line y = mx meets the curve in just one point apart from (0, 0),

unless m = ±1. We parametrize the curve by setting

t =
y + x

y − x
.

This gives

y =
t+ 1

t− 1
x;

and so

(t+ 1)2

(t− 1)2
x2 = x3 + x2,

ie

x =
4t

(t− 1)2

and

y =
4t(t+ 1)

(t− 1)3
.

In homogeneous terms

(x, y) = [4t(t− 1), 4t(t+ 1), (t− 1)3] = P (t).

It is readily verified that the map

k → Γ : t→ P (t)
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is bijective, with t = 0 corresponding to the singular point (0, 0). Thus we
have a one-one correspondence between t ∈ k× and P ∈ Γ \ {(0, 0}.

Suppose the points P,Q,R with parameters p, q, r lie on the line

aX + bY + cZ = 0.

Then p, q, r are the roots of

4at(t− 1) + 4bt(t+ 1) + c(1− t)3 = 0.

Since the coefficients of t3 and 1 are ±c,

pqr = 1.

Thus
P +Q+R = 0⇐⇒ pqr = 0.

In addition, tt is readily verified that

−P (t) = P (1/t).

It follows that the map

k× → Γ \ {(0, 0)} : t 7→ P (t)

is an isomorphism. Thus the group on Γ \ {(0, 0)} is isomorphic to the mul-
tiplicative group k×.

Recall that the the elliptic curve E(Q) is said to be semi-stable at p if Ē
has a node singularity, and unstable if Ē has a cusp singularity, Because of the
analysis above, the terms ‘multiplicative’ and ‘additive’ are sometimes used
in these two cases. (Note though that we have not proved that the group is
always k× or k in these two cases; the story is a little bit more complicated
than that.)

7.4 Hasse’s Theorem

Consider the elliptic curve

E(GFp) : y2 = x3 + ax2 + bx+ c.

If (x, y) ∈ E then
p(x) = x3 + ax2 + bx+ c
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must be a quadratic residue modp. Of the numbers {1, 2, . . . , p − 1} just
(p− 1)/2 are quadratic residues, namely

(±1)2, (±2)2, . . . , (±(p− 1)/2)2.

Thus if the values of p(x) mod p are randomly distributed, the expectation
would be that p(x) = 0 for one x, and that p(x) would be a quadratic residue
for (p−1)/2 values of x. The former would give one point (x, 0) on the curve;
each of the latter would give two points (x,±y). Thus the expected number
of points is

1 + 2
p− 1

2
= p.

To this must be added the point O = [0, 1, 0], giving p+ 1 points in all.

Definition 7.5 We set

a(p) = ‖E(GFp)‖ − (p+ 1).

Thus a(p) measures the discrepancy from the expected value.
Hasse showed that

|a(p)| < 2
√
p

for all elliptic curves over GFp, ie

p+ 1− 2
√
p < a(p) < p+ 1 + 2

√
p.

For example, if E is an elliptic curve over GF7 then

5 ≤ ‖E(GF7)‖ ≤ 11.

Although the proof of Hasse’s Theorem is not particularly difficult, it
would take us too far afield to give it here.

Suppose E(Q) is an elliptic curve. Then a(p) is defined for each good
prime p. Shimura conjectured that there was a modular form f(z) associated
to E with the property that the a(p) were the coefficients of the corresponding
Fourier series g(q). (See Chapter 8.)

Wiles proved Shimura’s Conjecture for semi-stable elliptic curves, that is,
those for which the bad primes were at worst semi-stable (ie no cusps). This
was the main step in his proof of Fermat’s Last Theorem.

Late last year, Shimura’s Conjecture was proved for all elliptic curves
over Q.
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Chapter 8

The Complex Case

8.1 Periods and Lattices

We shall be concerned in this Chapter exclusively with meromorphic func-
tions on C, the space of complex numbers. Recall that a complex function
f(z) is said to be meromorphic on C if it is defined and regular at all points
of C except for a discrete set of points, at each of which it has a pole of finite
order.

Every rational function P (z)/Q(z) (where P (z), Q(z) are polynomials) is
meromorphic on C, as are the trigonometric functions cos z, sin z, tan z, the
exponential function ez, etc.

Definition 8.1 The meromorphic function f(z) on C is said to have period
ω ∈ C if

f(z + ω) = f(z)

whenever f(z) is defined.

Proposition 8.1 The periods of a non-constant meromorphic function f(z)
form a discrete subgroup of the abelian group C.

Proof I If ω1, ω2 are periods of f(z) then so are ω1 ± ω2. Hence the periods
form a subgroup of C.

To prove that the subgroup is discrete, we have to show that there exists
a constant C > 0 such that f(z) has no period |ω| < C except for ω = 0. To
this end, consider the behaviour of f(z) in the neighbourhood of a regular
point z0. In some neighbourhood of this point, f(z) has an expansion

f(z) = c0 + c1(z − z0) + c2(z − z0)2 + · · · .
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This power-series will be dominated by its first non-zero term, and it is easy
to deduce that

0 < |z − z0| < C =⇒ f(z) 6= c0

for some constant C > 0. It follows that there is no non-zero period with
|ω| < C. J

Note that as an abelian group, C ∼= R
2.

Proposition 8.2 A discrete subgroup of Rn is isomorphic to Zm for some
m ≤ n.

Proof I Suppose S is a discrete subgroup of Rn. Let V = 〈S〉 be the vector
subspace of Rn spanned by the elements of S. We argue by induction on
m = dimV , showing that S has a Z-basis with m elements.

Let s1, . . . , sm ∈ S be a basis for V ; and let

U = 〈s1, . . . , sm−1〉.

By our inductive hypothesis,

S ′ = S ∩ U

has a Z-basis with m− 1 elements, say t1, . . . , tm−1.
Suppose s ∈ S. Clearly t1, . . . , tm−1, sm is a basis for V . Let

s = λ1t1 + · · ·+ λm−1tm−1 + λmsm.

We claim that there is an s ∈ S minimizing |λm|. For we can find
n1, . . . , nm−1 ∈ Z such that

|λi − ni| ≤
1

2
(1 ≤ i ≤ m− 1);

and then

s′ = s− (n1t1 + · · ·+ nm−1tm−1

= (λ1 − n1)t1 + · · ·+ (λm−1 − nm−1)tm−1 + λmsm.

We may assume that λm ≤ 1, since sm is a contender for minimal s. Thus s′

has the same λm as s and

|s′| ≤ |t1|+ · · ·+ |tm−1|+ |sm| = R,

say.
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But since S is a discrete subgroup, it has only a finite number of elements
in the compact disk |v| ≤ R. Thus we need only consider a finite number
of elements s ∈ S when minimizing |λm|; and so the minimum is certainly
attained, at tm say.

Now suppose s ∈ S. Evidently t1, . . . , tm−1, tm is a basis for V . Hence

s = µ1t1 + · · ·+ µm−1tm−1 + µmtm.

But now we can find nm ∈ Z such that

|µm − nm| ≤
1

2
.

and then

s′ = s− nmtm
= µ1t1 + · · ·+ µm−1tm−1 + (µm − nm)tm

has smaller sm component than tm, contradicting the minimality of tm unless
µm = nm, ie µm ∈ Z.

But now s′ ∈ S ′ = S∩U ; and therefore µ1, . . . , µm−1 ∈ Z, by our inductive
hypothesis.

We conclude that t1, . . . , tm is a Z-basis for S. J

Corollary 4 A non-trivial discrete subgroup of the additive group C is iso-
morphic either to Z or to Z⊕ Z.

Definition 8.2 A lattice in C is a discrete subgroup Λ ⊂ C isomorphic to
Z⊕ Z.

Every lattice has a basis λ, µ. This basis is not unique. In fact it is easy
to see that

λ′ = aλ+ bµ, µ′ = cλ+ dµ (a, b, c, d ∈ Z)

will form a basis if and only if ad− bc = ±1, ie(
λ′

µ′

)
=

(
a b
c d

)(
λ
µ

)
where

det

(
a b
c d

)
= ±1.

Proposition 8.3 If λ, µ is a basis for the lattice Λ then λ/µ /∈ R.
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Proof I Suppose first that λ/µ ∈ Q, say

λ/µ = m/n.

Then
nλ = mµ,

ie λ, µ are not linearly independent.
(Alternatively, we may suppose that gcd(m,n) = 1. Then there exist

a, b ∈ Z such that
am+ bn = 1

Thus
aλ+ bµ = µ/n ∈ Λ,

and
λ = m(µ/n), µ = n(µ/n),

ie λ and µ are both multiples of a smaller period.)
Now suppose that

λ/µ ∈ R \Q,

ie the ratio is real but irrational.

Lemma 6 If α is irrational then given any ε > 0 we can find m,n ∈ Z such
that

|mα− n| < ε.

Proof of Lemma B Choose N with 1/N < ε. For x ∈ R, let {x} denote the

fractional part of x, ie
{x} = x− [x].

Consider the N + 1 fractional parts

0, {α}, {2α}, . . . , {Nα} ∈ [0, 1).

Divide the interval [0, 1) into N equal parts,

[0, 1/N), [1/N, 2/N), . . . [(N − 1)/N, 1).

By the Pigeon-Hole Principle, two of the fractional parts, say {rα}, {sα},
must lie in the same subinterval. But then

|{rα} − {sα}| < 1/N < ε,
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ie

|rα− [rα]− (sα− [sα])|ε,

ie

|mα− n| < ε,

where m = r − s, n = [rα]− [sα]. C

By the Lemma, we can find m,n ∈ Z such that

|m(λ/µ)− n| < ε.

Hence

|mλ− nµ| < εµ.

Thus we can find lattice points mλ − nµ ∈ Λ arbitrarily close to 0, contra-
diction the condition that Λ be discrete. J

Definition 8.3 Suppose Λ ⊂ C is a lattice. An elliptic function f(z) with
respect to Λ is a meromorphic function whose periods include all elements of
Λ, ie

ω ∈ Λ =⇒ f(z + ω) ≡ f(z).

Suppose λ, µ is a basis for the lattice Λ ⊂ C. Then f(z) is elliptic with
respect to Λ if and only if

f(z + λ) = f(z), f(z + µ) = f(z).

In other words an elliptic function is just a doubly-periodic function.

Definition 8.4 A fundamental parallelogram for the lattice Λ ⊂ C is a set

Π(λ, µ, c) = {z ∈ C : z = c+ xλ+ yµ : 0 ≤ x, y < 1},

where λ, µ is a basis for Λ, and c ∈ C.

Suppose Π is a fundamental parallelogram for the lattice Λ. Then each
z ∈ C is congruent modulo Λ to a unique point z0 ∈ Π:

z ≡ z0 mod Λ,

by which we mean that
z − z0 ∈ Λ.

(Notice that we excluded 2 sides of the parallelogram, to ensure uniqueness.)
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8.2 Applications of Cauchy’s Theorem

Let us recall some fundamental results from complex analysis:

1. Cauchy’s Theorem, the fundamental result of complex analysis, states
that if the function f(z) is continuous on and holomorphic within the
Jordan curve C then ∫

C

f(z)dz = 0.

2. Suppose f(z) has a pole of order n at z = b, so that it has an expansion

f(z) =
c−n

(z − b)n
+ · · ·+ c−1

z − b
+ c0 + · · ·

in a neighbourhood of b. Then the residue of f(z) at b is defined to be
c1. Suppose f(z) is continuous on and meromorphic within C; and sup-
pose f(z) has poles at b1, b2, . . . , br inside C, with residues c1, c2, . . . , cr.
Then

1

2πi

∫
C

f(z)dz = c1 + c2 + · · ·+ cr.

3. Suppose f(z) is continuous on and regular within C; and suppose a is
inside C. Then

f(a) =
1

2πi

∫
C

f(z)

z − a
dz,

and

f ′(a) =
1

2πi

∫
C

f(z)

(z − a)2
dz.

Informally, the second result is derived from the first by differentiating
with respect to a under the integral sign.

4. Liouville’s Theorem: Suppose f(z) is regular and bounded on C. Then
f(z) is a constant. For let us take C to be a large circle centered on a
with radius R; and let us suppose that |f(z)| ≤ c. Then

|f ′(a)| ≤ 1

2π

2πR

R2
=

c

R
.

Since R is arbitrary it follows that f ′(a) = 0 for all a, and so f(z) is
constant.
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5. Suppose the meromorphic function f(z) has zeros at a1, a2, . . . , ar and
poles at b1, b2, . . . , bs inside C; and suppose f(z) has no poles or zeros
on C. Then

1

2πi

∫
C

f ′(z)

f(z)
dz = r − s,

with the understanding that poles and zeros are counted with appro-
priate multiplicity, eg a double zero is counted twice. For the function
f ′(z)/f(z) has a simple pole with residue d at a zero of order d, and a
simple pole with residue −d at a pole of order d.

6. With the same assumptions,

1

2πi

∫
C

z
f ′(z)

f(z)
dz = (a1 + · · ·+ ar)− (b1 + · · ·+ bs).

For if f(z) has a zero at a of order m then zf ′(z)/f(z) has a simple
pole at a with residue ma; while if f(z) has a pole at b of order n then
zf ′(z)/f(z) has a simple pole at b with residue −nb.

7. If each of the functions un(z) is holomorphic in the open set U ⊂ C
and

∑
un(z) is uniformly convergent in U then

f(z) =
∑

un(z)

is holomorphic in U , with

f ′(z) =
∑

u′n(z).

Notice that this is much simpler to prove than the corresponding result
for real functions, using the fact that

f(a) =
1

2πi

∫
C

f(z)

z − a
dz,

8. With the same assumptions, if C is a contour inside U then∫
C

f(z)dz =
∑∫

C

un(z)dz.

In applying these results to elliptic functions, we usually take a funda-
mental parallelogram Π for C. Note that if f(z) is elliptic then

1

2πi

∫
Π

f(z)dz = 0,

since the contributions of opposite sides will cancel out.
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Proposition 8.4 An elliptic function f(z) with no poles is necessarily con-
stant.

Proof I Let Π be a fundamental parallelogram. Then f(z) is bounded on Π,
say |f(z)| ≤ C, since a continuous function is always bounded on a compact
set. But then f(z) is bounded on the whole of C, since we can always find
z0 ∈ Π with z ≡ z0 mod Λ and then |f(z)| = |f(z0)| ≤ C.

It follows by Liouville’s Theorem that f(z) is constant. J

Proposition 8.5 Suppose f(z) is an elliptic function; and suppose Π is a
fundamental parallelogram, containing no poles or zeros of f(z) on its bound-
ary. Then the number of poles of f(z) inside Π is equal to the number of
zeros inside Π, each counted according to its multiplicity.

Proof I This follows at once from the fact that

1

2πi

∫
Π

f ′(z)

f(z)
dz = r − s.

For since f ′(z)/f(z) is elliptic, the integral is 0, as explained above. J

Corollary 5 An elliptic function cannot have a singe simple pole inside Π.

Proof I By the Proposition, the residue c at a single pole must vanish. But
a simple pole cannot have zero residue. J

Thus an elliptic function has to have at least 2 poles (or a double pole)
in each fundamental parallelogram.

Proposition 8.6 Suppose f(z) is an elliptic function; and suppose Π is a
fundamental parallelogram, containing no poles of f(z) on its boundary. Let
the residues of the poles inside Π be c1, . . . , cr. Then

c1 + · · ·+ cr = 0.

Note that in this case the poles are not counted according to their multi-
plicity.

Proof I This follows at once from the fact that

1

2πi

∫
Π

f(z)dz = 0.

J

428–99 8–8



Proposition 8.7 Suppose f(z) is an elliptic function; and suppose Π is a
fundamental parallelogram, containing no poles or zeros of f(z) on its bound-
ary. Let the zeros of f(z) inside Π be a1, . . . , ar, and let the poles inside Π
be b1, . . . , br (each repeated according to its multiplicity). Then

a1 + · · ·+ ar ≡ b1 + · · ·+ cr mod Λ.

Proof I From above,

1

2πi

∫
Π

z
f ′(z)

f(z)
dz = (a1 + · · ·+ ar)− (b1 + · · ·+ bs).

Thus the result will be proved if we can show that

1

2πi

∫
Π

z
f ′(z)

f(z)
dz ∈ Λ

The function g(z) = zf ′(z)/f(z) is not elliptic; but

g(z + λ)− g(z) = λ
f ′(z)

f(z)
, g(z + µ)− g(z) = µ

f ′(z)

f(z)
.

Thus the sides [c, c+ µ] and [c+ λ+ µ, c+ λ] together contribute

1

2πi

∫ c+µ

c

λ
f ′(z)

f(z)
=

λ

2πi
[log f(z)]c+µc .

Since f(c + λ) = f(c), the function log f(z) differs at c and c + µ by 2mπi
for some m ∈ Z. Thus these 2 sides together contribute ±mλ. Similarly the
other 2 sides contribute ±nµ for some n ∈ Z. Hence

1

2πi

∫
Π

z
f ′(z)

f(z)
dz = ±mλ+±nµ ∈ Λ.

J

8.3 Weierstrass’ Elliptic Function

We have established several properties of elliptic functions. But we have yet
to establish that any non-constant elliptic functions exist.

Proposition 8.8 Suppose Λ ⊂ C is a lattice. The series∑
ω∈Λ,ω 6=0

1

|ω|e

converges if and only if e > 2
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Proof I Let λ, µ be a basis for the lattice Λ, so that

ω = mλ+ nµ (m,n ∈ Z).

Lemma There are constants C1, C2 such that

C1(m2 + n2) ≤ |mλ+ nµ|2 ≤ C2(m2 + n2).

Proof of Lemma B For x, y ∈ R,

Q(x, y) = |xλ+ yµ|2 = (xλ̄+ yµ̄)(xλ+ yµ) = Ax2 + 2Bxy + cy2

is a positive-definite quadratic form. Hence

Q(x, y)− C1(x2 + y2)

is still positive-definite for sufficiently small C1, and so

C1(x2 + y2) ≤ Q(x, y).

On the other hand, |2xy| ≤ x2 + y2, and so

Q(x, y) ≤ (A+B + C)(x2 + y2).

C

Geometrically, this Lemma states that concentric circles can be drawn
inside and outside an ellipse.

Lemma The series ∑
(m,n) 6=(0,0)

1

(m2 + n2)e

is convergent if and only if e > 1.

Proof of Lemma B We compare the sum S with the integral

I =

∫ ∞
0

∫ ∞
0

dx dy

(x2 + y2)e
.

Changing to polar coordinates,

I =

∫ ∞
0

∫ 2π

0

rdr dθ

r2e

= 2π

∫ 2π

0

∫ ∞
0

r1−2edr.
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This converges if and only if 1− 2e < −1, ie e > 1.
To see that S and I converge or diverge together, we note that if m ≥

0, n ≥ 0 then

1

((m+ 1)2 + (n+ 1)2)e
≤ 1

(x2 + y2)e
≤ 1

(m2 + y2)e

for m ≤ x ≤ m+1, n ≤ y ≤ n+1. We leave the completion of the argument,
dealing with the terms along the axes, as an exercise. C J

Definition 8.5 For n = 2, 3, 4, . . . we set

gn =
∑

ω∈Λ,ω 6=0

1

ω2n
.

Note that the sums of odd powers all vanish,∑
ω∈Λ,ω 6=0

1

ω2n+1
= 0

for n = 1, 2, 3, . . . , since the terms in ω and −ω cancel out.

Proposition 8.9 The series∑
ω∈Λ,ω 6=0

(
1

(z − ω)2
− 1

ω2

)
is absolutely convergent for each z /∈ Λ, and defined a meromorphic function
of C with a double pole at each ω ∈ Λ.

Proof I Suppose |ω| ≥ 2|z|, ie |z| ≤ 1
2
ω. Now

1

(z − ω)2
− 1

ω2
=

z(2ω − z)

ω2(ω − z)2
.

But |ω − z| ≥ 1
2
|ω|, while |2ω − z| ≤ 3|ω|. Hence

| 1

(z − ω)2
− 1

ω2
| ≤ 2|z|
|ω|

3

.

Since
∑

1/|ω|3 is convergent, it follows that the series∑
|ω|≥2C

1

(z − ω)2
− 1

ω2

is uniformly absolutely convergent — and so defines a holomorphic function
— in |z| ≤ C; and the result follows. J
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Definition 8.6 The Weierstrass elliptic function ϕ(z) with respect to the
lattice Λ ⊂ C is defined by

ϕ(z) =
1

z2
+

∑
ω∈Λ,ω 6=0

(
1

(z − ω)2
− 1

ω2

)
.

Proposition 8.10 The function ϕ(z) is elliptic with respect to Λ.

Proof I We have to show that if ω0 ∈ Λ then

f(z + ω0) = f(z).

The result would be obvious if we could separate ϕ(z) into a variable part
1/z2 +

∑
1/(z − ω)2 and a constant part

∑
1/ω2. Unfortunately these 2

parts do not converge separately, so a more careful approach—which we
sketch below—is required.

Given ε > 0, choose R so large that∑
|ω|≥R

1

|ω|3
< ε and

∑
|ω|≥R

1

|z − ω|3
< ε;

and let
ϕ(z) = F (z) +R(z),

where

F (z) =
1

z2
+

∑
|ω|≤R+|z|+|ω0|

(
1

(z − ω)2
− 1

ω2

)
and

R(z) =
∑

|ω|>R+|z|+|ω0|

(
1

(z − ω)2
− 1

ω2

)
Then

ϕ(z + ω0)− ϕ(z) = F (z + ω0)− F (z) +R(z + ω0)−R(z).

All the terms in F (z + ω0)− F (z) cancel out, except some corresponding to
ω satisfying |ω| > R. The contribution of these will be < ε, as will |R(z)|
and R(z + ω0)|. Hence

|ϕ(z + ω0)− ϕ(z)| < 3ε.

Since ε can be taken arbitrarily small, the result follows. J
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8.4 The Field of Elliptic Functions

Proposition 8.11 ϕ(z) is even.

Proof I This follows at once from the definition of ϕ(z) J

Corollary 6 ϕ′(z) is odd.

Proposition 8.12 The elliptic functions form with respect to Λ form a field
over C, of which the even functions form a sub-field.

Proof I If f(z), g(z) are elliptic with respect to Λ, then so are f(z) ± g(z),
f(z)g(z) and f(z)/g(z); and the same is true if f(z), g(z) are even. J

Definition 8.7 We say that σ ∈ C is a semilattice point with respect to the
lattice Λ if 2σ ∈ Λ but σ /∈ Λ.

There are evidently three classes of semilattice points mod Λ, represented
by λ/2, µ/2 and (λ+ µ)/2.

Proposition 8.13 An odd elliptic funtion f(z) has a pole or zero at every
semilattice point σ.

Proof I Suppose σ is not a pole of f(z). Since

2σ = ω ∈ Λ

ie

−σ = σ − ω,

it follows that
f(−σ) = f(σ − ω) = f(σ).

On the other hand, since f(z) is odd.

f(−σ) = −f(σ).

Hence
f(σ) = 0,

ie σ is a zero of f(z). J

Corollary 7 Suppose f(z) is an even elliptic funtion. If the semilattice point
σ is a pole or zero of f(z) then it is a pole or zero of even order.

428–99 8–13



Proof I Suppose σ is a zero of f(z). Since f 1(z) = f ′(z) is odd, f 2(z) = f ′′(z)
is even, f 3(z) is odd, etc,

f (1)(σ) = f (3)(σ) = f (5)(σ) = · · · = 0.

Thus the first n for which f (n)(σ) 6= 0 is even. Hence the ordero of the zero
is even.

If f(z) has a pole at σ then the result follows on considering 1/f(z). J

Theorem 8.1 The field k of even elliptic functions with respect to Λ is gen-
erated over C by the Weierstrass elliptic function: k = C(ϕ(z)). In other
words, every elliptic function f(z) is expressible as a rational function of
ϕ(z):

f(z) =
P (ϕ(z))

Q(ϕ(z))
,

where P,Q are polynomials.

Proof I If f(z) has a pole or zero at 0, it must have even multiplicity since
f(z) is even. Thus we can find e ∈ Z such that

g(z) = ϕ(z)ef(z)

has no pole or zero at 0.
Suppose g(z) has zeros a1, . . . , ar and poles b1, . . . , br in the fundamental

parallelogram Π. If a is a zero of g(z) then so is −a mod Λ. Moreover if
−a ≡ a mod Λ then the zero is of even order, by the Corollary to Propo-
sition 8.13. Thus the zeros can be divided into pairs ±a1, . . . ,±at, where
2t = r. Similarly the poles can be divided into pairs ±b1, . . . ,±bt.

The function ϕ(z)− ϕ(a) has just 2 zeros in Π, at ±a mod Λ. It follows
that we can ‘eliminate’ poles or zeros at ±a by multiplying or dividing by
ϕ(z)− ϕ(a). Thus

g(z)
(ϕ(z)− ϕ(a1)) . . . (ϕ(z)− ϕ(at))

(ϕ(z)− ϕ(b1)) . . . (ϕ(z)− ϕ(bt))

has neither poles nor zeros, and so is constant. Hence

f(z) = cϕ(z)−e
(ϕ(z)− ϕ(b1)) . . . (ϕ(z)− ϕ(bt))

(ϕ(z)− ϕ(a1)) . . . (ϕ(z)− ϕ(at))
.

J
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Proposition 8.14 Every elliptic function f(z) is expressible in the form

f(z) = R(ϕ(z)) + φ′(z)S(ϕ(z)),

where R and S are rational functions.

Proof I We can split f(z) into even and odd parts:

f(z) =
f(z) + f(−z)

2
+
f(z)− f(−z)

2
= F (z) +G(z),

where F (z) is even and G(z) is odd. But then

H(z) = G(z)/ϕ′(z)

is even, and so
f(z) = F (z) + ϕ′(z)H(z),

where F (z) and H(z) are both even elliptic functions. The result now follows
from the previous Proposition. J

Corollary 8 The field K of elliptic functions with respect to Λ is generated
over C by ϕ(z) and ϕ′(z):

K = C (ϕ(z), ϕ′(z)) .

8.5 The Functional Equation

Since ϕ′(z) is odd, ϕ′(z)2 is even and so can be expressed as a rational
function of ϕ(z):

ϕ′(z)2 = R(ϕ(z))

by our argument above. In fact we shall see that R is a cubic polynomial.

Proposition 8.15 The function ϕ(z) satisfies the functional equation

ϕ′(z)2 = 4 (ϕ(z)− ϕ(σ1)) (ϕ(z)− ϕ(σ2)) (ϕ(z)− ϕ(σ3)) ,

where σ1, σ2, σ3 are semilattice points in distinct classes modΛ (eg σ1 =
λ/2, σ2 = µ/2, σ3 = (λ+ µ)/2).
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Proof I The function on the left has a 6-fold pole at z = 0, and double zeros
at each semilattice point. The function on the right also has a 6-fold pole at
z = 0. Consider the function f(z) = ϕ(z)−ϕ(ei). This has a zero at ei; and
it is a double zero since f ′(ei) = ϕ′(ei) = 0.

Thus the function on the right has exactly the same poles and zeros as
the function on the left. Hence they differ only by a multiplicative constant
(since their ratio has no poles or zeros).

The value of this constant follows on considering the coefficients of 1/z6

on both sides:

ϕ(z) =
1

z2
+ h(z) =⇒ ϕ′(z) = − 2

z3
+O(z)

=⇒ ϕ′(z)2 =
4

z6
+O(

1

z2
.

J

Theorem 8.2 The functional equation satisfied by ϕ(z) takes the form

ϕ′(z)2 = 4ϕ(z)3 − 60g2ϕ(z)− 140g3,

where

g2 =
∑

w∈Λ,w 6=0

1

w4
, g3 =

∑
w∈Λ,w 6=0

1

w6
.

Proof I We know that ϕ(z) satisfies a functional equation of the form

ϕ′(z)2 = 4ϕ(z)3 + aϕ(z)2 + bϕ(z) + c.

To determine the coefficients a, b, c we consider the leading terms in the
expansions of ϕ(z) and ϕ′(z) about z = 0. We have

1

(z − ω)2
− 1

ω2
=

1

ω2(1− z/ω)2
− 1

ω2

=
1

ω2

(
1 +

2z

ω
+

3z2

ω2
+ · · ·

)
− 1

ω2

=
2z

ω3
+

3z2

ω4
+ · · · .

Thus

ϕ(z) =
1

z2
+ 2z

∑
ω 6=0

1

ω3
+ 3z2

∑
ω 6=0

1

ω4
+ · · ·

=
1

z2
+ 3g2z

2 + 5g3z
4 +O(z6).
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Differentiating,

ϕ′(z) = − 2

z3
+ 6g2z + 20g3z

3 +O(z5).

Thus

ϕ′(z)2 =
4

z6
− 24g2

z2
− 80g3 +O(z2),

while

ϕ(z)3 =
1

z6
+

9g2

z2
+ 15g3 +O(z2),

and

ϕ(z)2 =
1

z4
+ 6g2 +O(z2),

Substituting in the functional equation,

4

z6
+

24g2

z2
+ 80g3 =

4

z6
+

36g2

z2
+ 60g3 +

a

z4
+ 6ag2 +

b

z2
+ c+O(z2).

Comparing coefficients,

a = 0, b = −60g2, c = −140g3,

as stated. J

8.6 Geometrical Interpretation

The functional equation can be interpreted as saying that the point (ϕ(z), ϕ′(z))
lies on the elliptic curve

y2 = 4x3 − 60g2x− 140g3

for all z ∈ C \ Λ . If z ∈ Λ then ϕ(z) and ϕ′(z) are both undefined. We
assign them to the infinite point [0, 1, 0] on E .

Proposition 8.16 The map Φ : C→ E(C) defined by

z 7→

{
[ϕ(z), ϕ′(z), 1] if z /∈ Λ,

[0, 1, 0] if z ∈ Λ,

is surjective and continuous; and

Φ(z1) = Φ(z2)⇐⇒ z1 ≡ z2 mod Λ.
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Proof I Suppose (x, y) = [x, y, 1] ∈ E . Consider the elliptic function

f(z) = ϕ(z)− x.
This has a double pole at the points of Λ, and so has two zeros in any
fundamental parallelogram Π. Since f(z) is even, the two zeros are ±a mod
Λ. But there are just two points (x,±y) on E with a given x-coordinate. It
follows that each point (x, y) ∈ E arises from some z ∈ C, ie Φ is surjective.

Since ϕ(z) and ϕ′(z) are both doubly-periodic,

z1 ≡ z2 mod Λ =⇒ Φ(z1) = Φ(z2).

Conversely, if ϕ(z1) = ϕ(z2) then the argument above shows that z1 ≡
±z2 mod Λ. Since ϕ′(−z) = −ϕ′(z), it follows that

Φ(z1) = Φ(z2) =⇒ z1 ≡ z2 mod Λ.

The map Φ is certainly continuous at all points z /∈ Λ, since ϕ(z) and
ϕ′(z) are both differentiable, and so a fortiori continuous. It remains to show
that Φ is continuous at 0. In the neighbourhood of 0 ∈ E ,

(ϕ(z), ϕ′(z)) =

(
1

z2
+ · · · , −2

z3
+ · · ·

)
.

Changing to X,Z coordinates, where [x, y, 1] = [X, 1, Z], ie

X =
x

z
, Z =

1

z
,

we see that

X = z +O(z3), Z = −1

2
z3 +O(z5).

It follows that Φ is continuous at 0, and so at the other points of Λ. J

Corollary 9 The map Φ induces a homeomorphism

E(C) ∼= C/Λ.

Let λ, µ be a basis for Λ. The quotient-group C/Λ is homeomorphic to
the torus T2, under the map

(x mod 1, y mod 1) 7→ xλ+ yµ mod Λ.

Since this map preserves addition, it is in fact an isomorphism of topological
groups:

C/Λ = T2.

Thus we have a homeomorphism

T
2 → E(C) : (x mod 1, y mod 1) 7→ (ϕ(xλ+ yµ), ϕ′(xλ+ yµ)) .

This leaves the question: is this map a group isomorphism? That is, does
the addition on C/Λ correspond to the addition defined geometrically on E?
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8.7 The Addition Formula

Suppose u, v ∈ C\Λ, with u 6≡ v mod Λ. Then we can find A,B,C ∈ C such
that

Aϕ(u) +Bϕ′(u) + C = 0

Aϕ(v) +Bϕ′(v) + C = 0.

Consider the elliptic function

f(z) = Aϕ(z) +Bϕ′(z) + C.

This has a triple pole (at most) at each lattice point z ∈ Λ. Hence it has 3
zeros a1, a2, a3 in any fundamental parallelogram Π, satisfying

a1 + a2 + a3 ≡ 0 mod Λ,

by Proposition /refZeroPoleSum Two of these are equivalent modulo Λ to u
and v. It follows that the third is ≡ −(u+ v) mod Λ:

Aϕ(u+ v)−Bϕ′(u+ v) + C = 0.

Thus, eliminating A,B,C,

det

 ϕ(u+ v) −ϕ′(u+ v) 1
ϕ(u) −ϕ′(u) 1
ϕ(v) −ϕ′(v) 1

 = 0.

This expresses Φ(u+ v) = (ϕ(u+ v), ϕ′(u+ v)) in terms of Φ(u) and Φ(v).

Proposition 8.17 Suppose u, v, w ∈ C/Λ; and suppose

u+ v + w = 0.

Then the corresponding points Φ(u),Φ(v),Φ(w) ∈ E are collinear.

Proof I Suppose u, v, w 6= 0. We have seen that there exists (A,B,C) 6=
(0, 0, 0) such that

Aϕ(u) +Bϕ′(u) + C = 0

Aϕ(v) +Bϕ′(v) + C = 0

Aϕ(w) +Bϕ′(w) + C = 0.
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In other words the 3 points Φ(u),Φ(v),Φ(w) lie on the line

Ax+By + C = 0.

If say u = 0 then v = −w, and

Φ(u) = [0, 1, 0], Φ(v) = [ϕ(v), ϕ′(v), 1], Φ(w) = [ϕ(v),−ϕ′(v), 1]

lie on the line x = ϕ(v)z. J

Corollary 10 The map
Φ : C/Λ→ E(C)

is an isomorphism of topological abelian groups. In particular,

E(C) ∼= T
2.

In one sense this result is of little practical value, since we already know
that

E(R) = T1 or T1 ⊕ Z/(2),

and this gives us more information about E(Q). For example, the result for
E(R) tells us that the torsion subgroup F , formed by the points of E(Q) of
finite order, is either cyclic Z/(n), or else of the form Z/(2) ⊕ Z/(n). The
result for E(C) only tells us that F is either cyclic Z/(n), or else of the form
Z/(m)⊕ Z/(n).

Perhaps the main interest of the complex case is that it explains in a
natural way why there is a group structure on E .

8.8 The modular group

As we have seen, each lattice Λ ⊂ C gives rise to an elliptic curve

E(C) : y2 = x3 − 15g2x− 35g3.

It is natural to ask: Does every elliptic curve over C arises in this way from
some lattice Λ?

Suppose s ∈ C×. Consider the lattice

sΛ = {sω : ω ∈ Λ}.

We say that Λ, sΛ are similar. Evidently

gk(sΛ) =
∑′ 1

(sω)2k
= s−2kgk(Λ).
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In particular, sΛ gives rise to the elliptic curve

y2 = x3 − 15s−4g2(Λ)x− 35s−6g3(Λ).

But this is just the equation we get if we make the transformation

x 7→ s−2x, y 7→ s−3y,

since the coefficients of x and 1 in the Weierstrass equation have weights 4
and 6, respectively. Thus similar lattices give rise to projectively equivalent
elliptic curves.

In effect, therefore, we are only concerned with lattices up to similarity.
In other words, we are concerned with the ratio

τ = λ/µ

rather than with the basis elements λ, µ themselves. (For the lattice 〈1, τ〉 is
similar to the lattice 〈λ, µ〉.)

Recall that τ /∈ R. Thus τ either lies in the upper half-plane

H = {z ∈ C : =(z) > 0}

or else in the lower half-plane −H. It is convenient to restrict ourselves to
bases λ, µ with λ/µ ∈ H. Let us say that the basis is positive in this case.
(Note that just one of λ, µ and −λ, µ is positive; so we can always make a
basis positive by replacing λ with −λ if necessary.)

Recall that if λ′, µ′ is another basis then(
λ′

µ′

)
=

(
a b
c d

)(
λ
µ

)
,

where a, b, c, d ∈ Z and ad− bc = ±1. On setting τ ′ = λ′/µ′ this becomes

τ ′ =
aτ + b

cτ + d
.

The following result, although apparently rather technical, will prove very
useful.

Proposition 8.18 Suppose

τ ′ =
aτ + b

cτ + d
,

where

T =

(
a b
c d

)
∈ GL(2,R).

Then

=(τ ′) =
detT

|cτ + d|2
=(τ).
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Proof I We have

=(τ ′) =
1

2i

(
τ ′ − τ ′

)
=

1

2i

(
aτ + b

cτ + d
− aτ̄ + b

cτ̄ + d

)
=

1

2i

(ad− bc)(τ − τ̄)

(cτ + d)(cτ̄ + d)

=
detT

|cτ + d|2
=(τ).

J

Corollary 11 If τ, τ ′ ∈ H then detT > 0.

Thus if we restrict ourselves to positive bases (those with =(λ/µ) > 0)
then we need only consider transformations

T ∈ SL(2,Z) =

{(
a b
c d

)
: a, b, c, d ∈ Z, ad− bc = 1

}
.

The matrix T ∈ SL(2,Z) acts on H by

z 7→ Tz =
az + b

cz + d
.

Notice that the matrices ±T define the same transformation.

Definition 8.8 The modular group G is the quotient-group

G = SL(2,Z)/{±I}.

Thus the modular group G acts on the upper half-plane H, by

gz =
az + b

cz + d
.

Each g ∈ G arises from a pair of matrices ±T ∈ SL(2,Z). By ‘abuse of
notation’ we use the matrix T to denote g.

Definition 8.9 We define S, T ∈ G by

S =

(
0 −1
1 0

)
, T =

(
1 1
0 1

)
,
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Thus T corresponds to the translation

z 7→ z + 1,

while S corresponds to the inversion

z 7→ −1/z.

We shall see shortly that S, T generate the modular group:

G = 〈S, T 〉.

Proposition 8.19 S2 = I, (ST )3 = I.

Proof I We have

S2 = −I
= I,

since we are working mod ± I. Also

ST =

(
0 −1
1 1

)
satisfies its characteristic equation

t2 − t+ 1 = 0.

Hence ST satisfies

(t+ 1)(t2 − t+ 1) = t3 + 1 = 0,

ie

(ST )3 = −I
= I,

since we are working mod ± I. J

8.9 The fundamental region

Definition 8.10 We define the fundamental region (for the modular group)
F ⊂ H by

F = {z ∈ H : −1

2
< <(z) ≤ 1

2
, |z| > 1 or |z| = 1 and <(z) > 0}.
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Notice that we have included half the boundary of F , just as we did (and
for much the same reason) with the fundamental parallelogram Π for a lattice
Λ.

Notice too that F contains the points −ω2 and i; these will play a special
rôle in what follows.

Theorem 8.3 Each point z ∈ H has a unique transform

z0 = gz ∈ F (g ∈ G).

Remark: Note that we are not saying g ∈ G is unique (we shall deal with
that question shortly); only that z0 is unique.

Proof I The idea is to find a transform gz maximimising =(gz). By Propo-
sition 11.2, if

gz =
az + b

cz + d

then

=(gz) =
1

|cz + d|2
=(z).

For a fixed z ∈ H, the points

{cz + d : c, d ∈ Z}

form a lattice (with basis 1,z). There are only a finite number of lattice
points inside the disk |z| ≤ 1, ie there are only a finite number of c, d ∈ Z
with

|cz + d| ≤ 1.

It follows that =(gz) can only take a finite number of values ≥ =(z). In
particular there must be a maximum such value, attained say at g0z.

Now translation z 7→ z + r does not affect =(z), so the maximal value is
also attained at each pount T rg0z.

But we can choose r so that z0 = T r(g0z) lies in the strip

S = {z ∈ H : −1

2
< <(z) ≤ 1

2
}.

We claim that this transform z0 ∈ F , or else |z0| = 1 and Sz0 ∈ F .

Lemma 7 If |z| < 1 then
=(Sz) > =(z).
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Proof of Lemma B If z = reiθ then Sz = −1/z and so

=(Sz) =
1

r
sin θ > r sin θ = =(z).

C

In particular, |z0| ≥ 1; for otherwise =(Sz0) > =(z0), contradicting the
maximality of =(z0). If |z0| > 1 then z0 ∈ F ; while if |z0| = 1 then either
<(z0) ≥ 0, in which case z0 ∈ F , or else <(z0) < 0 in which case Sz0 ∈ FF .

Now suppose z, gz ∈ F . We may assume (swapping z,gz if necessary)
that

=(gz) ≥ =(z).

By Proposition 11.2, this implies that

|cz + d| ≤ 1.

The lowest points of F is

−ω2 =
1

2
+

√
3

2
i.

Hence

|=(cz + d)| ≥
√

3

2
|c|;

and so
|c| ≤ 1.

But now cz lies in the strip S, and so

|<(cz + d)| ≥ |d| − 1/2.

Hence
|d| ≤ 1.

The problem is reduced to just 4 cases: (c, d) = (1, 0), (0, 1), (1, 1), (1,−1).
If c = 0 then g is a translation

gz = z + r;

and it is clear that z, gz cannot both lie in the strip S.
If d = 0 then we can take b = 1, c = −1, and so

gz = −az + 1

z
= Sz − a.
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Now
z ∈ F =⇒ Sz ∈ S.

Hence a = 0, ie g = S. But it is clear that

z, Sz ∈ F =⇒ |z| = 1;

while if |z| = 1 then
<(z) < 0⇐⇒ <Sz > 0.

So z, Sz cannot both be in F .
It remains to consider the cases (c, d) = (1,±1). The function

|cz + d|

must attain its minimum on F at a boundary point. (It is a general principle
that if the function f(z) is holomorphic on the open set U then |f(z)| can
only attain its minimum at a point of U if this minimum is 0.) But on going
round the boundary of F , it is clear that

|z ± 1| ≥ 1,

with equality only at the corner-points ω,−ω2. It follows that if z, gz ∈ F
then

z = gz = −ω2.

J

Remark: The Theorem shows that we can identify the quotient-space H/G
with the fundamental region F .

Suppose the group G acts on the set X. Recall that the stabilizer S(x)
of an element x ∈ X is the subgroup

S(x) = {g ∈ G : gx = x}.

During the proof of the Theorem we almost established the following
result. We leave completion of the proof to the reader.

Proposition 8.20 1. S(−ω2) = {I, TS, (TS)2};

2. S(i) = {I, S};

3. If z ∈ F , z 6= −ω2, i then S(z) = {I}.

Theorem 8.4 The modular group G is generated by S and T :

G = 〈S, T 〉.
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Proof I Let
H = 〈S, T 〉

be the subgroup of G generated by S, T .
On examining the proof of Proposition 8.3 it is clear that the argument

holds equally well with H replacing G. In particular, if z ∈ H then we can
find a transform

hz ∈ F (h ∈ H).

Now suppose g ∈ G. Choose any z ∈ F except −ω2 or i, and consider
the transform gz. By Theorem 8.3 we can find h ∈ H such that

h(gz) ∈ F .

But then, by the same Theorem,

hgz = z;

and therefore

hg ∈ S(z) = {I},

ie

hg = I =⇒ g = h−1 ∈ H.

Thus G = H, ie G is generated by S and T . J

8.10 Modular functions

Definition 8.11 The meromorphic function f(z) on H is said to be weakly
modular of weight 2k (where k ∈ Z) if

f(gz) = (cz + d)−2kf(z)

for each modular transformation

gz =
az + b

cz + d
.

Remark: Note that it would not make sense to speak of a function of odd
weight, since cz + d is only determined up to ±1.
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Proposition 8.21 The meromorphic function f(z) on H is weakly modular
of weight 2k if and only if

f(Tz) = f(z), f(Sz) = z−2kf(z).

Proof I If f(z) is weakly modular then the condition is certainly satisfied
by S, T ∈ G.

Conversely, suppose the condition is satisfied S, T and g, where

gz =
az + b

cz + d
.

We shall show that it is satisfied by Sg and Tg.
We have

S(gz) = − 1

gz
= −cz + d

az + b
;

while

f(Sgz) = (gz)−2kf(gz)

= (az + b)−2k(cz + d)2kf(gz)

= (az + b)−2k(cz + d)2k(cz + d)−2kf(z)

= (az + b)−2kf(z),

so the result holds for Sg.
More simply,

T (gz) = gz + 1 =
(a+ c)z + (b+ d)

cz + d
;

while

f(Tgz) = f(gz)

= (cz + d)−2kf(z),

so the result also holds for Tg.
It follows that the result holds where g is any word in S, T , ie for any

g ∈ 〈S, T 〉. Therefore, since S, T generate G, the result holds for all g ∈ G.
J

Suppose f(z) is a weakly modular function. Then in particular f(z) is
periodic with period 1:

f(z + 1) = f(z).
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The map
Θ : z 7→ q = e2πiz

maps H onto the interior of the disk

D = {z : |z| < 1}

with the point 0 removed. Moreover

Θ(z1) = Θ(z2)⇐⇒ z2 − z1 ∈ Z.

It follows that f(z) defines a meromorphic function g(q) on D \ {0}:

f(z) = g(e2πz).

Definition 8.12 The weakly modular function f(z) is said to have a pole (or
zero) of order m at ∞ if that is true of g(q) at q = 0. It is said to be regular
at ∞ if it does not have a pole there; and in that case we set f(∞) = g(0).

Definition 8.13 The weakly modular function f(z) is said to be modular if
it has at worst a pole of finite order at ∞.

It follows that a modular function has an ‘expansion at ∞’

g(q) =
∑
n∈Z

anq
n,

where only finite number of the coefficients an with n < 0 are 6= 0.

Definition 8.14 A modular function is said to be a modular form if it has
no poles in H, or at ∞.

To each modular function f(z) of weight 2k we can associate the lattice
function F (Λ) of weight 2k given by

F (〈λ, µ〉) = µ−2kf(λ/mu).

Conversely, we can recover the modular function from the lattice function by

f(z) = F (〈1, z〉).

Definition 8.15 We define the functions Gk(z) for k ≥ 2 by

Gk(z) =
∑

(m,n) 6=(0,0)

1

(m+ nz)2k
.
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Thus Gk(z) corresponds to the lattice function

gk(Λ) =
∑

ω∈Λ,ω 6=0

1

ω2k
.

Recall that Riemann’s zeta function f(s) is defined by

ζ(s) = 1 +
1

2s
+

1

3s
+ · · · .

In number theory (in particular in the proof of the Prime Number Theorem),
ζ(s) is considered as a function of a complex variable. But our concern is
only with ζ(n) for integers n ≥ 2.

Proposition 8.22 Gk(z) is a modular form of weight 2k, with

Gk(∞) = 2ζ(2k).

Proof I The series for Gk(z) is uniformly absolutely convergent in =(z) ≥ δ
for any δ > 0, by comparison with the corresponding integral, as in the proof
of Proposition 8.8. It follows that Gk(z) is holomorphic in H.

On the other hand, Gk(z) is weakly modular of weight 2k from the same
property of the associated lattice function g2(Λ).

It remains to see how Gk(z) behaves near ∞. As z →∞,

1

(m+ nz)2k
→

{
0 if n 6= 0

m−2k if n = 0.

Since the series is uniformly convergent, it follows that

Gk(z)→ 2ζ(2k) as z →∞.

It follows from this that g(q) is regular at q = 0, with g(0) = 2ζ(2k). (For
the coefficient a−n in the Laurent series is given by

a−n =
1

2πi

∫
C

qn−1g(q)dq

round a small circle C with centre 0, and this vanishes as the radius of the
circle tends to 0.) J

Proposition 8.23 A modular function has only a finite number of poles and
zeros in F .
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Proof I The function g(q) has an expansion

g(q) = qn(an + an+1z + · · · ) (an 6= 0)

in some neighbourhood of 0. It follows that g(q) is regular and has no zeros
in some disk

0 < |q| ≤ r ≤ 1.

Hence f(z) has no poles or zeros in the half-plane

{z ∈ H : =(z) > er}.

On the other hand, f(z) has only a finite number of poles or zeros in the
compact set

{z ∈ F̄ : =(z) ≤ er}.

It follows that f(z) has only a finite number of poles or zeros in F . J

Definition 8.16 Suppose f(z) is a meromorphic function on U . For each
u ∈ U we set

vu(f) =


m if f(z) has a zero of order m at u

−m if f(z) has a pole of order m at u

0 otherwise

Remark: If f(z), g(z) are meromorphic functions on U then

1. vu(f + g) ≤ max(vu(f), vu(g)),

2. vu(fg) = vu(f) + vu(g).

Thus vu(f) is a valuation on the field of meromorphic functions on U ; in fact,
it satisfies the same stronger conditions as the p-adic valuation we considered
in Chapter 5.

8.11 The Modular Counting Theorem

Theorem 8.5 Suppose f(z) is a modular function of weight 2k. Then

1

3
vω(f) +

1

2
vi(f) +

∑
z 6=ω,−ω2,i

vz(f) =
k

6
.
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Proof I Let

I =
1

2πi

∫
Γ

f ′(z)

f(z)
dz,

where Γ runs round the boundary of F , truncated at the top. More precisely,

Γ = A+B + C +D + E,

where A is the line joining −ω2 to 1/2 +Ri, B is the line joining 1/2 +Ri to
−1/2 +Ri, C is the line joining −1/2 +Ri to ω, D is the circular arc joining
ω to i, and E is the circular arc joining −ω2.

Let us assume for the moment that f(z) has no poles or zeros on Γ, and
also that R is so large that all the poles or zeros of f(z) inside F are inside
Γ.

As we know, if f(z) has a pole or zero at u ∈ H then f ′(z)/f(z) has a
simple zero at u with residue vu(f). It follows that

I =
∑
u∈F

vu(f).

We consider the contributions to I from the five parts of the contour.

1. Since f(z + 1) = f(z), while the integrals are in opposite directions,∫
A

+

∫
C

= 0,

where for simplicity we write∫
X

for
1

2πi

∫
X

f ′(z)

f(z)
dz.

2. As z moves from ω to i on D, Sz moves from −ω2 to i on E. If f(z)
were of weight 0, so that f(Sz) = f(z), then the contributions from
D and E would cancel out in the same was as those from A and C.
However, if f(z) is of weight 2k,

f(Sz) =
1

z2k
f(z) =⇒ f ′(Sz) = − 2k

z2k+1
f(z) +

1

z2k
f ′(z)

=⇒ f ′(Sz)

f(Sz)
= −2k

z
+
f ′(z)

f(z)
.
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(In effect, f ′(z)/f(z) = d/dz(log f(z)).) Thus the main parts of the
integral cancel out, leaving∫

D

+

∫
E

=
1

2πi

∫
D

2k

z
dz

=
2k

2πi

∫ π/2

2π/3

iθdθ

= k

(
2

3
− 1

2

)
=
k

6

3. Finally, on B we have
f(z) = g(e2πiz).

Changing variable from z to q = e2πiz,

f ′(z)

f(z)
= 2πiq

g′(q)

g(q)
, dz = 2πiq dq,

and so ∫
B

=
1

2πi

∫
γ

g′(q)

g(q)
dq,

where q runs round the small circle

γ : q = e−2πRe2πx

from x = π to x = −π in a negative (clockwise) direction.

Now if g(q) has a pole or zero at q = 0 then g′(q)/g(q) has a simple
pole there with residue

v0(g) = v∞(f);

while g′(q)/g(q) is regular at q = 0 if g(q) has neither pole nor zero
there. It follows in all cases that∫

B

= −v∞(f).

Putting the parts together,

I =
k

6
− v∞(f).
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But as we observed,

I =
∑
u∈F

vu(f).

Thus ∑
u∈F

vu(f) + v∞(f) =
k

6
,

as required.
It remains to deal with the case where f(z) has one or more poles or zeros

on Γ.

1. Suppose f(z) has a pole or zero at z = z0 ∈ A, where z0 6= −ω2. Then
it will also have a pole or zero of the same order at the corresponding
point on C, since f(z − 1) = f(z).

Let us make small semi-circular diversions to the west of the pole or
zero on both A and C. Then∫

A′
+

∫
C′

= 0,

as before; and the pole or zero is included once inside Γ′, as required.

2. Suppose f(z) has a pole or zero at z = z0 ∈ B, where z0 6= −ω2 or i.
Then f(z) has a pole or zero of the same order at Sz0 ∈ C, since

f(Sz) = z2kf(z).

Let us make a small (almost) semicircular diversion δ to the south of
z0. Then Sδ is a similar diversion to the north of Sz0. It follows from
our argument in the main case that∫

B′
+

∫
C′

=
1

2πi

∫
B′

2k

z
dz

=
1

2πi

∫
B

2k

z
dz

=
k

6
,

since the function 1/z is regular at z0.

3. Now suppose that f(z) has a pole or zero at −ω2, and so also at ω =
−ω2 − 1. We make a small diversion around both points, travelling
inside FF along circular arcs δ, δ1 of radius ε, so that

B′ = B′′ + δ, C ′ = C ′′ + δ1,
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where B′′, C ′′ are slightly curtailed versions of B,C. By our argument
in the main case,∫

B′′
+

∫
C′′

=

∫
B

+

∫
C

+O(ε) =
k

6
+O(ε).

In the neighbourhood of ω,

f ′(z)

f(z)
=
vω(f)

z − ω
+ h(z),

where h(z) is holomorphic. The angle between C and D is π/3, so the
arc δ has angle π/3 +O(ε), traversed in the negative direction. Hence

1

2πi

∫
γ

f ′(z)

f(z)
dz = −vω(f)

6
.

Similarly
1

2πi

∫
γ1

f ′(z)

f(z)
dz = −vω(f)

6
.

Also ∫
A′

+

∫
C′

= 0,

as before. Putting the parts together,

I =
k

6
− v∞(f)− 1

2
vω(f),

and so
1

3
vω(f) +

∑
u

vu(f) =
k

6
,

as required.

4. A pole or zero at i is dealt with similarly, by a small (nearly) semicir-
cular diversion δ of radius ε to the north of i. Let D′′, E ′′ denote the
curtailed portions of D,E, so that

Γ′ = A+B + C +D′′ + δ + E ′′.

Then ∫
D′′

+

∫
E ′′ =

k

6
+O(ε),
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as in the previous case; while

f ′(z)

f(z)
=
vi(f)

z − i
+ h(z)

in the neighbourhood of i, where h(z) is regular at i, and so∫
γ

= −vi(f)

2
,

again as in the previous case. Putting the parts together,

1

2
vi(f) +

∑
u

vu(f) =
k

6
,

as required.

5. Finally, if f(z) has more than one pole or zero on Γ, eg a pole at −ω2

(and so also at ω) and a zero at i. Then we make a diversion around
each pole or zero, according to the prescription above; and the parts
will combine to give the result:

1

3
vω(f) +

1

2
vi(f) +

∑
u

vu(f) =
k

6
.

J

Proposition 8.24 There are no modular forms of weight < 0; and the only
modular forms of weigth 0 are the constants.

Proof I For a modular form f(z), vu(f) ≥ 0 for all u. Thus if f(z) were of
weight < 0, then the left-hand side of the identity in the Theorem would be
≥ 0, while the right-hand side would be < 0.

Similarly, if k = 0 then the only way the identity could be satisfied is if
vu(f) = 0 for all u (including ∞). But then f(z)− f(∞) is a modular form
of weight 0 with v∞(f) > 0, which is a contradiction unless the function is
identically zero, ie f(z) = f(∞) is constant. J

Proposition 8.25 There are no modular forms of weight 2.

Proof I Suppose f(z) is such a form. Writing

a = vω(f), b = vi(f), c =
∑
u 6=ω,i

vu(f),
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we have
a

3
+
b

2
+ c =

1

6
,

with a, b ∈ N, which is manifestly impossible. J

Proposition 8.26 The only modular form of weight 4 is G2(z), up to a
scalar multiple.

Proof I The only solution of

a

3
+
b

2
+ c =

1

3

with a, b, c ∈ N, is a = 1, b = c = 0. Thus every modular form f(z) of weight
4 must have a simple zero at ω.

But then

f(z)− f(∞)

G2(∞)
G2(z),

if non-zero, is a modular form of weight 4 with v∞(f) ≥ 1, which conflicts
with our formula. Hence this form vanishes identically, ie

f(z) = ρG2(z),

where ρ = f(∞)/G2(∞). (Recall that G2(infty) = ζ(4) 6= 0.) J

Proposition 8.27 The only modular form of weight 6 is G3(z), up to a
scalar multiple.

Proof I The only solution of

a

3
+
b

2
+ c =

1

2

with a, b, c ∈ N, is evidently a = 0, b = 1, c = 0. Thus every modular form
f(z) of weight 6 must have a simple zero at i.

It follows as in the proof of the last Proposition that

f(z) = ρG3(z),

where ρ = f(∞)/G3(∞). J

We have proved incidentally the following result.

Proposition 8.28 G2(ω) = 0, G3(i) = 0.
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It is easy enough to prove this directly; since Sω = −ω2,

G(−ω2) =
1

ω4
G(ω) = ω2G(ω),

while since −ω2 = ω + 1,
G(−ω2) = G(ω),

Similarly, since Si = i,

G3(i) =
1

i6
G3(i) = −G3(i).

Recall that the discriminant ∆(E) of the elliptic curve

y2 = x3 + bx+ c

was defined to be
∆ = 24D,

where
D = −(4b3 + 27c2)

is the discriminant of the polynomial on the right. (The factor 24 was intro-
duced to allow the discriminant of the general Weierstrassian elliptic curve

y2 + c1xy + c3y = x3 + c2x
2 + c4x+ c6

to be defined as a polynomial in c1, c2, c3, c4, c6 with integral coefficients.)
It follows that the discriminant of the elliptic curve

E(C) : y2 = x3 − 15g2x− 35g3

is
∆(E) = 243352(20g3

2 − 49g2
3).

(The scalar factor is irrelevant for our present purposes, and is only retained
for consistency.)

Definition 8.17 The modular invariant ∆(z) is defined by

∆(z) = 243352(20G3
2 − 49G2

3).

Proposition 8.29 ∆(z) is a modular form of weight 12. It has a simple
zero at ∞, and no other poles or zeros.
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Proof I It is clear that ∆(z) is a modular form of weight 12. We know that
the elliptic curve

E : y2 = x3 − 15g2x− 35g3

is non-singular. (Recall the argument: If the curve had a singularity, it would
be a point (α, 0) on the line of symmetry y = 0, where α is a double root
of the polynomial on the right. But we have seen that this polynomial has
three distinct roots corresponding to the semilattice points of the lattice Λ
in question.)

But now our formula gives

v∞(∆) = 1,

ie ∆(z) has a simple zero at ∞. J

Remark: A modular form f(z) with f(∞) = 0 is called a cusp form.

Proposition 8.30 The modular forms are generated by G2(z) and G3(z).
More precisely, a modular form of weight 2k is a linear combination of the
modular forms

G2(z)aG3(z)b,

where
2a+ 3b = k.

Proof I We argue by induction on k. We have seen that the result is true
for k = 0, 2, 4, 6.

Lemma The only modular form of weight 8 is G2(z)2, up to a scalar mul-
tiple. The only modular form of weight 10 is G2(z)G3(z), up to a scalar
multiple.

Proof of Lemma B The only solution of

2a+ 3b = 4

is a = 2, b = 0, while the only solution of

2a+ 3b = 5

is a = 1, b = 1. The result follows as in Propositions 8.26 and 8.27. C

Lemma The equation

2a+ 3b = k (a, b ∈ N)

has a solution for all k ≥ 2.
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Proof of Lemma B If k is even, a = k/2, b = 0 is a solution; while if k is

odd, a = (k − 3)/2, b = 1 is a solution. C

Now suppose f(z) is a modular form of weight 2k, where k ≥ 6. By the
last Lemma, we can find a, b such that 2a+ 3b = k. Let

g(z) = G2(z)aG3(z)b.

Then g(z) is also of weight 2k; and so is

h(z) = f(z)− ρg(z),

where we choose

ρ =
f(∞)

G2(∞)aG3(∞)b
=

f(∞)

ζ(4)aζ(6)b

so that
h(∞) = 0.

Then h(z) is a modular form of weight 2k with h(∞) = 0.
But now

k(z) =
h(z)

∆(z)

is a modular form of weight 2k − 12; for the zero of h(z) at ∞ cancels out
the zero of ∆(z) at ∞, and ∆(z) has no other zeros.

It follows by our inductive hypothesis that k(z) is a linear combination
of the monomial functions

G2(z)a
′
G3(z)b

′
(2a′ + 3b′ = k − 6).

Hence
g(z) = ∆(z)k(z)

is a linear combination of the functions

G2(z)a
′′
G3(z)b

′′
(2a′′ + 3b′′ = k);

and so therefore is
f(z) = g(z) +G2(z)aG3(z)b.

J

Proposition 8.31 The functions G2(z)aG3(z)b with 2a+3b = k form a basis
for the modular forms of weight 2k.
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Proof I Suppose there were a linear relation between these monomial func-
tions. The relation of lowest weight must be of the form

λG2(z)3c + · · ·+ µG3(z)2c = 0.

(For otherwise we could divide the relation by G2(z) or G3(z).)
But now taking z = i,−ω2,

µG3(ω)2c = 0 =⇒ µ = 0, λG2(ω)3c = 0 =⇒ λ = 0.

J

The modular forms constitute a graded algebra

M = (Mk)k∈N,

where Mk is the space of modular forms of weight 2k. It follows from the
Proposition above that this algebra is the polynomial algebra generated by
G2 and G3:

M = C[G2, G3].

8.12 The j-invariant

Definition 8.18 We set

j(z) = 2633G2(z)3

∆(z)
.

Remark: The scalar factor is of no significance for our present purpose. (It
is chosen so that j(z) has residue 1 at ∞.)

Proposition 8.32 j(z) is a modular function of weight 0. It has a simple
pole at ∞ and a triple zero at ω mod G, and no other poles or zeros.

Proof I This follows at once from the properties of G2(z) and ∆(z) (Propo-
sitions 8.26 and 8.29). J

Corollary 12 For each c ∈ C there is just one z ∈ F such that

j(z) = c.

Proof I The modular function j(z)− c is of weight 0, and has a simple pole
at ∞. It follows from the Modular Counting Theorem that f(z) either has
a triple zero at −ω2, or else a simple zero at some other point.

In any case, there is just one zero in F . J

Recall that each modular function has an associated lattice function.
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Definition 8.19 For each lattice Λ = 〈λ, µ〉 we set

J(Λ) = j(λ/µ).

Thus

J(Λ) = 2633 g
3
2

∆

=
22

52

g3
2

20g3
2 − 49g2

3

.

Theorem 8.6 Each elliptic curve

E(C) : y2 = x3 + bx+ c

arises from a unique lattice Λ.

Proof I We are looking for a lattice Λ with

−15g2(Λ) = b, −35g3(Λ) = c.

For such a lattice

j(Λ) = 223353 b3

22b3 − 33c2
= C,

say.
By the Corollary to Proposition 8.32 there is a unique z0 ∈ F such that

j(z0) = C.

Let
Λ0 = 〈1, z0〉;

and let
E(C) : y2 = x3 + b0x+ c0

be the elliptic curve associated to Λ0. Then

b3
0

4b3
0 − 27c2

0

= j(z0) = C =
b3

4b3 − 27c2
.

We know that the denominators do not vanish, since the curves are non-
singular. Hence

b0 = 0⇐⇒ b = 0.

Suppose for the moment this is not so. Then

4b3
0 − 27c2

0

b3
0

=
4b3 − 27c2

b3
=⇒ c2

0

b3
0

=
c2

b3
.
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Evidently
c0 = 0⇐⇒ c = 0.

Suppose this too is not so. Then(
b

b0

)3

=

(
c

c0

)2

.

Let
b

b0

= β,
c

c0

= γ, ρ =
γ

β
.

Then γ2 = β3, and so

ρ2 =
γ2

β2
=
β3

β2
= β,

ρ3 =
γ3

β3
=
γ3

γ2
= γ.

Thus
b = ρ2b0, c = ρ3c0.

Let s2 = ρ. Then
b = s4b0, c = s6c0.

It follows that the given curve is defined by the lattice

Λ = sΛ0 = 〈s, sz0〉.

If b0 = b = 0 then the two curves are

y2 = x3 + c0, y2 = x3 + c.

The transformation
x→ s2x, y → s3y

will take the first curve into the second provided we choose s so that

c = s6c0.

Similarly, if c0 = c = 0 then the curves are

y2 = x3 + b0x, y2 = x3 + bx,

and the transformation will take the first curve into the second provided we
choose s so that

b = s440.
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Now suppose the given curve E is also defined by the lattice

Λ′ = 〈λ′, µ′〉 = µ′〈1, λ′/µ′〉 = µ〈1, z′〉,

where z′ = λ′/µ′. Then

j(z′) = J(Λ′) = 223353 b3

22b3 − 33c2
= J(Λ) = j(z0).

Hence, by Proposition 8.32,
z = gz

for some g ∈ G, say the transformation

gz =
az + b

cz + d
.

It follows that the lattices

〈1, z〉, 〈1, z0〉

are the same, and so the lattices Λ′,Λ are similar, say

Λ′ = sΛ.

But then
sbb = b, s6c = c.

If b, c 6= 0 this implies that s2 = 1, so that s = ±1 and the lattices are
the same.

If b = 0 then
s = ±1, ±ω, ±ω2.

But
j(z) = 0 =⇒ z = gω.

Thus the lattice is similar to

Λ0 = {m+ nω : m,n ∈ Z},

and it is readily verified that

ωΛ0 = Λ0, −ω2Λ0 = Λ0,

so again the lattice is unique.
Similarly if c = 0 then

G3(z0) = 0 =⇒ z0 = i,
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so that the lattice is similar to

Λ0 = {m+ ni : m,n ∈ Z},

which again is invariant under the transformations given by s = ±i. J

Remark: We call j(z0) = J(Λ) the j-invariant of the corresponding elliptic
curve

y2 = x3 − 15g2x− 35gx.

We can extend the definition to all Weierstrassian curves

E(k) : y2 + c1xy + c3y = x3 + c2x
2 + c4x+ c6

over all fields k, by exactly the same method by which we extended the
definition of the discriminant ∆(E) to all such curves.

The j-invariant turns out to have an important rôle in the classification
of elliptic curves over a general field k. But that is another story.
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Chapter 9

Mordell’s Theorem

9.1 The Theorem

Our aim in this Chapter is to prove Mordell’s Theorem, the central result on
the arithmetic of elliptic curves.

Theorem 9.1 (Mordell) The abelian group on the elliptic curve

E(Q) : y2 = x3 + ax2 + bx+ c.

is finitely-generated.

In fact we shall find that we have to consider the more general case of
an elliptic curve over a number field K (rather than Q). This is because our
proof requires that the polynomial

f(x) ≡ x3 + ax2 + bx+ c ≡ (x− α)(x− β)(x− γ)

should factorise completely in K, ie that α, β, γ ∈ K.
If f(x) already factorises in Q then there is no need to introduce number

fields. It is interesting to observe that this is the case with Wiles’ proof of
Fermat’s Last Theorem, which (as we have noted) associates to the solution

An +Bn = Cn

of Fermat’s Last Theorem the elliptic curve

y2 = x(x− An)(x+Bn)

with discriminant
∆ = (ABC)2n :

the point being that the discriminant has — in relation to its size — a large
number of small factors, which (Wiles shows) leads to a contradiction.
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9.2 The Idea of the Proof

Suppose E(Q) is finitely-generated. Then the group

E(Q)

2E(Q)

is finitely-generated, and so is finite. More precisely, we have the following
result.

Proposition 9.1 Suppose A is a finitely-generated abelian group, say

A = F ⊕ rZ = F ⊕ Z⊕ · · · ⊕ Z︸ ︷︷ ︸
r summands

where F is finite and r = rank(A). Suppose there are 2s elements of order
dividing 2 in A. Then

A/2A = (r + s)(Z/(2)) = Z/(2)⊕ · · · ⊕ Z/(2)︸ ︷︷ ︸
r + s summands

.

Proof I It is a readily verified that

B = C ⊕D =⇒ B/2B = C/2C ⊕D/2D.

It follows that
A/2A = F/2F ⊕ Z/(2)⊕ · · · ⊕ Z/(2),

each direct summand Z in A contributing one copy of Z/(2). It remains to
determine F/2F .

Consider the homomorphism

φ : F → F : x 7→ 2x.

By the First Isomorphism Theorem,

F

2F
=

F

imφ
∼= kerφ = {x ∈ F : 2x = 0}.

Thus 2s is just the number of elements in F of order dividing 2. Since every
element in A of finite order is in F , the result follows. J

It follows from this Proposition that

E(Q) finitely-generated =⇒ E(Q)/2E(Q) finite;
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and moreover,
‖E(Q)/2E(Q)‖ = 2r+s.

where r is the rank of E(Q) and s = 0, 1 or 2 according as the cubic f(x) has
0,1 or 3 roots in Q.

The converse, unfortunately, is not true: an abelian group A may have
A/2A finite without A being finitely-generated. For example,

Q/2Q = 0,

since every rational is expressible as twice another rational; but Q is not
finitely-generated as an abelian group.

So the condition (that E/2E be finite) is necessary but not sufficient.
However, it allows us to start a process of “infinite descent”, as follows.

Let the points E1, . . . , Em be representatives of the cosets in E/2E ; and
suppose P ∈ E . Then

P − Ei ∈ 2E
for some i, say

P − Ei0 = 2P1.

We can apply the same argument to P1:

P1 − Ei1 = 2P2;

and we can continue in this way

P2 − Ei2 = 2P3,
P3 − Ei3 = 2P4.

. . .

We expect the points P1, P2, . . . defined in this way by successive ‘halving’
to descend the curve in some sense. But what exactly do we mean by ‘de-
scend’? When infinite descent is applied to integral solutions of an equation,
the meaning is clear: the coordinates become smaller. But we are dealing
with rational points. We need some notion of the simplicity of a rational
number q = m/n. We therefore define the height of q ∈ Q to be

H(q) = max(|m|, |n|),

if q = m/n in its lowest terms. Now our task is clear; we have to show that
the points P1, P2, . . . are descending in the sense that the heights of their
coordinates are decreasing.

Actually, we shall find it sufficient, and much simpler, to consider the
x-coordinate.

Thus the proof has 2 quite separate parts, which we might call the alge-
braic or group-theoretic part, and the topological or valuation-theoretic part.
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9.3 When can a Point be ‘Halved’?

Recall our mammoth formula for the ‘double’ of a point X, Y ) ∈ E :

2(X, Y ) =

(
X4 − 2bX2 − 8cX + b2 − 4ac

4Y 2
,

X6 + 2aX5 + 5bX4 + 20cX3 + (8a2c− 2ab2 − 4bc)X + b3 − 4abc+ 8c2

8Y 3

)
.

If c = 0 we may observe that the x-coordinate is a perfect square(
X2 − b

2Y

)2

.

At first sight this seems a pure fluke. But it turns out to be the hinge of our
argument.

Suppose the line
y = mx+ d

meets E in the 3 points

P = (x1, y1), Q = (x2, y2), R = (x3, y3).

Then x1, x2, x3 are the roots of the cubic

(mx+ d)2 = x3 + ax2 + bx+ c.

It follows that

x1 + x2 + x3 = m2 − a,
x2x3 + x3x1 + x1x2 = b− 2md,

x1x2x3 = d2 − c.

The last of these equations is the one that concerns us now. Suppose again
that c = 0. Then the equation becomes

x1x2x3 = d2.

This has a homomorphic air about it:

P +Q+R = 0 =⇒ x1x2x3 = d2.

In particular we recover the ‘fluke’ above; if we take Q = R, so that P+2Q =
0, then we see that

x1x
2
2 = d2.
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Remembering that P and −P have the same x-coordinate, it follows that if
P = 2Q then the x-coordinate of P is a square.

This was on the assumption that c = 0. Geometrically, this means that
(0, 0) ∈ E . Now (0, 0) is a point of order 2. But any point (α, 0) ∈ E of order
2 can be brought to (0, 0) by the coordinate-change x 7→ x− α.

Thus the only assumption we are making is that E(K) possesses a point
of order 2. In fact, returning to the original coordinates, we can express the
result as follows: Suppose (α, 0) ∈ E , where α is a root of

f(x) = x3 + ax2 + bx+ c.

Then
P = (X, Y ) ∈ 2E(K) =⇒ X − α = θ2

in K.
But there is nothing special about the root α. Suppose now that all 3

roots α, β, γ ∈ K. Then our argument shows that

P = (X, Y ) ∈ 2E(K) =⇒ X − α, X − β, X − γ ∈ K2,

that is,
X − α = α′

2
, X − β = β′

2
, X − γ = γ′

2
,

where α′, β′, γ′ ∈ K.
This brings us to the main result in the algebraic half of the proof of

Mordell’s Theorem.

Proposition 9.2 Suppose

E(K) : y2 = x3 + ax2 + bx+ c

is an elliptic curve over the number field K; and suppose

f(x) = x3 + ax2 + bx+ c

has roots α, β, γ ∈ K. Then

P = (X, Y ) ∈ 2E(K)⇐⇒ X − α,X − β,X − γ ∈ K2.

Remark: Note that any 2 of these conditions implies the third, since

Y 2 = (X − α)(X − β)(X − γ).
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Proof I To simplify the presentation, let us make the coordinate-change
x 7→ x −X. (This is not the same as the earlier coordinate-change making
c = 0.) The given point P is now (0, Y ), and we have to show that

P = (0, Y ) ∈ 2E(K)⇐⇒ −α,−β,−γ ∈ K2,

say
α = −α′2, β = −β′2, γ = −γ′2,

where α′, β′, γ′ ∈ K.
(We have already seen that this condition is necessary. Our argument

will re-prove that, and show that the condition is also sufficient.)
By definition, P = 2Q if the tangent to E at −Q passes through P . Let

us therefore determine all the tangents that can be drawn from P to E .
The general line through P = (0, Y ) is

y = mx+ Y.

This meets E where

(mx+ Y )2 = x3 + ax2 + bx+ c.

We know that one root of this is x = 0 since P = (0, Y ) ∈ E . In other words,

Y 2 = c.

The other 2 roots of the equation satisfy

x2 + (a−m2)x+ (b− 2mY ) = 0.

The line will be a tangent if this quadratic has coincident roots. The condi-
tion for this is that

(a−m2)2 = 4(b− 2mY ).

This is a quartic for m; so in general 4 tangents can be drawn to E from any
point P ∈ E .

It is easy to see why there are 4 tangents. Let

A = (α, 0), B = (β, 0), C = (γ, 0)

be the 3 points of order 2 on E . If P = 2Q is one ‘halving’ of P then there
are 3 others:

P = 2(Q+ A), P = 2(Q+B), P = 2(Q+ C).
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These give rise to the 4 tangents passing through P . In particular we see that
if one tangent is defined over K then so are all 4. (Note that the tangents
must be distinct, since A,B,C are distinct.) Thus if our quartic has one root
in K then all its roots must lie in K.

We should say, that 4 tangents can be drawn over C. For there is no
reason to suppose that the roots of the quartic will lie in K. In fact, that is
exactly what we have to determine.

For if Q ∈ E(K) then our line PQ is defined over K, and so m ∈ K.
Conversely, if m ∈ K and the line is tangent to E then the point Q = (ξ, η)

at which it touches has coordinates in K. For the roots of our equation

(mx+ Y )2 = x3 + ax2 + bx+ c

are now 0, ξ, ξ, so that
2ξ = m2 − a ∈ K,

and then
η = mξ + Y ∈ K.

Thus P = 2Q if and only if there is a line through P touching E , and
defined over K. In other words, P = 2Q if our quartic for m has a root in
K.

Recall the classical technique for solving a quartic (or at least reducing it
to a cubic): re-cast the quartic in the form

Q(x)2 = L(x)2,

where Q(x) is quadratic and L(x) is linear.
In our case this leads to the equation

(m2 − a+ λ)2 = 2λm2 − 8mY + (λ2 − 2λa+ 4b),

where we have to choose λ so that the quadratic form in m on the right is a
perfect square.

The condition for this is that λ should satisfy the cubic

(4Y )2 = 2λ(λ2 − 2λa+ 4b).

Recalling that Y 2 = c, this simplifies to

λ3 − 2aλ2 + 4bλ− 8c = 0.

Miracle! This is almost our original cubic f(x) (in the equation y2 = f(x)).
In fact the equation can be written

f(−λ/2) = 0.
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It follows that its 3 solutions are

λ = −2α, −2β, −2γ.

We can take λ to have any of these values. Suppose we take

λ = −2α.

Then our quartic for m takes the form

(m2 − a+ λ)2 = (2λ)(m− 2Y/λ)2.

Thus if our quartic has a solution in K, which we know is the case if
P = 2Q, then λ/2 = −α must be a square. Similarly, taking the other 2
values for λ, it follows that −β and −γ must also be squares:

−α = α′
2
, −β = β′

2
, −γ = γ′

2
.

Conversely suppose that this is the case. Then we can take

λ = −2α = 4α′
2
,

and our quartic for m splits into 2 quadratics

m2 − a+ λ = ±2α′(m− 4Y/λ).

Note that since α + β + γ = −a,

−a+ λ = −α + β + γ

= α′
2 − β′2 − γ′2.

Furthermore
Y 2 = c = −αβγ = α′

2
β′

2
γ′

2
,

so that
Y = ±α′β′γ′.

We can take the + sign without loss of generality, since the signs of α′, β′, γ′

were arbitrary anyway.
Thus our quadratics become

m2 + α′
2 − β′2 − γ′2 = ±2(α′m− 2β′γ′).

In other words,
(m± α′)2 = (β′ ± γ′)2.

We conclude that the 4 tangents through P are y = mx+ Y , where

m = α′ + β′ − γ′, α′ − β′ + γ′, −α′ + β′ − γ′, −α′ − β′ + γ′.

In particular, we see that if −α,−β,−γ are perfect squares in K then m ∈ K
and P = 2Q. J
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9.4 The 3 Homomorphisms

Recall that if

P = (x1, y1), Q = (x2, y2), R = (x3, y3) ∈ E(K)

are 3 points of
E(K) : y2 = x3 + ax2 + bx

then
P +Q+R = 0 =⇒ x1x2x3 ∈ K2.

It would have been nicer if we could have said

P +Q+R = 0 =⇒ x1x2x3 ∈ (K×)2,

where K× denotes the multiplicative group formed by the non-zero elements
of K. For then we could say that

P +Q+R = 0 =⇒ x1x2x3 ≡ 1 mod (K×)2.

which would suggest that we had a homomorphism

Θ : E(K)→ K×/(K×)2.

Unfortunately, this breaks down if

x1x2x3 = 0,

ie one of x1, x2, x3 vanishes. This is the case if one or more of the points
P,Q,R is equal to D = (0, 0).

Remarkably, the homomorphism can be rescued in this case. Recall that

x2x3 + x3x1 + x1x2 = b− 2md.

In the case x1x2x3 = 0 we have m = 0. Let us suppose x1 = 0. Then

x2x3 = b

Thus if we agree to map D onto b mod (K×)2 rather than 0 then we recover
the homomorphic relation.

Proposition 9.3 Suppose E(K) is the elliptic curve

y2 = x3 + ax2 + bx+ c.
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Then the map
Θ : E(K)→ K×/(K×)2

defined by

P 7→


X if P = (X, Y ) 6= (0, 0),

b if P = (0, 0),

1 if P = 0 = [0, 1, 0]

is a homomorphism

Proof I If P = (X, Y ) then −P = (X,−Y ). Thus

P +Q = 0 =⇒ Θ(P )Θ(Q) = 1

in all cases.
It is sufficient therefore to show that

P +Q+R = 0 =⇒ Θ(P )Θ(Q)Θ(R) = 1

in all cases. We know that this holds if none of P,Q,R is 0 or D. If one is 0
then the result reduces to the case P +Q = 0. It two of P,Q,R are D then
the third is 0, so that case has been dealt with.

It only remains to consider the case where just one is D, say P = D, and
Q,R 6= 0. But we have seen that in this case

x2x3 = b,

and so
Θ(Q)Θ(R) = b.

Thus, since Θ(D) = b,

Θ(P )Θ(Q)Θ(R) = b2 = 1

in K×/(K×)2. J

We were assuming in this Proposition that c = 0. To convert back to the
general case, we note that if α is a root of f(x) then the coordinate-change
x 7→ x− α takes f(x) into x3 + a′x2 + b′x, where

a′ = a+ 3α, b′ = b+ 3α2 + 2aα.

Corollary 13 Suppose E(K) is the elliptic curve

y2 = x3 + ax2 + bx+ c;
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and suppose
A = (α, 0)

is a point of order 2 on E(K). Then the map

Θα : E(K)→ K×/(K×)2

defined by

P 7→


X − α if P = (X, Y ) 6= A,

3α2 + 2aα + b if P = A,

1 if P = 0 = [0, 1, 0],

is a homomorphism.

Note that we have 3 homomorphisms, corresponding to the 3 roots α, β, γ
of f(x). We can re-state Proposition 9.2 as follows.

Proposition 9.4 Suppose

E(K) : y2 = x3 + ax2 + bx+ c

is an elliptic curve over the number field K; and suppose

f(x) = x3 + ax2 + bx+ c

has roots α, β, γ ∈ K. Then

2E(K) = ker Θα ∩ ker Θβ ∩ ker Θγ.

Remark: As we noted earlier,

ker Θα ⊂ ker Θβ ∩ ker Θγ,

and similarly for the other 2 kernels — each is contained in the intersection
of the other two. Thus

2E(K) = ker Θα ∩ ker Θβ = ker Θα ∩ ker Θγ = ker Θα ∩ ker Θβ.

Corollary 14 E/2E is finite if and only if im Θα, im Θβ, im Θγ are all finite.
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Proof I By the Proposition (and the following Remark),

2E = ker Θα ∩ ker Θβ ∩ ker Θγ

= ker Θα ∩ ker Θβ

= ker Θα ∩ ker Θγ

= ker Θβ ∩ ker Θγ

Lemma 8 Suppose B,C are subgroups of the group A. Then

A

B ∩ C
is finite if and only if

A

B
,
A

C
,

are finite; and then

‖ A

B ∩ C
‖ ≤ ‖A

B
‖ A
C
‖.

Proof of Lemma B We have

‖A/B ∩ C‖ = ‖A/B‖ ‖B/B ∩ C‖.

Let Φ be the canonical surjective homomorphism

Φ : A→ A/C.

If ΦB is the restriction of Φ to B, then

ker ΦB = B ∩ C.

It follows from the First Isomorphism Theorem that

B/B ∩ C ∼= im ΦB ⊂ A/C.

Hence
‖B/B ∩ C‖ ≤ ‖A/C‖,

and the result follows. C

Applying the Lemma with B = ker Θα, C = ker Θβ we deduce that E/2E
is finite if and only if

E/ ker Θα
∼= im Θα and E/ ker Θβ

∼= im Θβ

are both finite; and the same is true if α, β are replaced by α, γ or β, γ. J
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9.5 The Finiteness of the Images

We have to prove that im Θα, im Θβ, im Θγ (or at least two of them) are
finite. It is sufficient to prove the result for one of them; and we can again
suppose for simplicity that c = 0.

Proposition 9.5 Let E be the curve

E(K) : y2 = x3 + ax2 + bx

where b, c are algebraic integers in K. Let Θ be the homomorphism

E → K×/(K×)2 : P 7→


X if P = (X,Y ) 6= (0, 0),

b if P = (0, 0),

1 if P = 0 = [0, 1, 0]

Then im Θ is finite.

Proof I Suppose
P = (x, y) ∈ E ,

where y 6= 0.

Lemma 9 Suppose p is a prime ideal in K such that

p 6 | b.

Then p appears to an even power in x:

p2e || x.

Proof of Lemma B Suppose

pe || x, pf || y.

If e < 0 then the right-hand side is dominated by x3, and so f < 0 and

2f = 3e.

On the other hand, if e > 0 then

p 6 | x2 + ax+ b

since we are supposing that p 6 | b. Thus

2f = e.

In either case (or if e = 0) e is even. C
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Lemma 10 We can find a finite number of elements x1, . . . , xr ∈ K such
that x̄k ∈ im Θ, and for each x with x̄ ∈ im Θ we have

〈xx−1
k 〉 = a2

for some k ∈ {1, . . . , r}.

Proof of Lemma B By the last Lemme, the only prime ideals p appearing

to an odd power in x are the finite number dividing b. Suppose these prime
ideals are p1, . . . , ps. Consider the 2s ideals

pe11 · · · perr (e1, . . . , er ∈ {0, 1}),

say
a1, . . . , a2s .

According to the last Lemma, if x̄ ∈ im Θ then

〈x〉 = akb
2

for some k ∈ {1, . . . , s}.
If such an x exists for the ideal ak let us choose one, say xk:

〈xk〉 = akb
2.

If no such element exists let xk = 1.
Then we see that if

〈x〉 = akb
2

then
〈xx−1

k 〉 = b2.

C

If we are working over Q it follows that

xx−1
k = ±X2,

and so
x ≡ ±xk mod (K×)2

for some k. Hence
im Θ = {±x1, . . . ,±xr}.

Thus im Θ is finite, and so the result is established: E(Q)/2E(Q) is finite.
For a general number field K we have a little more work to do.
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Let
S = 〈x̄1, . . . , x̄r〉

be the subgroup of K×/(K×)2 generated by x̄1, . . . , x̄r. This subgroup is
finite, since each element of K×/(K×)2 has order 2.

Let T be the subgroup of K×/(K×)2

T = {x̄ ∈ im Θ : 〈x〉 = a2}.

Then the last Lemma can be re-stated in the form

im Θ ⊂ ST.

Lemma 11 Suppose S, T are 2 finite subgroups of the abelian group G. Then
ST is finite; and in fact

‖ST‖ divides ‖S‖ ‖T‖.

Proof of Lemma B We have

‖ST‖ = ‖ST/T‖ ‖T‖.

Let Φ be the canonical surjective homomorphism

Φ : G→ G/T.

If ΦS is the restriction of Φ to S, then

ker ΦS = S ∩ T, im ΦS = ST/T.

It follows from the First Isomorphism Theorem that

ST/T ∼= S/S ∩ T,

and so
‖ST/T‖ divides ‖S‖.

C

Corollary 15 The group im Θ is finite if and only if T is finite.

Recall that T is the subgroup of im Θ formed by those x̄ with x expressible
in the form x = a2. Our next Lemma shows that the set of all such x̄ (not
just those in im Θ is finite.
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Lemma 12 Let
S = {x ∈ K× : 〈x〉 = a2}.

Then S ⊃ (K×)2; and the quotient-group

S/(K×)2

is finite.

Proof of Lemma B It is evident that S ⊃ (K×)2, since

〈x2〉 = 〈x〉2.

By the finiteness of the class number we can find a finite number of ideals
a1, . . . , ah such that for any ideal a one of the ideals aai is principal, say

aai = 〈a〉.

Now suppose x ∈ S, say
〈x〉 = a2.

Then
a = ai〈a〉

for some i, and so
〈x〉 = a2

i 〈a2〉.

It follows that
a2
i = 〈xa−2〉 = 〈ai〉,

say, for some ai ∈ K×. For each ai(1 ≤ i ≤ h) let us choose such an ai if a2
i

is principal; otherwise let us set ai = 1.
Now

〈x〉 = 〈aia2〉.

In other words
x = εaia

2,

where ε ∈ U(K) is a unit in K.
By Dirichlet’s Units Theorem, the group U(K) of units in K is finitely-

generated, say
U(K) = 〈ε1, . . . , εm〉.

Then
ε = εe11 · · · εemm (e1, . . . , em ∈ Z).
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It follows that
ε = εe11 · · · εemm η2 (e1, . . . , em ∈ {0, 1}),

where η ∈ U(K).
Putting all this together, we have

x = εe11 · · · εemm ai(aη)2

In other words,
x ≡ εe11 · · · εemm ai mod (K×)2.

There are only a finite number of elements εe11 · · · εemm ai. We conclude that
the quotient-group

S/(K×)2

is finite. C

Since
T ⊂ S/(K×)2

it follows that T is finite. Hence

im Θ = ST

is finite. J

Corollary 16 E(K)/2E(K) is finite.

Corollary 17 If E(Q) is the elliptic curve

y2 = x3 + ax2 + bx+ c (a, b, c ∈ Q)

then
E(Q)/2E(Q)

is finite.

9.6 The Height of a Point

We have shown that E(Q)/2E(Q) is finite, say

E/2E = {Ē1, . . . , Ēn},

where E1, . . . , Em ∈ E .
Recall our “plan for infinite descent”. Suppose P ∈ E . Then

P − E ∈ 2E
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for some E ∈ {E1, . . . , Em}, say

P − Ei0 = 2P1.

Then similarly

P1 − Ei1 = 2P2

P2 − Ei2 = 2P3

. . .

The points P = P0, P1, P2, · · · ∈ E(Q) — derived by repeated halving —
represent our infinite descent. But in what sense are they descending? We
need some notion of the ‘height’ of a point on E .

Definition 9.1 Suppose q ∈ Q. Let

q =
m

n

in lowest terms. Then we set

H(q) = max(|m|, |n|), h(q) = logH(q).

Lemma 13 Suppose x1, x2 ∈ Q. Then

h(x1x2) ≤ h(x1)+h(x2), h(xn1 ) = nh(x1), h(x1 +x2) ≤ h(x1)+h(x2)+ log 2.

Also, if x1 6= 0,
h(x−1) = h(x).

Proof of Lemma B Suppose x1 = m1/n1, x2 = m2/n2. Then

x1x2 =
m1m2

n1n2

, xn1 =
mn

1

nn1
, x1 + x2 =

m1n2 +m2n1

n1n2

, x−1
1 =

n1

m1

.

The result follows at once. C

If n1 and n2 have a large common factor — which will usually be the
case for us — the result for x1 +x2 can be greatly improved, as the following
result illustrates.

Lemma 14 Suppose

X =
f(x)

g(x)
,

where f(x) and g(x) are polynomials of degrees d and e. Then

h(X) ≤ max(d, e)h(x) + C,

for some constant C.
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Proof of Lemma B We can assume that d = e. For suppose d < e. Then we

can replace f(x) by f(x) + g(x). This replaces X by X + 1; but that does
not affect the result, since

h(X)− C ≤ h(X) ≤ h(X) + C

from the estimate in the last Lemma for h(x1 + x2). If e < d we can apply
the same argument after replacing X by X−1.

We may also assume that the coefficients of f(x), g(x) are integral, say

f(x) = a0x
d + a1x

d−1 + · · ·+ ad, g(x) = b0x
d + b1x

d−1 + · · ·+ bd,

where ai, bj ∈ Z. Then

X =
a0m

d + a1m
d−1n+ · · ·+ adn

d

b0md + b1md−1n+ · · ·+ bdnd

=
M

N
,

say. Thus

|M | ≤ (|a0|+ · · · |ad|)H(x)d, |N | ≤ (|b0|+ · · · |bd|)H(x)d,

and so
h(X) ≤ dh(x) + C.

C

We define the height of a point P = (x, y) to be the height of its x-
coordinate.

Definition 9.2 Suppose P = (x, y) ∈ E(Q). Then we set

H(P ) = H(x), h(P ) = h(x).

We want to show that our infinite descent is descending in the sense that

h(P ) > h(P1) > h(P2) > · · · ,

at least until we drop below a specified height.
This will be the conclusion of the following 3 Lemmas, concerning a given

elliptic curve E(Q).

Lemma 15 For any constant C > 0, there are only a finite number of points
P ∈ E(Q) with

h(P ) ≤ C.
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Proof of Lemma B There are at most 4e2C + 1 rationals with e(x) ≤ C,

since both denominator and numerator must be chosen from {−N,−N +
1, . . . , N − 1, N} where N = [eC ].

For each such x there are at most 2 values of y such that (x, y) ∈ E . C

Lemma 16 For each point P0 ∈ E there is a constant C = C(P0) such that

h(P + P0) ≤ 2h(P ) + C.

Proof of Lemma B Suppose

P + P0 +Q = 0,

ie the line P, P0 meets E again at Q.
If P = (x, y) then −P = (x,−y). Hence

h(−P ) = h(P ).

Thus it is sufficient to prove the result with Q in place of P + P0.
Let

P = (x, y), P0 = (x0, y0), Q = (X, Y ).

Suppose the equation of the line PP0

y = mx+ d.

Then

m =
y − y0

x− x0

.

The line meets the curve where

(mx+ d)2 = x3 + ax2 + bx+ c.

Hence
x+ x0 +X = m2 − a.

Thus

X =
(y − y0)2 − (x+ x0 + a)(x− x0)2

(x− x0)2

=
y2 − 2y0y + y2

0 − x3 − ax2 + 2x0x
2 − 2ax0x− 3x2

0x− ax2
0 − x3

0

(x− x0)2

=
−2y0y + 2x0x

2 + (b− 2ax0 − 3x2
0)x+ (c+ y2

0 − ax2
0 − x3

0

(x− x0)2
,
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since y2 = x3 + ax2 + bx+ c.
The point is that

X =
Ay +Bx2 + Cx+D

Ex2 + Fx+G

for some integers A,B,C,D,E, F depending only on P0.
If x = m/n then

y2 =
m3 + am2n+ bmn2 + cn3

n3
.

Thus
n4y2 = m3n+ am2n2 + bmn3 + cn4.

It follows that n2y ∈ Z and

|n2y| ≤ (1 + |a|+ |b|+ |c|)1/2H(x)2.

This allows us to apply the argument in the proof of the last Lemma. We
have

X =
An2y +Bm2 + Cmn+Dn2

Em2 + Fmn+Gn2

=
M

N
,

where

M ≤
(
|A|(1 + |a|+ |b|+ |c|)1/2 + |B|+ |C|+ |D|

)
H(x)2

B ≤ (|E|+ |F |+ |G|)H(x)2.

It follows that
H(X) ≤ CH(x)2.

from which the result follows. C

Lemma 17 There is a constant C such that

h(2P ) ≥ 4h(P )− C

for all P ∈ E.
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Proof of Lemma B Suppose P = (x, y), 2P = (X, Y ). Let the tangent at P

be
y = mx+ d.

If the elliptic curve E(Q) has equation

y2 = x3 + ax2 + bx+ c

then

2y
dy

dx
= 3x2 + 2ax+ b = f ′(x),

and so

m =
f ′(x)

2y
.

The tangent meets E where

(mx+ d)2 = x3 + ax2 + bx+ c.

This has roots x, x,X. Hence

2x+X = m2 − x;

and so

X = m2 − a− 2x

=
f ′(x)2 − (a+ 2x)4y2

4y2

=
f ′(x)2 − 4(a+ 2x)f(x)2

4f(x)2
.

It follows from Lemma 14 that

h(x) ≤ 4h(x) + C.

But we want a result in the opposite direction!
The essential point is that the numerator and denominator of X have no

factor in common, as polynomials:

gcd(f ′(x)2 − 4(a+ 2x)f(x)2, 4f(x)2) = gcd(f ′(x)2, f(x)) = 1,

since gcd(f ′(x), f(x)) = 1.
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Sublemma Suppose

X =
f(x)

g(x)
,

where f(x), g(x) are polynomials of degrees d, e, with gcd(f(x), g(x)) = 1.
Then

h(X) ≥ max(d, e)h(x)− C

for some constant C.

Proof of Lemma B We may suppose that d = e, on replacing f(x) or g(x) by

f(x) + g(x), if necessary.
We may also assume that the coefficients of f(x), g(x) are integral, say

f(x) = a0x
d + a1x

d−1 + · · ·+ ad, g(x) = b0x
d + b1x

d−1 + · · ·+ bd,

where ai, bj ∈ Z.
Let F (x, z), G(x, z) be the corresponding homogeneous forms, ie

F (x, z) = a0x
d + a1x

d−1z + · · ·+ adz
d, G(x, z) = b0x

d + b1x
d−1z + · · ·+ bdz

d.

If x = m/n then

X =
F (m,n)

G(m,n)
.

We have to show that this is almost in its lowest terms.
Since gcd(f(x), g(x)) = 1, we can find polynomials u(x), v(x) ∈ Q[x] such

that
u(x)f(x) + v(x)g(x) = 1.

On ‘multiplying out’ the denominators of the coefficients, and passing to the
homogeneous forms, we obtain polynomials U(x, z), V (x, z) ∈ Z[x, z] such
that

U(x, z)F (x, z) + V (x, z)G(x, z) = AzN

where A is a non-zero integer, and N ∈ N.
In particular,

U(m,n)F (m,n) + V (m,n)G(m,n) = AnN

It follows that
gcd(F (m,n), G(m,n)) | AnN .

On the other hand
gcd(F (m,n), n) | a0m

d.
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Since gcd(m,n) = 1 this implies that

gcd(F (m,n), n) | a0.

It follows that
gcd(F (m,n), nN) | aN0 ,

and so
gcd(F (m,n), AnN) | AaN0 .

Hence
gcd(F (m,n), G(m,n)) | AaN0 .

We are nearly there. We have shown that

X =
F (m,n)

G(m,n)
=
M

N
,

say, is almost in its lowest terms. It only remains to show that the numerator
or denominator is of the correct order of magnitude. This is ‘trivial but not
obvious’.

Let
M(x) = max(|f(x)|, |g(x)|).

Since
f(x)

xd
→ a0 as x→∞

there exist constants C1 > 0, C2 > 0 such that

M(x) ≥ C1|x|d

for |x| ≥ C2.
On the other hand, since f(x), g(x) have no root in common, there is a

constant C3 > 0 such that
M(x) ≥ C3

for |x| ≤ C2. It follows that

M(x) ≥ (C3C
−d
2 )|x|d

for |x| ≤ C2.
Putting these together,

M(x) ≥ C4|x|d
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for all x, with C4 = min(C1, C3C
−d
2 ). On setting x = m/n, and multiplying

out, this gives

max(M,N) = max(F (m,n), G(m,n)) ≥ C4|m|d.

By the same argument
M(x) ≥ C5

for all x, where C5 = min(C1C
d
2 , C3) > 0. This gives

max(M,N) ≥ C5|n|d.

We conclude that
max(M,N) ≥ C6H(x)d,

with C6 = min(C4, C5). Since we know that

gcd(M,N) ≤ AaN0 ,

we conclude that if

X =
M ′

N ′

in its lowest terms then

H(X) = min(|M ′|, |N ′|) ≥ C7H(x)d,

with C7 = C6/(Aa
N
0 ) > 0; and so finally,

h(X) ≥ dh(x)− C.

C

In particular, applying this to our formula for 2P , we have shown that

h(2P ) ≥ 4h(P )− C.

C

9.7 Putting It All Together

Recall that each step of our infinite descent is of the form

Pi − Ej = 2Pi+1,

where Ej is one of a fixed (and finite) set of points E1, . . . , Em. By Lemma 17,

h(Pi − Ej) ≥ 4h(Pi+1)− c1.
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But by Lemma 16 (and the fact that h(−P ) = h(P )),

h(Pi − Ej) ≤ 2h(P ) + c2.

Combining these,
2h(Pi) + c2 ≥ 4h(Pi+1)− c1.

Hence

h(Pi+1) ≤ 1

2
h(Pi) + c3

with c3 = (c1 + c2)/4.
We have shown therefore that

h(Pi) > C =⇒ h(Pi+1) < h(Pi),

for some constant C > 0. Let the points of E with h(P ) ≤ C be

P1, . . . , Pn.

Our infinite descent must lead to one of these points. We see therefore that
for any point P ∈ E is expressible in the form

P = u1E1 + · · ·+ umEm + Pi,

where u1, . . . , ur ∈ N.
We conclude that E(Q) is generated by the points E1, . . . , Em, P1, . . . , Pn.
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9.8 The formula for rank(E)

Since we now know that E is finitely-generated, it follows from the Structure
Theorem for Finitely Generated Abelian Groups that

E = Z⊕ · · · ⊕ Z⊕ Z/(pe11 )⊕ · · ·Z/(pess ),

where there are r = rank(E) copies of Z.

Proposition 9.6 Let

d =


0 if there are 0 points of order 2 on E ,
1 if there is 1 point of order 2 on E ,
2 if there are 3 points of order 2 on E .

Then
‖E/2E‖ = 2s,

where
s = r + d.

Proof I If
A = A1 ⊕ · · · ⊕ Am

then

2A = 2A1 ⊕ · · · ⊕ 2Am

and so

A/2A = A1/2A1 ⊕ · · · ⊕ Am/2Am.

Thus it is sufficient to consider the factors of E .
Evidently the r copies of Z will give rise to r copies of Z/(2).

Lemma 18 If A = Z/(2e) then

A/2A = Z/(2).

Proof of Lemma B Let g be a generator of A, so that

A = {0, g, 2g, . . . , (2e − 1)g}

Then
2A = {0, 2g, 4g, . . . , (2e − 2)g}.

Thus half the elements of A are in 2A, and so A/2A is of order 2, ie A/2A =
Z/(2). C
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Lemma 19 If A = Z/(pe), where p is odd,then

A/2A = 0.

Proof of Lemma B Consider the map

θ : A→ A : a 7→ 2a.

Then
ker θ = {a ∈ A : 2a = 0} = 0,

since by Lagrange’s Theorem there are no elements of order 2 in A. Hence θ
is injective, and so surjective, ie 2A = A, and A/2A = 0. C

From the two Lemmas it follows that the number of copies of Z/(2) in

E/2E = Z/(2) + · · ·+ Z/(2)

is equal to r + f , where f is the number of factors of the form Z/(2e). It
remains to show that f = d.

Lemma 20 The number of elements of order 2 in A is 2f − 1, where f is
the number of factors of the form Z/(2e).

Proof of Lemma B An element of a direct sum

A = A1 ⊕ A2 ⊕ · · · ⊕ Am

is of order 1 or 2 if and only if that is true of each component:

2(a1, a2, . . . , am) = 0⇐⇒ 2a1 = 0, 2a2 = 0, . . . , 2am = 0.

But there is no element of order 2 in Z/(pe) if p is odd, by Lagrange’s
Theorem; while there is just one element of order 2 in Z/(2e), nameley
2e−1 mod 2e.

Thus we have two choices in each factor Z/(2e), and one choice in each
factor Z/(pe) (p odd).

It follows that the number of elements of order 1 or 2 is 2f where f is
the number of factors of the form Z/(2e); and so the number of elements of
order 2 is 2f − 1. C

J
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9.9 The square-free part

Each rational x ∈ Q× is uniquely expressible in the form

x = dy2,

where y ∈ Q× and d is a square-free integer. Explicitly, if

x = ±2e23e35e5 · · ·

then
x = ±2ε23ε35ε5 · · ·

where each εp ∈ {0, 1} is given by

εp ≡ ep mod 2.

For example,
x = 2/3 7→ d = 6, x = −3/4 7→ −3.

We may call d the square-free part of x.
Thus each x̄ ∈ Q×/Q×2 is represented by a unique square-free integer d,

establishing an isomorphism

Q
×/Q×2 ←→ D,

where D is the group formed by the square-free integers under multiplication
modulo squares, eg

2 · 6 = 3, −3 · 6 = −2.

Let us see how to use this to compute the rank. Recall that

E/E2 ∼= im Θ

where
Θ = θα × θβ × θγ,

with θα, for example, given by

P = (x, y) 7→

{
x− α if x 6= α

p′(α) if x = α

If P = (x, y) is on the elliptic curve

E(Q) : y2 = x3 + ax2 + bx+ c (a, b, c ∈ Z)

then

x =
m

t2
, y =

M

t3

where m,M, t ∈ Z with gcd(m, t) = 1 = gcd(M, t) and t > 0.
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9.10 An example

Consider the elliptic curve

E(Q) : y2 = x3 − x = x(x− 1)(x+ 1).

Here
α = 0, β = 1, γ = −1,

so that

p′(0) = (0−1)(0+1) = −1, p′(1) = (1−0)(1+1) = 2, p′(−1) = (−1−0)(−1−1) = 2.

Thus, from above,

im Θ ⊂ S = {(d, e, f) : d | 1, e | 2, f | 2}.

This gives 32 choices:

d = ±1, e = ±1,±2, f = ±1,±2.

It follows (since 32 = 25) that

‖E/2E‖ ≤ 5,

and so
rank E ≤ 3.

However, we can restrict the range of im Θ much more than this. In the
first place, since

x(x− 1)(x+ 1) = y2,

it follows that def is a perfect square, say

def = g2.

This implies firstly that def > 0, and secondly that each prime p dividing
any of d, e, f must in fact divide just two of them. This reduces the number
of cases to 8:

(d, e, f) = (1, 1, 1), (1,−1,−1), (−1, 1,−1), (−1,−1, 1), (1, 2, 2), (1,−2,−2), (−1, 2,−2), (−1,−2, 2).

We can reduce the number still further by observing that since

m = du2, m− t2 = ev2, m+ t2 = fw2,

428–99 9–30



it follows that

d < 0 =⇒ m < 0 =⇒ m− t2 < 0 =⇒ e < 0,

while

d > 0 =⇒ m > 0 =⇒ m+ t2 > 0 =⇒ f > 0.

This leaves just 4 choices for d, e, f :

(d, e, f) = (1, 1, 1), (−1,−1, 1), (1, 2, 2), (−1,−2, 2).

Thus
‖E/2E‖ ≤ 4

Since d = 2 (as there are 3 points of order 2),

‖E/2E‖ = 2r+d ≥ 4.

We conclude that
rank E = 0.

9.11 Another example

Now let us consider the elliptic curve

y2 = x3 − x = x(x− 2)(x+ 2).

Here
p′(0) = −4, p′(2) = 8, p′(−2) = 8,

and so
E/2E = im Θ ⊂ {(d, e, f) : d, e, f | 2}

The group on the right contains 26 elements, since each of d, e, f can take
the values ±1,±2.

But as before, the condition

def = g2

restricts the choice considerably. Firstly,

d < 0 =⇒ e < 0. d > 0 =⇒ f > 0.
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Secondly, the factor 2 occurs in none, or just two, of d, e, f . This reduces the
choice to

(d, e, f) = (1, 1, 1), (−1,−1, 1), (1, 2, 2), (−1,−2, 2), (2, 1, 2), (−2,−1, 2), (2, 2, 1), (−2,−2, 1).

Thus the rank is either 0 or 1. Can we reduce the choice further, and
reduce the rank to 0? or conversely, can we find a point of infinite order on
the curve, and so show that the rank is 1?

Note that it only necessary to eliminate one case; for we know that
‖E/2E‖ = 2s ≥ 4, since there are 3 points of order 2 (and so d = 2).

Suppose
(d, e, f) = (−1,−1, 1).

In this case,
m = −u2, m− 2t2 = −v2, m+ 2t2 = w2.

Thus
u2 − v2 = 2t2 = u2 + w2.

Now a2 ≡ 0 or 1 mod 4 according as a is even or odd. Since u2 − v2 is even
it followu, v are both even or both odd; and in either case u2−v2 ≡ 0 mod 4.
So t is even, and therefore u, v must both be odd, since gcd(m, t) = 1 =
gcd(m− 2t2, t).

9.12 Third example

Consider the elliptic curve

E(Q) : y2 = x(x− 2)(x+ 4) = x3 + 2x2 − 8x.

The point
P = (−1, 3) ∈ E .

(We chose α, β, γ to give this result.)
The slope at P is

dx

dy
=

3x2 + 4x− 8

2y

= −3

2

at P . It follows that P is of infinite order (since 2P has non-integral coordi-
nates). Thus

r = rank(E) ≥ 1.
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We have
p′(0) = −8, p′(2) = 12, p′(−4) = 24.

Thus
im Θ ⊂ S{(d, e, f) : d | 2, e | 6, f | 6; def = g2}.

Note that any two of d, e, f determine the third since eg f = de (modulo
squares).

If
P = (m/t2,M/t3) 7→ (d, e, f)

then
m = du2, m− 2t2 = ev2, m+ 4t2 = fw2.

Thus
d > 0 =⇒ m > 0 =⇒ f > 0 =⇒ e > 0,

while
d < 0 =⇒ m < 0 =⇒ e < 0 =⇒ f > 0.

(So f > 0 in all cases.)
It follows that

‖S‖ = 16,

with
S = {d = ±1,±2, f = 1, 2, 3, 6}.

It follows that s ≤ 4, and so

rank(E) = s− d = s− 2 ≤ 2.

Thus rank(E) = 1 or 2.
In order to prove that rank(E) = 1 it is sufficient to show that one of the

16 elements of S does not lie in im Θ. For ‖S‖ is a power of 2, so if it is < 16
it must be ≤ 8.

Let us take the element (−1,−1, 1). Suppose this arises from a point
P = (m/t2,M/t3), where for the moment we assume that P is not of order
2. Then

m = −u2, m− 2t2 = −v2, m+ 4t2 = w2.

Thus
2t2 = v2 − u2, 4t2 = u2 + w2.

From the second equation,

u2 + w2 ≡ 0 mod 4 =⇒ u,w even,
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since a2 ≡ 0 or 1 mod 4 according as a is even or odd. It follows that t is
odd, since

gcd(m, t) = 1 =⇒ gcd(u, t) = 1.

But then t2 ≡ 1 mod 4, and so

v2 − u2 ≡ 2 mod 4,

which is impossible.
(Alternatively, adding the two equations,

6t2 = v2 + w2.

Thus

v2 + w2 ≡ 0 mod 3 =⇒ v ≡ w ≡ 0 mod 3

=⇒ t ≡ 0 mod 3

=⇒ u ≡ 0 mod 3,

contradicting gcd(m, t) = 1.)

9.13 Final example

The elliptic curve

E(Q) : y2 = x(x+ 1)(x− 14) = x3 − 13x2 − 14x

is more complicated, but the method is the same.
We have

p′(0) = −14, p′(−1) = 15, p′(14) = 14 · 15.

Thus

im Θ ⊂ S = {(d, e, f) : d | 14, e | 15, f | 14 · 15; def = g2}.

if P = (m/t2,M/t3) 7→ (d, e, f) (M 6= 0) then

m = du2, m+ t2 = ev2, m− 14t2 = fw2.

In particular,

d > 0 =⇒ e > 0 =⇒ f > 0
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while

d < 0 =⇒ f < 0 =⇒ e > 0

(giving e > 0 in all cases).
We have

d = ±1,±2,±7,±14, e = 1, 3, 5, 15.

Thus
‖S‖ = 25 =⇒ s ≤ 5 =⇒ r ≤ 3.

The elements of order 2 give rise to the points

(0, 0) 7→ (p′(0), 1,−14) = (−14, 1,−14),

(−1, 0) 7→ (−1, p′(−1),−15) = (−1, 15,−15),

(14, 0) 7→ (14, 15, p′(14)) = (14, 15, 14 · 15),

while of course
0 = [0, 1, 0] 7→ (1, 1, 1).

Thus the torsion group gives rise the subgroup

D = {(1, 1, 1), (−14, 1,−14), (−1, 15,−15), (14, 15, 14 · 15).

We can regard S as a 5-dimensional vector space over F2, with 5 coordi-
nates defined by: the sign of d, the factor 2 in d, the factor 7 in d, the factor
3 in e, the factor 5 in e. Thus

(0, 0) 7→ (−14, 1,−14)←→ (1, 1, 1, 0, 0),

(−1, 0) 7→ (−1, 15,−15)←→ (1, 0, 0, 1, 1),

(14, 0) 7→ (14, 15, 14 · 15)←→ (0, 1, 1, 1, 1).

Our aim is to prove that rank(E) = 0 by showing that im Θ = D. At
first sight one might think we would have to apply our congruence technique
to 25 − 22 = 28 cases. However, we can simplify the task by choosing a
complementary subspace to D – that is, a subspace of U ⊂ S of dimension 3
such that

U ∩D = 0,

in which case
S = D ⊕ U.

If now we can show that no elements of U except for (1, 1, 1) are in im Θ then
it will follow that

S = im Θ⊕ U ;
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whence
dim im Θ = dimD =⇒ im Θ = D.

For our subspace U let us take those vectors with 3rd and 5th components
0, ie

U = {(d, e, f) ∈ S : d = ±1,±2, e = 1, 3}.

We see at once that U∩D = {(1, 1, 1)} (the zero element of our vector space),
so U is — as required — complementary to D. It is sufficient therefore to
show that no element of U apart from (1, 1, 1) can be in im Θ. (This reduces
the number of cases to be considered from 28 to 7.)

1. (−1, 1,−1): in this case

m = −u2, m+ t2 = v2, m− 14t2 = −w2,

ie

t2 = u2 + v2, 14t2 = w2 − u2.

From the second equation t must be even, since otherwise w2 − u2 ≡
2 mod 4, which is impossible.

But then from the first equation, u2 +v2 ≡ 0 mod 4, which implies that
u, v are both even, contradicting gcd(u, t) = 1.

2. (2, 1, 2): in this case

m = 2u2, m+ t2 = v2, m− 14t2 = 2w2,

ie

t2 = v2 − 2u2, 7t2 = u2 − w2.

From the second equation t must be even, since otherwise 7t2 ≡ 3 mod
4, and u2 − w2 cannot be ≡ 3 mod 4.

But then from the first equation, v is even and so u is even, contradict-
ing gcd(u, t) = 1.

3. (−2, 1,−2): in this case

m = −2u2, m+ t2 = v2, m− 14t2 = −2w2,
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ie

t2 = v2 + 2u2, 7t2 = w2 − u2.

As in the last case, from the second equation t must be even, and then
from the first equation, so must v and u, contradicting gcd(u, t) = 1.

4. (1, 3, 3): in this case

m = u2, m+ t2 = 3v2, m− 14t2 = 3w2,

ie

t2 = 3v2 − u2, 14t2 = u2 − 3w2.

From the second equation

u2 − 3w2 ≡ 0 mod 7.

Since 3 is a quadratic non-residue mod7, it follows that u ≡ w ≡
0 mod 7, which implies (by the second equation) that 7 | t, so again
gcd(t, u) > 1.

5. (−1, 3,−3): in this case

m = −u2, m+ t2 = 3v2, m− 14t2 = −3w2,

ie

t2 = 3v2 + u2, 14t2 = 3w2 − u2.

As in the last case, since 3 is not a quadratic residue mod 7, the second
equation implies that 7 | u,w, t, contradicting gcd(u, t) = 1.

6. (2, 3, 6): in this case

m = 2u2, m+ t2 = 3v2, m− 14t2 = 6w2,

ie

t2 = 3v2 − 2u2, 14t2 = u2 − 6w2.

Again, since 6 is not a quadratic residue mod7, this leads to a contra-
diction.
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7. (−2, 3,−6): in this case

m = −2u2, m+ t2 = 3v2, m− 14t2 = −6w2,

ie

t2 = 3v2 + 2u2, 7t2 = u2 − 3w2.

Since 3 is not a quadratic residue mod7, this again leads to a contra-
diction.

We conclude that

im Θ = D,

ie

rank E = 0.
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Chapter 10

Mordell Revisited

10.1 Introduction

There is an alternative way of proving Mordell’s Theorem, by ‘factorising’
the doubling map

E → E : P 7→ 2P ;

although the factors are not, admittedly, homomorphisms from E to itself,
but involve a ‘twin’ elliptic curve Ē . The resulting computations are much
simpler. Moreover, the use of algebraic numbers is avoided if f(x) has one
rational root. (In the previous method, algebraic numbers were avoided if
two — and therefore all three — of the roots of f(x) are rational.)

The only disadvantage of this alternative method is that it requires either
an act of faith, in which ‘magic’ formulae are pulled out of a hat; or else a
rather lengthy digression into elliptic curves over C.

10.2 The factors of the doubling map

Suppose
E(C) = C/Λ

is the complex elliptic curve associated to a lattice Λ ⊂ C. Let ω1, ω2 be a
basis for Λ. Recall that the map

z 7→ (ϕ(z), ϕ′(z)/2)

establishes a one-one correspondence

Φ : C/Λ↔ E(C),
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where E(C) is the curve
y2 = x3 + bx+ c,

with coefficients
b = −15g2, c = −35g3,

where

gr =
∑

ω∈Λ,ω 6=0

1

ω2r
.

Under this correspondence, the ‘doubling’ homomorphism

Φ : P 7→ 2P

corresponds to the map

φ : z mod Λ 7→ 2z mod Λ.

We can express this in the commutative diagram

E Φ→ E
l l
C/Λ

φ→ C/Λ

Let Λ̄ be the lattice generated by 1
2
ω1, ω2. so that

1
2
Λ ⊂ Λ̄ ⊂ Λ

(where 1
2
Λ is generated by 1

2
ω1,

1
2
ω2). The homomorphism Φ : P 7→ 2P can

now be split into 2 operations, first doubling in the ω1-direction, and then in
the ω2-direction. More precisely,

φ = θ3θ2θ1,

where

θ1 : C/Λ→ C/Λ̄, θ2 : C/Λ̄→ C/1
2
Λ, θ3 : C/1

2
Λ→ C/Λ

are the homomorphisms

θ1 : z mod Λ → z mod Λ̄,

θ2 : z mod Λ̄ → z mod 1
2
Λ,

θ3 : z mod 1
2
Λ → 2z mod Λ.

The map θ3 is just the isomorphism (x, y) 7→ (x/4, y/8) associated to the
similarity 1

2
Λ→ Λ; it is convenient to combine it with θ2.
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Let Ē(C) be the elliptic curve associated to the lattice Λ̄:

Ē = C/Λ̄.

Then θ1, θ3θ2 define homomorphisms

Θ : E → Ē , Θ̄ : Ē → E .

giving the factorisation
Φ = Θ̄Θ

of Φ : P 7→ 2P . This can be expressed in the commutative diagram

E Θ→ Ē Θ̄→ E
l l l
C/Λ

θ1→ C/Λ̄
θ3θ2→ C/Λ

Note that
Φ̄ = ΘΘ̄ : Ē → Ē

is also a doubling map, this time on Ē , being given by the composition

θ1θ3θ2 : z mod Λ̄ 7→ z mod 1
2
Λ 7→ 2z mod Λ 7→ 2z mod Λ̄.

All that is straightforward. But how does it translate into geometric
terms? What is the elliptic curve Ē? And what are the algebraic formulae
for the maps Θ, Θ̄?

As we just noted, E is parametrised by

(x, y) = (ϕ(z), ϕ′(z)/2).

Similary Ē is parametrised by

(x, y) = (ϕΛ̄(z), ϕ′Λ̄(z)/2).

To determine Θ, we must express ϕΛ̄(z) in terms of ϕ(z).

Proposition 10.1 Let Λ = 〈ω1, ω2〉, and let Λ̄ = 〈ω1/2, ω2〉. Then, writing
ϕ(z) for ϕΛ(z),

ϕΛ̄(z) =
ϕ(z)2 − αϕ(z) + 3α2 + b

ϕ(z)− α
,

where α = ϕ(ω1/2), and b is the coefficient in the functional equation

(ϕ′(z)/2)2 = ϕ(z)3 + bϕ(z) + c.
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Proof I Since Λ̄ ⊂ Λ, ϕΛ̄(z) is elliptic with respect to Λ. It is also even.
Hence it is a rational function of ϕ(z),

ϕΛ̄(z) = R(ϕ(z)),

where R(w) = P (w)/Q(w) with polynomials P (w), Q(w).
It is easy to see that the function

f(z) = ϕ(z) + ϕ(z + ω1/2)

has periods ω1/2, ω2, and so is elliptic with respect to Λ̄. Since it has a double
pole at 0, and no other poles inside Π1,

f(z) = AϕΛ̄(z) +B

for some constants A,B. In the neighbourhood of z = 0,

f(z) =
1

z
+ ϕ(ω1/2).

It follows that
f(z) = ϕΛ̄(z) + ϕ(ω1/2).

Thus
ϕΛ̄(z) = ϕ(z) + ϕ(z + ω1/2)− ϕ(ω1/2).

Let
α = ϕ(ω1/2), β = ϕ(ω2/2), γ = ϕ(ω1/2 + ω2/2).

Recall that

ϕ′(ω1/2) = 0, ϕ′(ω2/2) = 0, ϕ′(ω1/2 + ω2/2) = 0,

since ϕ′(z) is an odd function. Thus

(α, 0), (β, 0), (γ, 0)

are just the 3 points of order 2 on E .
We have

ϕΛ̄(z) = ϕ(z) + ϕ(z + ω1/2)− α;

we want to express ϕ(z+ω1/2) in terms of ϕ(z). The function ϕ(z+ω1/2) is
elliptic with respect to Λ, and has a double pole at ω1/2, and no other poles
inside Π. The function ϕ(z)−ϕ(ω1/2) = ϕ(z)−α has a double zero at ω1/2,
since ϕ′(ω1/2) = 0. Thus

F (z) = ϕ(z + ω1/2)(ϕ(z)− α)
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has a double pole at the points of Λ, and no other poles. Since F (z) is even,
it follows that

F (z) = Cϕ(z) +D

for some constants C,D. To determine these constants we expand F (z)
around z = 0.

By Taylor’s theorem,

ϕ(z + ω1/2) = ϕ(ω1/2) +
1

2
ϕ′′(ω1/2)z2 +

1

24
ϕ′′′′(ω1/2)z4 +O(z6).

On differentiating the functional equation

ϕ′(z)2 = 4ϕ(z)3 + 4bϕ(z) + 4c,

we deduce that
ϕ′′(z) = 2(3ϕ(z)2 + b).

Differentiating twice more,

ϕ′′′′(z) = 12
(
ϕ(z)ϕ′′(z) + ϕ′(z)2

)
.

In particular,

ϕ′′(ω1/2) = 2(3α2 + b), ϕ′′′′(ω1/2) = 24α(3α2 + b).

Thus
ϕ(z + ω1/2) = α + (3α2 + b)z2 + α(3α2 + b)z4 +O(z6)

in the neighbourhood of z = 0. It follows that

F (z) =
(
α + (3α2 + b)z2

)( 1

z2
− α

)
+O(z2)

=
α

z2
+ (2α2 + b).

Hence
F (z) = αϕ(z) + 2α2 + b.

We conclude that

ϕΛ̄(z) = ϕ(z)− α +
αϕ(z) + 2α2 + b

ϕ(z)− α

=
ϕ(z)2 − αϕ(z) + 3α2 + b

ϕ(z)− α
.

J
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Corollary 18 The derivative of ϕΛ̄(z) is given by:

ϕ′Λ̄(z) =
ϕ(z)2 − 2αϕ(z)− 2α2 − b

(ϕ(z)− α)2
ϕ′(z).

We see from this that the homomorphism Θ : E → Ē is given by

Θ : (x, y) 7→
(
x2 − αx + 3α2 + b

x− α
,
x2 − 2αx− 2α2 − b

(x− α)2
y

)
if x 6= α, while

Θ(α, 0) = O.

But what is the curve Ē? Recall that

ϕ(z) =
1

z2
+ 3g2z

2 + 5g3z
4 +O(z6)

=
1

z2
− b

5
z2 − c

7
z4 +O(z6).

Similarly

ϕΛ̄(z) =
1

z2
− b1

5
z2 − c1

7
z4 +O(z6).

Thus we can determine b1, c1 by looking at the expansion of ϕΛ̄(z) around
z = 0. From above,

ϕΛ̄(z) = ϕ(z) + ϕ(z + ω1/2)− α

=
1

z2
− b

5
z2 − c

7
z4 + (3α2 + b)z2 + α(3α2 + b)z4 +O(z6).

We conclude that

b̄ = −15α2 − 4b,

c̄ = −21α3 − 7αb + c

= −28α3 + 8c,

since
α3 + bα + c = 0.

The relation between Λ̄ and 1
2
Λ is exactly the same as that between Λ

and Λ̄, except that ω1/2 is replaced by ω2/2. More precisely,

α = ϕ(ω1/2)
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is replaced by

ᾱ = ϕΛ̄(ω2/2)

= ϕ(ω2/2) + ϕ(ω1/2 + ω2/2)− ϕ(ω1/2)

= β + γ − α
= −2α;

for α + β + γ = 0, since α, β, γ are the roots of x3 + bx+ c.
It follows that the formula for Θ̄, can be derived from that for Θ by substi-

tuting b̄, c̄,−2α for b, c, α, respectively (corresponding to the homomorphism
θ2 : C/Λ̄ → C/1

2
Λ) and then dividing the x and y-coordindates by 4 and 8,

respectively (corresponding to the homomorphism θ3 : C/1
2
Λ→ C/Λ). Thus

Θ̄(x̄, ȳ) =

(
1

4
· x̄

2 − (−2α)x̄+ 3(−2α)2 + b̄

x̄− (−2α)
,
1

8
· x̄

2 − 2(−2α)x̄− 2(−2α)2 − b̄
(x̄− (−2α))2 ȳ

)
=

(
1

4
· x̄

2 + 2αx̄− 3α2 − 4b

x̄+ 2α
,
1

8
· x̄

2 + 4αx̄+ 7α2 + 4b

(x̄+ 2α)2
ȳ

)
.

if x̄ 6= −2α, while
Θ̄(−2α, 0) = O.

We summarise our results in the following Proposition.

Proposition 10.2 Suppose

E(C) : y2 = x3 + bx+ c

is the elliptic curve associated to a lattice Λ; and suppose α is a root of
x3 + bx+ c. Let Ẽ be the elliptic curve

Ẽ(C) : y2 = x3 + (−15α2 − 4b)x+ (−28α2 + 8c).

Then the homomorphism
Φ : E → E

under which
P 7→ 2P

can be expressed as the product of 2 homomorphisms

Φ = Θ̄Θ

where
Θ : E → Ẽ , Θ̄ : Ẽ → E
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are the maps

Θ(x, y) =

(
x2 − αx + 3α2 + b

x− α
,
x2 − 2αx− 2α2 − b

(x− α)2
y

)
if (x, y) 6= (α, 0), while Θ(α, 0) = Θ(O) = O; and

Θ̄(x̄, ȳ) =

(
1

4
· (x̄2 + 2αx̄− 3α2 − 4b

x̄+ 2α
,
1

8
· x̄

2 + 4αx̄+ 7α2 + 4b

(x̄+ 2α)2
ȳ

)
if (x̄, ȳ) 6= (−2α, 0), while Θ̄(−2α, 0) = Θ̄(O) = O.

10.3 Tying a neater package

Our formulae become much simpler if we work with elliptic curves in ‘constant-
free’ format

E : y2 = x3 + ax2 + bx.

It is not difficult to see why. Our construction starts with an elliptic curve
E together with a point of order 2 on E . By taking E in constant-free form
we have a ‘built-in’ point of order 2, namely (0, 0). Thus we have only 2
constants, a and b, to deal with rather than b, c and α.

To avoid confusion, let us — for the time being — ‘dot’ the coefficients
and variables in the constant-free model:

Ė : ẏ2 = ẋ3 + ȧẋ2 + ḃẋ.

The coordinate-change x = ẋ+ ȧ/3 brings this to our earlier ‘x2-free’ format

y2 = (x− ȧ/3)3 + ȧ(x− ȧ/3)2 + ḃ(x− ȧ/3)

= x3 + (−ȧ2/3 + ḃ)x+ (2ȧ3/27− ȧḃ/3).

Thus
b = −ȧ2/3 + ḃ, c = 2ȧ3/27− ȧḃ/3,

and
α = ȧ/3,

since (0, 0) 7→ (ȧ/3, 0).
Hence the associated curve Ē (in x2-free format) has coefficients

b̄ = −15α2 − 4b

= −ȧ2/3− 4ḃ,

c̄ = −28α3 + 8c

= −4ȧ3/9− 8ȧḃ/3.
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We want to transform Ē into constant-free format. At first sight there
might seem some ambiguity in this, since it involves choosing a point of
order 2 on Ē . However, we know the point we want: (α1, 0) = (−2α, 0) =
(−2ȧ/3, 0). Our transformation must bring this to (0, 0), and is therefore

ẋ = x+ 2α = x+ 2ȧ/3.

Thus our new curve ˙̄E has equation

ẏ3 = (ẋ− 2ȧ/3)3 + b1(ẋ− 2ȧ/3) + c1

= ẋ3 + ȧ1ẋ
2 + ḃ1ẋ,

where

ȧ1 = −2ȧ,

ḃ1 = 4ȧ2/3 + ḃ1

= ȧ2 − 4ḃ,

which is pleasingly simple!
It remains to express Θ and Θ̄ in the new system. We have

Θ̇(ẋ, ẏ) = (x̃, ỹ),

where

x̃ =
(ẋ+ ȧ/3)2 − ȧ(ẋ+ ȧ/3)/3 + 3(ȧ/3)2 − ȧ2/3 + ḃ

(ẋ+ ȧ/3− ȧ/3)2
+ 2ȧ/3

=
ẋ2 + ȧẋ+ ḃ

ẋ2
,

ỹ =
(ẋ+ ȧ/3)2 − 2ȧ/3(ẋ+ ȧ/3)− 2(ȧ/3)2 + ȧ2/3− ḃ

(ẋ+ ȧ/3− ȧ/3)2
ẏ

=
ẋ2 − ḃ
ẋ2

ẏ.

We derive ˙̄Θ from this by substituting ˙̄b = ȧ2− 4ḃ for ḃ, and dividing the
x- and y-coordinates by 4 and 8, respectively:

˙̄Θ(ẋ, ẏ) =

(
ẏ2

4ẋ2
,
ẋ2 − ȧ2 + 4ḃ

8ẋ2
ẏ

)
.

We summarise our conclusions in the following Definition and Proposi-
tion, where we now drop the dots.
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Definition 10.1 To each elliptic curve

E : y2 = x3 + ax2 + bx.

we associated the elliptic curve

Ẽ : y2 = x3 + āx2 + +b̄x,

where
ā = −2a, b̄ = a2 − 4b.

Theorem 10.1 Suppose E(K) is the elliptic curve

E : y2 = x3 + ax2 + bx

over the field K. Let Ē(K) be the associated elliptic curve, and let the maps

Θ : E → Ē , Θ̄ : Ē → E

be defined by

Θ(x, y) =

(
y2

x2
,
x2 − b
x2

y

)
if x 6= 0, while Θ(O) = Θ(T ) = 0 for T = (0, 0),

Θ̄)(x, y) =

(
ȳ2

4x̄2
,
x̄2 − b̄

8x̄2
ȳ

)
if x̄ 6= 0, while Θ̄(O) = Θ̄(T̄ ) = 0 for T̄ = (0, 0). Then Θ, Θ̄ are homomor-
phisms; and

Θ̄Θ : E → E , ΘΘ̄ : Ē → Ē

are the doubling maps P 7→ 2P on E and Ē.

Proof I Although we established this result on the assumption that K =
C, it is readily verified that each part of the result (eg the statement that
Θ(P + Q) = Θ(P ) + Θ(Q)) can be expressed as a number of polynomial
identities with integral coefficients, which must remain valid over any field.
J

At this point we can forget how the associated elliptic curve Ē and the
homomorphisms Θ, Θ̄ arose; all we need to know is that the maps given by
the formulae above are indeed homomorphisms, and that the doubling map Φ
on E factorises into Θ̄Θ.
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10.4 Divide and rule

Recall that our main aim is to show that if K = Q then [E : 2E ] is finite.
The splitting of the doubling map allows us to divide this task.

Proposition 10.3 Suppose φ : A → B is a homomorphism of abelian
groups, and S ⊂ A is a subgroup of finite index. Then

[φA : φS] ≤ [A : S].

Proof I Consider the composition

φS : A→ B → B/φS.

Evidently
imφS = φA/φS,

while
kerφS ⊃ S.

By the first isomorphism theorem,

φA/φS ∼= A/ kerφS.

Hence
[φA : φS] = [A : kerφS] ≤ [A : S].

J

Proposition 10.4 [E : 2E ] and [Ē : 2Ē ] are both finite if and only if [Ē :
im Θ] and [E : im Θ̄] are both finite.

Proof I We have

[E : 2E ] = [E : Θ̄ΘE ]

= [E : Θ̄Ē ][Θ̄Ē : Θ̄ΘE ]

≤ [E : Θ̄Ē ][Ē : ΘE ],

by Proposition 10.3 J
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10.5 Characterisation of the image

Proposition 10.5 If P̄ = (x̄, ȳ) ∈ Ē with x̄ 6= 0 then

P̄ ∈ im Θ⇐⇒ x̄ ∈ K2.

Similarly if P = (x, y) ∈ E with x 6= 0 then

P ∈ im Θ̄⇐⇒ x ∈ K2.

Proof I Suppose P̄ = Θ(P ), where P = (x, y) Then

x̄ =
y2

x2
∈ K2.

Conversely, suppose (x̄, ȳ) ∈ Ē ; and suppose

x̄ = w2,

where w ∈ K. We have to show that there is a point P = (x, y) ∈ E(K) with

y2

x2
= w2.

We may suppose that
y = wx,

on taking −P if y = −wx.
Substituting y = wx in the equation for E ,

w2x2 = x3 + ax2 + bx = 0.

One solution is x = 0; the other two are given by

x2 + (a− w2)x+ b = 0.

This will have a solution in K if and only if

(a− w2)2 − 4b ∈ K2,

ie

w4 − 2aw2 + (a2 − 4b) ∈ K2,
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ie

x̄2 + āx̄+ b̄ ∈ K2.

But since (x̄, ȳ) ∈ Ē ,

ȳ2 = x̄(x̄2 + āx̄+ b̄).

By hypothesis, x̄ ∈ K2. Hence

x̄2 + āx̄+ b̄ ∈ K2,

which as we saw is the condition for (x̄, ȳ) ∈ im Θ.
The proof of the corresponding result for Θ̄ is identical, the factor 1/4

in the x-coordinate of Θ̄(x̄, ȳ) making no difference, since we are working
modulo squares. J

10.6 The associated homomorphism

Proposition 10.6 The map

χ : E(K)→ K×/K×
2

under which

P 7→


x mod K×

2
if P = (x, y) with x 6= 0

b mod K×
2

if P = T = (0, 0)

1 mod K×
2

if P = O

is a homomorphism.

Proof I Trivially,
χ(−P ) = χ(P ) = 1/χ(P ),

since x = 1/x for all x ∈ K×/K×2
(ie all elements are of order 1 or 2).

Now suppose
P +Q+R = 0,

ie P,Q,R are collinear. We have to show that

χ(P )χ(Q)χ(R) = 1.

If one of P,Q,R is O, say P = O, this reduces to the result just proved:

Q+R = 0 =⇒ χ(Q)χ(R) = 1.
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Suppose none of the points is O. Let the line PQR be y = mx+ d. This
line meets E where

(mx+ d)2 = x3 + ax2 + bx.

The roots of this are the x-coordinates of P,Q,R, say x1, x2, x3. Thus

x1x2x3 = d2.

If none of x1, x2, x3 is zero, then

χ(P )χ(Q)χ(R) = x1x2x3 ≡ 1 mod K×
2
,

as required.
Finally, suppose one of x1, x2, x3 is 0, say x1 = 0, ie P = T = (0, 0). Then

d = 0, and the remaining two points satisfy the quadratic

m2x = x2 + ad+ b = 0.

Thus
x2x3 = b.

Now χ(T ) = b (by what may have seemed an arbitrary definition, but whose
purpose is now apparent); so

χ(P )χ(Q)χ(R) = bx2x3 = b2 ≡ 1 mod K×
2
.

Thus in all cases

P +Q+R = 0 =⇒ χ(P )χ(Q)χ(R) = 1.

Hence χ is a homomorphism. J

Now we can re-state Proposition 10.5 as

Proposition 10.7 We have

im Θ = ker χ̄, im Θ̄ = kerχ.

Equivalently, the two sequences

E Θ→ Ē χ̄→ K×/K×
2
, Ē Θ̄→ E χ→ K×/K×

2

are exact.

Proposition 10.8 [E : 2E ] and Ē : 2Ē ] are both finite if and only if imχ and
im χ̄ are both finite.

Proof I This follows at once from Proposition 10.4, since

E/ im Θ̄ ∼= imχ, Ē/ im Θ ∼= im χ̄,

J
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10.7 The rational case

So far we have been working over a general field K. Now let us turn to the
rational case K = Q. Note that since T = (0, 0) ∈ E , we are assuming that
our elliptic curve contains a rational point of order 2.

Proposition 10.9 Let E be the elliptic curve

E(Q) : y2 = x3 + ax2 + bx (a, b ∈ Z);

and let
χ : E → Q

×/Q×
2

be the associated homomorphism under which

P = (x, y) 7→ x mod Q×
2
.

Then each element of imχ is of the form

b1 mod Q×
2

where b1 | b.

Proof I Suppose P = (x, y) ∈ E . We know that x, y can be expressed in the
form

x =
m

e2
, y =

n

e3
,

where e,m, n ∈ Z and gcd(m, e) = gcd(n, e) = 1.
From the equation of the curve,

n2 = m(m2 + ae2m+ be4).

Let
b1 = gcd(m,m2 + ae2m+ be4)

Then

b1 = gcd(m, be4)

= gcd(m, b),

since gcd(m, e) = 1. In particular, b1 | b. Let

b = b1b2, m = b1m1,

where we choose the sign of b1 so that m1 ≥ 0. Then

n2 = b2
1m1(b1m

2
1 + ae2m1 + b2e

4).
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Hence b2
1 | n2, and so b1 | n, say

n = b1n1.

Thus
n2

1 = m1(b1m
2
1 + ae2m1 + b2e

4).

The two factors on the right are co-prime, since we took out their common
factor. Hence

m1 = U2, b1m
2
1 + ae2m1 + b2e

4 = V 2.

For future reference we note that this implies

b1U
4 + ae2U2 + b2e

4 = V 2,

with e > 0, gcd(U, V ) = 1.
But for our present purpose we simply need the fact that

x =
b1m1

e2

= b1
U2

e2

≡ b1 mod Q×
2
.

J

Corollary 19 Each element of im χ̄ is of the form

b1 mod Q×
2

where b1 | b̄.

Theorem 10.2 The group E/2E is finite.

Proof I By Proposition 10.4,

[E : 2E ] ≤ [E : im Θ̄][Ē : im Θ]

= ‖ imχ‖ · ‖ im χ̄‖.

But these two images are finite, by Proposition 10.9 and its Corollary. J
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10.8 Determining the rank of E
We know that

E = F ⊕ Zr,

where F is the torsion subgroup of E , and r is its rank. It follows that

E/2E = F/2F ⊕ (Z/(2))r .

Note that if A is an abelian group then A/2A is of exponent 2, ie 2ā = 0
for all ā ∈ A/2A. Thus if A is finitely-generated, it follows from the Structure
Theorem that

A/2A = (Z/(2))d

for some d. (Alternatively, A/2A can be regarded as a vector space over the
finite field F2 = {0, 1}; and d is the dimension of this vector space.)

In our case,

2r =
[E : 2E ]

[F : 2F ]
.

It is easy to determine [F : 2F ]; so computation of the rank r reduces to
the determination of [E : 2E ]. For this we need to sharpen a little our earlier
proof that [E : 2E ] is finite.

But first let us consider the torsion subgroup F . Suppose A is a finite
abelian group. By the Structure Theorem,

A = Z/(pe11 ⊕ · · · ⊕ Z/(perr )

= C1 ⊕ · · · ⊕ Cr,

say, where Ci = Z/(peii ). Thus

A/2A = C1/2C1 ⊕ · · · ⊕ Cr/2Cr.

Proposition 10.10 Suppose A = Z/(pe). Then

[A : 2A] =

{
Z/(2) if p = 2

0 if p 6= 2.

Proof I Consider the map φ : A→ A under which

a 7→ 2a.

Then
kerφ = {a ∈ A : 2a = 0}.

428–99 10–17



If p 6= 2 then A has no elements of order 2, by Lagrange’s Theorem.
Hence kerφ = 0, and so

2A = A,

ie every element a ∈ A is of the form a = 2b for some b ∈ A.
On the other hand, if p = 2 then Z/(2e) has just one element of order 2,

namely 2e−1 mod 2e. Thus ‖ kerφ‖ = 2; and so

[A : 2A] = 2.

J

Corollary If
A = Z/(pe11 )⊕ · · · ⊕ Z/(perr )

then
[A : 2A] = 2d,

where d is the number of factors with pi = 2.

Corollary If A is a finite abelian group with

[A : 2A] = 2d,

then the number of elements of order 2 in A is 2e − 1.

Proof I As we saw above, the factor Z/(pe) contains just one element of
order 2 if p = 2 and none otherwise. But the element

a = a1 ⊕ · · · ⊕ ar

is of order 1 or 2 if and only if that is true of each ai. Thus the number of
such elements is 2d by Corollary 1; and the result follows on subtracting the
one element of order 1. J

We apply this result to our elliptic curve E . We know that E has at least
one point of order 2, namely T = (0, 0). We know too that if it has more
than one point of order 2 then it must have just three.

Proposition 10.11 Suppose F is the torsion subgroup of

E(Q) : y2 = x3 + ax2 + bx.

Then

[F : 2F ] =

{
4 if b̄ ∈ Q2

2 if b̄ /∈ Q2
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Proof I P ∈ E is of order 2 if P = (α, 0), where α is a root of

x3 + ax2 + bx = 0.

One root is α = 0; the other two are the roots of the quadratic

x2 + ax+ b = 0.

This has rational roots if and only if

a2 − 4b = b̄ ∈ Q2.

Thus E has 3 or 1 points of order 2, and so [F : 2F ] = 4 or 2, according as b̄
is or is not a perfect square. J

We proved that [E : 2E ] is finite by showing that

[E : 2E ] = [E : Θ̄ΘE ]

= [E : Θ̄Ē ][Θ̄Ē : Θ̄(ΘE)]

≤ [E : Θ̄Ē ][Ē : ΘE ].

But now we need a slightly more precise result in place of Proposition 10.3.

Proposition 10.12 Suppose φ : A → B is a homomorphism of abelian
groups, and S ⊂ A is a subgroup of finite index. Then

[A : S] = [φA : φS][kerφ : kerφ ∩ S].

Proof I With the same notation as in the earlier proof,

kerφS = S + kerφ.

For

φSa = 0 =⇒ φa = φs

=⇒ a = s+ k,

where k ∈ kerφ; while conversely φ(s+ k) = φs ∈ φS. Thus

[A : S] = [φA : φS][kerφ+ S : S].

But by the Second Isomorphism Theorem, if S, T ⊂ A then

(S + T )/S ∼= T/(S ∩ T ).

In particular,
[kerφ+ S : S] = [kerφ : kerφ ∩ S].

J
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Corollary 20 We have

[E 2E ] =
[E : im Θ̄][Ē : im Θ]

[ker Θ̄ ∩ im Θ]

Proof I This follows on applying the Proposition with A = Ē , B = E , φ =
Θ̄, S = im Θ. J

The subgroups ker Θ and ker Θ̄ are (almost) trivial.

Proposition 10.13 We have

ker Θ = {O, T}, ker Θ̄ = {O, T̄},

where T = (0, 0) ∈ E , T̄ = (0, 0) ∈ Ē.

Proof I This follows at once from the definitions of Θ, Θ̄, since Θ(x, y) is
finite (ie Z 6= 0) if x 6= 0; and Θ̄(x̄, ȳ) is finite if x̄ 6= 0. J

Proposition 10.14 We have

[E : 2E ] =
[E : im Θ̄][Ē : im Θ]

d

where

d =

{
2 if b̄ ∈ Q2,

1 if b̄ /∈ Q2

Proof I After Proposition 10.13 we simply have to determine whether or not

T̄ ∈ im Θ.

Suppose T = Θ(P ), where P = (x, y). Then y = 0 from the definition of
Θ. On the other hand P 6= T , since Θ(T ) = O, by definition.

In other words, Θ(P ) = T if and only if P ∈ E is a point of order 2 other
than T . But, as we saw in the proof of Proposition 10.11, there are two such
points if b̄ ∈ Q2, and no such points otherwise.

Thus

‖ ker Θ̄ ∩ im Θ‖ =

{
2 if b̄ ∈ Q2,

1 if b̄ /∈ Q2;

and the result follows. J
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Theorem 10.3 If the rank of the elliptic curve

E(Q) : y2 = x3 + ax2 + bx

is r then

2r =
‖ imχ‖ · ‖ im χ̄‖

4
.

Proof I If
E = F ⊕ Zr

then as we saw

2r =
[E : 2E ]

[F : 2F ]

The result now follows at once from Propositions 10.14 and 10.11. J

10.9 An example

Consider the elliptic curve

E(Q) : y2 = x3 + x.

The associated curve is

Ē(Q) : y2 = x3 − 4x.

Thus
b = 1, b̄ = −4.

If the rank of E is r then

2r =
‖ imχ‖ · ‖ im χ̄‖

4

by Theorem 10.3. We have to determine ‖ imχ‖, ‖ im χ̄‖.
Let us consider

χ : E → Q
×/Q×

2

first. We know that the elements of imχ are of the form

b1 mod Q×
2
,

where b1 | b. In this case b = 1, and so

b1 = ±1.
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Certainly 1 = χ(O) ∈ imχ. We have to determine if −1 ∈ imχ.
We saw in the proof of Proposition 10.9 that if this is so then we can find

e, U, V with e ≥ 1, gcd(U, V ) = 1 satisfying

b1U
4 + b2e

4 = V 2,

ie

−U4 − e4 = V 2,

which is clearly impossible. Hence −1 /∈ imχ, and so

imχ = {1}.

Turning to χ̄, we have b̄ = −4, and so b1 = ±1,±2. (We can omit
b1 = ±4, since we are working modulo squares.) We know that 1 ∈ im χ̄.
Also

χ(T̄ ) = b̄ = −4 ≡ −1,

where T̄ = (0, 0). Thus −1 ∈ im χ̄.
It remains to determine if b1 = ±2 ∈ im χ̄. (Note that if one is in the

image then so is the other, since im χ̄ is a subgroup containing −1.) For
b1 = 2, b2 = −2, we have to solve the equation

2U4 − 2e4 = V 2.

This has the trivial solution (e, U, V ) = (1, 1, 0) (corresponding to the point
P = (2, 0) ∈ Ē).

We conclude that
im χ̄ = {±1,±2}.

(Note that once we knew that imχ = {1}, it followed from Theorem 10.3
that ‖ im χ̄‖ ≥ 4; so in fact it was clear that im χ̄ = {±1,±2}.)

Hence

2r =
1 · 4

4
= 1,

ie E is of rank 0, that is, E(Q) is finite.
Now we can find E = F easily, by the Nagell-Lutz Theorem. We have

D = −4.

Hence y = 0,±1,±2. But the equations

x3 + x− 1 = 0, x3 + x− 4

have no solutions. Hence the only rational points on E are the 3 points of
order 2,

E = {O, (0, 0), (2, 0), (−2, 0)}.
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10.10 Another example

If b is not a perfect square, then 1 = Θ(O), b = Θ(T ) are distinct elements
of imχ. Similarly, if b̄ is not a perfect square, then 1, b̄ are distinct elements
of im χ̄.

Thus if neither b nor b̄ is a perfect square then these elements alone
contribute 4 to ‖ imχ‖ · ‖ im χ̄‖; so by Theorem 10.3 any further element in
either of these images ensures that the rank is ≥ 1.

Consider the elliptic curve

E(Q) : y2 = x3 + 3x.

The associated curve is

Ē(Q) : ȳ2 = x̄3 − 12x̄.

Thus
b = 3, b̄ = −12.

We know that 3 = χ(T ) ∈ imχ. On the other hand −1,−3 /∈ imχ, since

b1U
4 + b2e

4 < 0

in these cases. Thus
imχ = {1, 3}.

Similarly −3 ≡ −12 ∈ im χ̄. We have to determine which other factors
b1 of 12 are in im χ̄ — remembering that since this is a 2-group it contains
either 2, 4 or 8 elements. The candidates are: −1,±2, 3,±6.

If −1 ∈ im χ̄ then the equation

−U4 + 12e4 = V 2

has a solution with e ≥ 1, gcd(U, V ) = 1. U must be odd, since otherwise
U, V are both even. But then

−U4 ≡ 1 mod 4,

and so
−U4 + 12e4 ≡ −1 mod 4.

Since −1 is not a square mod 4, the equation has no solution, and −1 /∈ im χ̄.
Thus ‖ im χ̄‖ = 2 or 4.

The equation for b1 = −2, b2 = 6 is

−2U4 + 6e4 = V 2,
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which has the obvious solution (e, U, V ) = (1, 1, 2). Thus −2 ∈ im χ̄. It
follows that

im χ̄ = {1,−2,−3, 6}.

In particular ‖ im χ̄‖ = 4, and so

rank(E) = 1.

We can determine the torsion subgroup F ⊂ E by the Nagell-Lutz theo-
rem, in the usual way. The discriminant of x3 + 3x is −4 · 32 = −36 Thus if
P = (x, y) ∈ E is of finite order, then x, y ∈ Z and y = 0 or y2 | 36. Hence

y = 0,±1,±2,±3,±6.

Also
y2 = x3 + 3x = x(x2 + 3) =⇒ x ≥ 0.

It is readily verified that the only possible points of finite order are: O, (0, 0), (1,±2), (3,±6).
We can use the ‘factors of double’ to simplify computation of 2P . (Al-

ternatively, we could find where the tangent at P meets the curve again, in
the usual way.) Let S = (1, 2). Then

Θ(S) =

(
22

12
,
12 − 3

12
· 2
)

= (4,−4),

and so

2S = Θ̄Θ(S) = Θ̄(4,−4) =

(
1

4
· 16

16
,−1

8
· 42 + 12

42
· 4
)

=

(
1

4
,−7

8

)
.

Since 2S has non-integral coordinates, it is of infinite order; and so therefore
is S.

Since

Θ(3, 6) = (4, 4) = −Θ(S) = Θ(−S)

it follows that

(3, 6) + S ∈ ker Θ = {O, T}

and so

(3, 6) = T − S.
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Thus
F = {O, T}.

It is an interesting — if long-winded — exercise to show that T and S
together generate E :

E(Q) = 〈T 〉 ⊕ 〈S〉 ∼= Z/(2)⊕ Z.

In other words, each point P ∈ E is uniquely expressible in the form

P = nS or P = T + nS.

Note that the subgroup Z is not unique; if T, S generate E then so do
T, T + S.

To show that E = 〈T, S〉 we would apply the Method of Infinite Descent;
where now each step P 7→ 2P could be divided into two steps: P 7→ P̄ =
ΘP ∈ Ē and P̄ 7→ Θ̄P̄ = 2P ∈ E .

We leave this as an exercise to the reader, merely observing that even
when the rank is known it can be a difficult problem to find free generators,
ie to find a Z-basis for E/F .
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10.11 Computing the rank — II

Recall that we associate to the elliptic curve

E : y2 = x3 + ax2 + bx

a second elliptic curve

E1 : y2 = x3 + a1x
2 + b1x,

where
a1 = −2a, b1 = a2 − 4b.

The map E → E : P 7→ 2P factorises into two homomorphisms

Θ : E → E1, Φ : E1 → E ,

defined by

Θ(x, y) =

(
x2 + ax+ b

x
,
x2 − b
x2

y

)
,Φ(x1, y1) =

(
x2

1 + a1x1 + b1

4x1

,
x2

1 − b1

8x2
1

y1

)
,

except that in each case the point (0, 0) of order 2 maps to 0. (Thus each
homomorphism has kernel {0, (0, 0)}, since every affine point apart from (0, 0)
maps to an affine point.)

It follows (by a little elementary group theory) that

[E : 2E ] = [E : im Φ] [im Φ : im ΦΘ]

=
[E : im Φ] [E1 : im Θ]

[ker Φ : ker Φ ∩ im Θ]

Our basic Lemma (corresponding to Mordell’s Lemma in the earlier ap-
proach) states that P1 = (x1, y1) ∈ E1 lies in im Θ if and only if x1 is a perfect
square; and similarly P = (x, y) ∈ E lies in im Φ if and only if x is a perfect
square.

Thus if we introduce the auxiliary homomorphisms

χ : E → Q
×/Q×2, χ1 : E1 → Q

×/Q×2

defined by

χ(x, y) = x̄ (x 6= 0), χ(0, 0) = b̄

χ1(x1, y1) = x1 (x1 6= 0), χ1(0, 0) = b̄1.
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then
im Θ = kerχ1, im Φ = kerχ.

It follows that

[E : 2E ] =
‖ imχ‖ ‖ imχ1‖

e
,

where

e =

{
1 if b1 is a perfect square,

2 otherwise.

Since r = rank E is given by

2r+d = [E : 2E ],

where d = 1 or 2 according as x3 +ax2 + bx has 1 rational root or 3, the rank
is completely determined once we know ‖ imχ‖ and ‖ imχ1‖.

Recall that if

P = (x, y) ∈ E : y2 = x3 + ax2 + bx+ c,

where a, b, c ∈ Z then x, y take the forms

x =
m

t2
, y =

M

t3
,

with gcd(m, t) = 1 = gcd(M, t).
As in the earlier method, we represent each rational x ∈ Q×/Q×2 by its

square-free part d. Thus if
m = du2

where d is square-free then we may take d as the representative of x̄ ∈
Q
×/Q×2.

Proposition 10.15 Suppose

E(Q) : y2 = x3 + ax2 + bx

is an elliptic curve with a, b ∈ Z. If d ∈ imχ (where d is square-free) then
d | b. Moreover, if b = dd′ then d ∈ imχ if and only if there exist u, v, t with
gcd(u, t) = 1 = gcd(v, t) such that

du4 + au2t2 + d′t4 = v2.

Conversely, any solution u, v, t of this equation with gcd(u, t) = 1 arises in
this way from a point on E.
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Proof I Suppose

P =

(
du2

t2
,
M

t3

)
∈ E .

Then
M2

t6
=
du2

t2

(
d2u4

t4
+ a

du2

t2
+ b

)
.

Thus

M2 = du2(d2u4 + adu2t2 + bt4)

= d2u2(du4 + au2t2 + d′t4).

. It follows that du4 + au2t2 + d′t4 is a perfect square, say

du4 + au2t2 + d′t4 = v2.

Conversely, if u, v satisfy this equation then

P =

(
du2

t2
,
duv

t3

)
∈ E .

Finally, gcd(v, t) = 1, since

p | v, t =⇒ p2 | du2 =⇒ p | u,

contradicting gcd(u, t) = 1. J

10.12 Example

Consider the elliptic curve
y2 = x3 + 1.

over the rationals. There is one point of order 2 on the curve, namely D =
(−1, 0).

(The point P = (2, 3) is also on the curve. Since

dy

dx
=

3x2

2y

=
12

6
= 2

at this point, the tangent at P cuts E again at (X, Y ), where

2 + 2 +X = 22,
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ie

X = 0.

It follows that 2P = −D = D, so that P is of order 4.)
The transformation x′ = x+ 1, ie x = x′ − 1 (taking the point of order 2

to (0, 0)) brings the curve to our preferred form

E : x3 − 3x2 + 3x

Thus
a = −3, b = 3,

and so
a1 = 6, b1 = −3,

ie the associated curve is

E1 : y2 = x3 + 6x2 − 3x.

Since there is just one point of order 2 on E , and b1 is not a perfect square,

2r+1 =
‖ imχ‖ ‖ imχ1‖

2
,

We start by computing ‖ imχ‖. Since d | 3,

imχ ⊂ {±1,±3}.

Since (0, 0) 7→ 3,
imχ = {1, 3} or {±1,±3}.

Suppose d = −1. Then d′ = −3, and we are looking for solutions of

−u4 − 3u2t2 − 3t4 = v2.

Since the left-hand side is negative while the right-hand side is positive, there
is no such solution. Hence

imχ = {1, 3}.

Turning to imχ1, we again have d | 3, and so

imχ1 ⊂ {±1,±3}.

But now (0, 0) 7→ −3. Thus

imχ = {1,−3} or {±1,±3}.
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Again, consider d = −1. Now d′ = 3, and we are looking for solutions of

−u4 + 6u2t2 + 3t4 = v2.

This implies that
−u4 ≡ v2 mod 3.

and therefore
3 | u, v

since the quadratic residues mod3 are {0, 1}. But then

32 | u4, u2t2, v2 =⇒ 32 | 3t4

=⇒ 3 | t,

contradicting the condition gcd(u, t) = 1.
We conclude that

imχ1 = {1,−3}.

Hence

2r+1 =
2 · 2

2
,

ie

rank E = r = 0.

10.13 Another example

Let us re-visit the curve
E : y2 = x3 − x,

which we already saw has rank 0 (in the last chapter).
The associated curve is

E1 : y2 = x3 + 4x,

Since b1 = 4 is a perfect square, while the original equation has three
points of order 2,

2r+2 = ‖ imχ‖ ‖ imχ1‖.

If d ∈ imχ then d | b = −1. Thus

imχ ⊂ {±1}.
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In fact, since (0, 0) 7→ −1,
imχ = {±1}.

Turning to imχ1, since d | 4 =⇒ d | 2 (as d is square-free),

imχ1 ⊂ {±1,±2}.

We observe that (2, 4) ∈ E1. Thus 2 ∈ imχ1, and so

imχ1 = {1, 2} or {±1,±2}.

Suppose d = −1. Then d′ = −4, and we are looking for solutions of

−u4 − 4t4 = v2,

which is impossible, since the left-hand side is negative, while the right-hand
side positive. Thus

imχ1 = {1, 2}.

We conclude that

2r+2 = 2 · 2,

whence

rank E = r = 0.

10.14 A third example

Finally, let us look again at the curve

E(Q) : y2 = x(x− 2)(x+ 4) = x3 + 2x2 − 8x,

which we already saw (in the last Chapter) has rank 1, with the point P =
(−1, 3) having infinite order.

Since
a1 = −2a = −4, b1 = a2 − 4b = 36,

the associated curve is

E1 : y2 = x3 − 4x2 + 36x.

Since b1 = 36 is a perfect square,

2r+2 = ‖ imχ‖ ‖ imχ1‖.
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If d ∈ imχ then d | −8. Thus

imχ ⊂ {±1,±2}.

Since (2, 0) 7→ 2, while (−4, 0) 7→ −1, we deduce that

imχ = {±1,±2}.

Turning to imχ1, we have d | 36. Thus

imχ1 ⊂ {±1,±2,±3,±6}.

The point (0, 0) 7→ 1 (since 36 ≡ 1 modulo squares), which is not much help.
Consider d = −1. In this case d′ = −36, and we have to solve the equation

−u4 − 4u2t2 − 36t4 = v2.

Since the left-hand side is < 0, we conclude that −1 /∈ imχ1.
In fact, any d < 0 will lead to a contradiction in the same way. We

conclude that
imχ1 ⊂ {1, 2, 3, 6}.

Suppose d = 3. Then d′ = 12, and the equation reads

3u4 − 4u2t2 + 12t4 = v2.

But this implies that
−u2t2 ≡ v2 mod 3.

Thus 3 | v and 3 | u or t. But

3 | u, v =⇒ 32 | 12t4 =⇒ 3 | t

while

3 | v, t =⇒ 32 | 3u4 =⇒ 3 | u,

and in either case gcd(u, t) > 1, contrary to assumption.
We conclude that 3 /∈ imχ1; and therefore

2r+2 ≤ 4 · 2
=⇒

r ≤ 1.

However, we recall that the point (−1, 3) ∈ E is of infinite order, and so

rank E = 1.
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Chapter 11

The modular group

Recall that

SL(2,R) = {
(
a b
c d

)
: a, b, c, d ∈ R, ad− bc = 1}.

By analogy we set

SL(2,Z) = {
(
a b
c d

)
: a, b, c, d ∈ Z, ad− bc = 1}.

Proposition 11.1 The centre of SL(2, R) is {±I}.

Proof I Suppose

X =

(
a b
c d

)
∈ Z (SL(2,Z)) .

Let

S =

(
0 −1
1 0

)
, T =

(
1 1
0 1

)
Then

SX = XS =⇒
(
−c −d
a b

)
=

(
b −a
d −c

)
=⇒ a = d, b = −c;

while

TX = XT =⇒
(
a+ c b+ d
c d

)
=

(
a a+ b
c c+ d

)
=⇒ c = 0.

Thus
b = c = 0 =⇒ X = ±I.

J
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Definition 11.1 The modular group Γ is the quotient-group

Γ = SL(2, R)/{±I}.

Thus each element g ∈ Γ corresponds to two matrices ±X. We write
g = X̄, or even g = X, if that causes no confusion.

The modular group Γ acts on the upper complex plane

H = {z ∈ C : =(z) > 0}

by

gz =
az + b

cz + d

if g = X̄, where

X =

(
a b
c d

)
.

This action is faithful, ie g ∈ Γ acts trivially only if g = e. This allows us
to identify g ∈ Γ with the corresponding transformation of H.

Definition 11.2 We define s, t, u ∈ Γ as the elements corresponding to the
matrices

S =

(
0 −1
1 0

)
, T =

(
1 1
0 1

)
, U = ST =

(
1 −1
0 1

)
.

Proposition 11.2 Γ is generated by s, t:

Γ = 〈s, t〉.

Proof I It is sufficient to show that SL(2,Z) is generated by S, T .
Suppose

X =

(
a b
c d

)
.

Our strategy is to act on X with S and T on either side so as to minimize
|b|+ |c|. We implement this through the following steps.

Step A Observe that

SXS−1 =

(
d −b
−c a

)
.

If at any stage |c| > |b| then we can replace X by SXS−1; Thus we
may assume that

|c| ≤ |b|.
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Step B We have

XT r =

(
a b+ ra
c d+ rc

)
.

We can choose r so that

|b+ ra| ≤ |a|/2.

Thus we may assume that

|b| ≤ |a|/2.

Step C We have

T rX =

(
a+ rc b+ rd
c d

)
.

We can choose r so that

|b+ rd| ≤ |d|/2.

Thus we may assume that

|b| ≤ |d|/2.

Note that in each of these steps, |b|+ |c| is either reduced or at worst left
unchanged. We may suppose therefore that we reach a stage where none of
the steps leads to any “improvement”, ie our matrix entries satisfy

|c| ≤ |b|, |b| ≤ |a|/2, |b| ≤ |d|/2.

Hence
|bc| ≤ |ad|/4.

But

ad− bc = 1 =⇒ |ad| − 1 ≤ |bc|
=⇒ |ad| − 1 ≤ |ad|/4
=⇒ |ad| ≤ 4/3

=⇒ |ad| = 1

=⇒ |bc| ≤ 1/4

=⇒ |bc| = 0

=⇒ b = c = 0.

Thus our final matrix is ±I.
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Accordingly, we have found ‘wordw’ W1,W2 in S, T, T−1 such that

W1XW2 = ±I.

It follows that
X = ±W−1

1 W−1
2 .

Since −I = S2, we have expressed X as a word in S, T, T−1. Thus S, T
generate SL(2,Z); and so s, t generate Γ. J

Corollary 21 Γ is generated by s, u:

Γ = 〈s, t〉.

Theorem 11.1 Γ is freely-generated by the subgroups C2 = 〈s〉, C3 = 〈u〉,
ie each g ∈ Γ is uniquely expressible in the form

g = ui0sui1 · · ·uin−1

n−1 su
in
n ,

where
0 ≤ i0, in ≤ 2, 1 ≤ ij, in ≤ 2 (0 < j < n).

Proof I After the last Corollary, it only remains to prove uniqueness.
Let Γ+ ⊂ Γ correspond to the matrices with non-negative entries:

Γ+ = {X̄ : X =

(
a b
c d

)
: ad− bc = 1, a, b, c, d ≥ 0.}

Evidently
g, h ∈ Γ+ =⇒ gh ∈ Γ+.

Now

SU =

(
0 −1
1 0

)(
0 −1
1 1

)
=

(
0 −1
1 1

)
J

11.1 Congruence subgroups

If X, Y ∈ Mat(n,Z) we write

X ≡ Y (mod m)

as a shorthand for
Xij ≡ Yij (mod m)
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for all i, j.
It is easy to see that

X1 ≡ Y1 (mod m), X2 ≡ Y2 (mod m) =⇒ X1+X2 ≡ Y1+Y2 (mod m), X1X2 ≡ Y1Y2 (mod m).

In other words, the map

Θ(n) : Mat(n,Z)→ Mat(n,Z/(n))

under which
X 7→ X mod n

is a ring-homomorphism.

Definition 11.3 For each n ∈ N(n 6= 0) we define the subgroup Γ(n) ⊂ Γ
by

Γ(n) = {X̄ : X ≡ I mod n}.

In other words, Γ(n) consists of the transformations

z 7→ az + b

cz + d

with
a ≡ d ≡ 1 (mod n), b ≡ c ≡ 0 (mod n).

Proposition 11.3 Γ(n) = ker Θn.

Theorem 11.2 Γ(n) is a normal subgroup of Γ, of finite index

[Γ : Γ(n)] =
∏
p|n

(p3 − p).

Proof I
J
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Appendix A

The Structure of
Finitely-Generated Abelian
Groups

A.1 Finitely-generated abelian groups

Definition A.1 The abelian group A is said to be generated by the subset
S ⊂ A if each element a ∈ A is expressible in the form

a = n1s1 + · · ·+ nrsr (ni ∈ Z, si ∈ S).

A is said to be finitely-generated if it is generated by a finite set {a1, . . . , ar} ⊂
A. We write A = 〈a1, . . . , ar〉 in this case.

Proposition A.1 If
0→ A→ B → C → 0

is an exact sequence of abelian groups then B is finitely-generated if and only
if A and C are both finitely-generated.

Proof I Suppose B is generated by {b1, . . . , br}. Then the quotient-group C
is generated by the images {b1, . . . , br}.

To see that any subgroup A ⊂ B is also finitely-generated, we argue
by induction on r, the number of generators. The quotient-group B/〈b1〉 is
generated by r − 1 elements. Hence by induction

A/A ∩ 〈b1〉 ⊂ B/〈b1〉

is finitely-generated, by {a1, . . . , as} say. But a subgroup of a cyclic group is
cyclic; and so

A ∩ 〈b1〉 = 〈a〉,
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say. Thus
A = 〈a, a1, . . . , as〉.

Conversely, suppose A is generated by {a1, . . . , ar}. and C is generated
by {b1, . . . , bs}, where b1, . . . , bs ∈ B. Then it is readily verified that B is
generated by {a1, . . . , ar, b1, . . . , bs}. J

A.2 Torsion groups

Recall that an abelian group is said to be a torsion group if every element is
of finite order; conversely, it is said to be torsion-free if 0 is the only element
of finite order. Evidently a finite abelian group is a torsion group; while a
torsion-free group is necessarily infinite.

Proposition A.2 The elements of finite order in an abelian group A form
a subgroup

F = {a ∈ A : na = 0 for some n ∈ N, n 6= 0}.

Proof I To see that F is a subgroup, note that

a, b ∈ F =⇒ ma = 0, nb = 0 =⇒ mn(a+ b) = 0 =⇒ a+ b ∈ F.

J

Definition A.2 We call F the torsion subgroup of A. The elements of F ,
ie the elements of finite order in A, are called torsion elements of A.

Proposition A.3 The torsion group F of a finitely-generated abelian group
A is finite.

Proof I This follows at once from Propositions ?? and the following

Lemma 21 A finitely-generated torsion group is necessarily finite.

Proof of Lemma B Suppose A is generated by {a1, . . . , ar}, and suppose ai is

of order di for 1 ≤ i ≤ r. Then each element a ∈ A is expressible in the form

a = n1a1 + · · ·+ nrar

where
0 ≤ ni < di.

Thus
‖A‖ ≤ d1 · · · dr.

C J
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Proposition A.4 The quotient-group A/F is torsion-free.

Proof I Suppose nā = 0, where a ∈ A. Then na ∈ F . Hence mna = 0 for
some m. Thus a is of finite order, ie a ∈ F . In other words, ā = 0. J

The last 2 Propositions allow us to divide our task — the study of finitely-
generated abelian groups — into 2 parts: finite abelian groups, and finitely-
generated torsion-free abelian groups. These are the subjects of the next 2
sections.

A.3 Finite Abelian Groups

Proposition A.5 Suppose A is an abelian group. For each prime p, the
elements of order pn in A for some n ∈ N form a subgroup

Ap = {a ∈ A : pna = 0 for some n ∈ N}.

Proof I Suppose a, b ∈ Ap. Then

pma = 0, pnb = 0,

for some m,n. Hence
pm+n(a+ b) = 0,

and so a+ b ∈ Ap. J

Definition A.3 We call Ap the p-component of A.

Proposition A.6 Suppose A is an abelian group. Then the torsion subgroup
F is the direct sum of the Ap:

F = ⊕pAp.

Proof I Suppose a ∈ F , say na = 0. Let

n = pe11 · · · perr ;

and set
mi = n/epii .

Then gcd(m1, . . . ,mr) = 1, and so we can find n1, . . . , nr such that

m1n1 + · · ·+mrnr = 1.
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Thus
a = a1 + · · ·+ ar,

where
ai = minia.

But
peii ai = (peii mi)nia = nnia = 0

(since na = 0). Hence
ai ∈ Api .

Thus A is the sum of the subgroups Ap.
To see that this sum is direct, suppose

a1 + · · ·+ ar = 0,

where ai ∈ Api , with distinct primes p1, . . . , pr. Suppose

peii ai = 0.

Let
mi = pe11 · · · p

ei−1

i−1 p
ei+1

i+1 · · · perr .

Then
miaj = 0 if i 6= j.

Thus (multiplying the given relation by mi),

miai = 0.

But gcd(mi, p
ei
i ) = 1. Hence we can find m,n such that

mmi + npeii = 1.

But then
ai = m(miai) + n(peii ai) = 0.

We conclude that A is the direct sum of its p-components Ap. J

Proposition A.7 If A is a finitely-generated abelian group then Ap = 0 for
almost all p, ie for all but a finite number of p.

Proof I The torsion subgroup F ⊂ A is finite, by Proposition reffinite. Thus
the orders of all the elements of F have only a finite number of prime factors.
If p is not among these primes then evidently Ap = 0. J
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Theorem A.1 Suppose A is a finite abelian p-group (ie each element is of
order pe for some e). Then A can be expressed as a direct sum of cyclic
p-groups:

A = Z/(pe1)⊕ · · · ⊕ Z/(per).

Moreover the powers pe1 , . . . , per are uniquely determined by A.

Proof I We argue by induction on ‖A‖ = pn. We may assume therefore that
the result holds for the subgroup

pA = {pa : a ∈ A}.

For pA is stricty smaller than A, since

pA = A =⇒ pnA = A,

while we know from Lagrange’s Theorem that pnA = 0.
Suppose

pA = 〈pa1〉 ⊕ · · · ⊕ 〈par〉.

Then the sum
〈a1〉+ · · ·+ 〈ar〉 = B,

say, is direct. For suppose

n1a1 + · · ·+ nrar = 0.

If p | n1, . . . , nr, say ni = pmi, then we can write the relation in the form

m1(pa1) + · · ·+mr(par) = 0,

whence mipai = niai = 0 for all i.
On the other hand, if p does not divide all the ni then

n1(pa1) + · · ·+ nr(par) = 0,

and so pniai = 0 for all i. But if p 6 | ni this implies that pai = 0. (For the
order of ai is a power of p, say pe; while pe | nip implies that e ≤ 1.) But
this contradicts our choice of pai as a generator of a direct summand of pA.
Thus the subgroup B ⊂ A is expressed as a direct sum

B = 〈a1〉 ⊕ · · · ⊕ 〈ar〉.

Let
K = {a ∈ A : pa = 0}.
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Then
A = B +K.

For suppose a ∈ A. Then pa ∈ pA, and so

pa = n1(pa1) + · · ·+ nr(par)

for some n1, . . . , nr ∈ Z. Thus

p(a− n1a1 − · · · − nrar) = 0,

and so
a− n1a1 − · · · − nrar = k ∈ K.

Hence
a = (n1a1 + · · ·+ nrar) + k ∈ B +K.

If B = A then all is done. If not, then K 6⊂ B, and so we can find
k1 ∈ K, k1 /∈ B. Now the sum

B1 = B + 〈k1〉

is direct. For 〈k1〉 is a cyclic group of order p, and so has no proper subgroups.
Thus

B ∩ 〈k1〉 = {0},

and so
B1 = B ⊕ 〈k1〉

If now B1 = A we are done. If not we can repeat the construction, by
choosing k2 ∈ K, k2 /∈ B1. As before, this gives us a direct sum

B2 = B1 ⊕ 〈k2〉 = B ⊕ 〈k1〉 ⊕ 〈k2〉.

Continuing in this way, the construction must end after a finite number
of steps (since A is finite):

A = Bs = B ⊕ 〈k1〉 ⊕ · · · ⊕ 〈ks〉
= 〈a1〉 ⊕ · · · ⊕ 〈ar〉 ⊕ 〈k1〉 ⊕ · · · ⊕ 〈ks〉.

It remains to show that the powers pe1 , . . . , per are uniquely determined
by A. This follows easily by induction. For if A has the form given in the
theorem then

pA = Z/(pe1−1)⊕ · · · ⊕ Z/(per−1).
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Thus if e > 1 then Z/(pe) occurs as often in A as Z/(pe−1) does in pA. It
only remains to deal with the factors Z/(p). But the number of these is now
determined by the order ‖A‖ of the group. J

Remark: It is important to note that if we think of A as a direct sum of cyclic
subgroups, then the orders of these subgroups are uniquely determined, by
the theorem; but the actual subgroups themselves are not in general uniquely
determined. In fact the only case in which they are uniquely determined (for
a finite p-group A) is if A is itself cyclic,

A = Z/(pe),

in which case of course there is just one summand.
To see this, it is sufficient to consider the case of 2 summands:

A = Z/(pe)⊕ Z/(pf ).

We may suppose that e ≥ f . Let a1, a2 be the generators of the 2 summands.
Then it is easy to see that we could equally well take a′1 = a1 + a2 in place
of a1:

A = 〈a1 + a2〉 ⊕ 〈a2〉.

For certainly these elements a1 +a2, a2 generate the group; and the sum must
be direct, since otherwise there would not be enough terms m1a

′
1 + m2a2 to

give all the pe+f elements in A.

A.4 Torsion-free Abelian Groups

Definition A.4 To each abelian group A we associate the vector space V =
V (A) over Q given by

V = A⊗Z Q.

Remarks:

1. Concretely, we construct V from A as follows. Each element v ∈ V is
of the form

v = λa (λ ∈ Q, a ∈ A).

Two elements
v = λa, w = µb.

are equal if we can find m,n,N such that

λ =
m

N
, µ =

n

N
, ma = nb.
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In other words, a linear relation

λ1v1 + · · ·+ λrvr = 0

holds in V if when multiplied by some integerN withNλ1, . . . , Nλr ∈ Z
it yields a relation that holds in A.

2. We can put this in a more general setting. Recall that a module M
over a ring R (not necessarily commutative, but with identity element
1) is defined by giving an abelian group A on which R acts so that

(a) λ(µm) = (λµ)m;

(b) (λ+ µ)m = λm+ µm;

(c) λ(m+ n) = λm+ λn;

(d) 1m = m.

There are 2 special cases of importance. Firstly, a module over a field
k is just a vector space over k. Thus the concept of a module may be
seen as a natural generalisation of that of a vector space, in which the
scalars are allowed to form a ring.

Secondly, a module over the integers Z is just an abelian group.

Suppose
φ : R→ S

is a ring-homomorphism. Then each R-module M gives rise to an S-
module N , where

N = S ⊗RM.

Concretely, each element n ∈ N is expressible as a sum

n = s1m1 + · · ·+ srmr,

with addition and scalar multiplication being defined in the natural
way. We have a natural map

M → N : m 7→ 1 ·m.

Our case arises in this way from the natural injection

i : Z→ Q.

It is a special case in so far as each element of V is expressible as a single
element λa rather than a sum of such elements. As we just observed,
we have a natural group homomorphism

A→ V : a 7→ 1 · a.
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3. In the language of categories and functors, we have a covariant functor

F : A → V

from the category A of abelian groups to the category V of vector
spaces over Q.

Definition A.5 The rank r(A) of the abelian group A is defined to be the
dimension of V :

r(A) = dimQ V.

Proposition A.8 A finitely-generated abelian group has finite rank.

Proof I If A = 〈a1, . . . , an〉 then 1 · a1, . . . , 1 · an span V , and so

r(A) ≤ n.

J

Proposition A.9 Suppose A is an abelian group. Then the map

A→ V : a 7→ 1 · a

is a homomorphism of abelian groups, with kernel F .

Proof I Suppose a 7→ 0, ie 1 · a = 0 in V . By definition this means that
Na = 0 for some N ∈ N (N 6= 0). In other words, a ∈ F . J

Corollary 1 An abelian group A is of rank 0 if and only if it is a torsion
group.

Corollary 2 A torsion-free abelian group A can be embedded in a vector
space V over Q:

A ⊂ V.

Theorem A.2 A finitely-generated torsion-free abelian group A is necessar-
ily free, ie A is expressible as a direct sum of copies of the integers Z:

A = rZ = Z⊕ · · · ⊕ Z.

Proof I We have seen that A ⊂ V , where V is a finite-dimensional vector
space over Q. Suppose a1, . . . , an generate A. Then these elements span V .
Hence we can choose a basis for V from among them. After re-ordering we
may suppose the a1, . . . , ar form a basis for V .
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We derive a Z-basis b1, . . . , br for A as follows. Choose b1 to be the
smallest positive multiple of a1 in A:

b1 = λ1a1 ∈ A.

(It is easy to see that λ1 = 1/m1 for some m ∈ N.)
Now choose b2 to be an element of A in the vector subspace 〈a1, a2〉 with

smallest positive second coefficient

b2 = µ1a1 + λ2a2 ∈ A.

(Again, it is easy to see that λ2 = 1/m2 for some m ∈ N.)
Continuing in this way, choose bi to be an element of A in the vector

subspace 〈a1, . . . , ai〉 with smallest positive ith coefficient

bi = µ1a1 + · · ·+ µi−1ai−1 + λiai ∈ A.

(Once again, it is easy to see that λi = 1/mi for some m ∈ N.)
Finally, we choose br to be an element of A with smallest positive last

coefficient
br = µ1a1 + · · ·+ µr−1ai−1 + λrai ∈ A.

We assert that b1, . . . , br forms a Z-basis for A. For suppose a ∈ A. Let

a = ρr,1a1 + · · ·+ ρr,rar,

where ρ1, . . . , ρr ∈ Q. The last coefficient ρr,r must be an integral multiple
of λr,

ρr,r = nrλr.

For otherwise we could find a combination ma + nbr with last coefficient
positive but smaller than λr.

But now
a− nrbr ∈ 〈a1, . . . , ar−1〉,

say
a− nrbr = ρr−1,1a1 + · · ·+ ρr−1,r−1ar−1.

By the same argument, the last coefficient ρr−1,r−1 is an integral multiple of
λr−1.

ρr−1,r−1 = nr−1λr−1,

and so
a− nrbr − nr−1br−1 ∈ 〈a1, . . . , ar−2〉.
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Continuing in this fashion, we find finally that

a = nrbr + nr−1br−1 + n1b1,

with nr, . . . , n1 ∈ Z. Thus b1, . . . , br forms a Z-basis for A, and

A = Zb1 ⊕ · · · ⊕ Zbr ≡ rZ.

J

Remark: We can think of the summands Z as subgroups of A. But it should
be noted that these subgroups are not unique, unless A = Z. For there
are many ways of splitting Z ⊕ Z into 2 direct summands. In fact, if the
generators of these summands are e, f ,

A = Ze⊕ Zf,

then we can take as generators any pair

n11e+ n12f, n21e+ n22f,

(where n11, n12, n21, n22 ∈ Z) provided

det

(
n11 n12

n21 n22

)
= ±1,

that is, the matrix must be unimodular.
The corresponding result holds for rZ: any unimodular transformation

will give us a new expression for the group as a direct sum of subgroups
isomorphic to Z.

Theorem A.3 Every finitely-generated abelian group A is the direct sum of
its torsion group F and a torsion-free group P:

A = F ⊕ P.

Proof I Let F be the torsion subgroup of A.

Lemma 22 The quotient-group

Q = A/F

is torsion-free.
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Proof of Lemma B For suppose ā ∈ Q (where a ∈ A) has finite order, say

nā = 0, for some n > 0. In other words, na ∈ F . But then m(na) = 0 for
some m > 0. Thus a is of finite order, ie a ∈ F , and so ā = 0. C

It follows from Proposition ?? that Q is a direct sum of copies of Z:

Q = Z⊕ · · · ⊕ Z.

Choose elements a1, . . . , ar inAmapping onto the elements (1, 0, . . . , 0), . . . , (0, 0, . . . , 1)
in Q; and let

P = 〈a1, . . . , ar〉.

We shall show that A = F ⊕ P .
Recall that the abelian group A is the direct sum of the subgroups B and

C,
A = B ⊕ C,

if and only if

1. B ∩ C = {0};

2. A = B +C, ie each element a ∈ A is expressible in the form a = b+ c,
with b ∈ B, c ∈ C.

We apply this with B = F, C = P . Firstly, F ∩ P = {0}. For suppose
a ∈ F ∩ P . Since a ∈ P ,

a = n1a1 + · · ·+ nrar

for some n1, . . . , nr ∈ Z. Since a ∈ F , we have na = 0 for some n > 0. Thus

nn1a1 + · · ·+ nnrar = 0.

It follows — going over to the quotient group Q — that

nn1e1 + · · ·+ nnrer = 0.

But that implies that nn1 = · · · = nnr = 0, since e1, . . . , er form a Z-basis
for Q. Thus n1 = · · · = nr = 0, and so a = 0, ie F ∩ P = {0}.

Secondly, suppose a ∈ A. Then ā ∈ Q can be expressed in the form

ā = m1e1 + · · ·+mrer,

for some m1, . . . ,mr ∈ Z. But then

a−m1a1 − · · · −mrar = f ∈ F.
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Thus
a = f +m1a1 + · · ·+mrar ∈ F + P.

It follows that
A = F ⊕ P.

J

Corollary Every finitely-generated abelian group A is the direct sum of a
finite group F and a number of copies of Z:

A = F ⊕ Z⊕ · · · ⊕ Z.

Remark: While F is unique — it is the torsion subgroup of A — the sub-
groups corresponding to the copies of Z not in general unique.

In fact the only cases in which the subgroups are unique is if either the
group is finite (so that A = F ) or else A = Z (so that F = 0 and there is
just one copy of Z). For we can split

A = F ⊕ Z

in many ways if F 6= {0}. In fact if e is a generator of Z,

A = F ⊕ 〈e〉,

then we can replace e by e+ f , where f is any element of F :

A = F ⊕ 〈e+ f〉,

For e+f has infinite order, and so every non-zero element of 〈e+f〉 also has
infinite order. Hence

F ∩ 〈e+ f〉 = {0},
and so the sum is direct.

A.5 The Structure Theorem

Putting together the results of the last 3 sections, we derive the Structure
Theorem for Finitely-Generated Abelian Groups.

Theorem A.4 Every finitely-generated abelian group A is expressible as a
direct sum of cyclic groups (including Z):

A = Z/(pe1)⊕ · · · ⊕ Z/(pes)⊕ Z⊕ · · · ⊕ Z.

Moreover the prime-powers pe11 , . . . , p
es
s and the number of copies of Z are

uniquely determined by A.
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Remark: If we think of the Theorem as expressing A as a direct sum of cyclic
subgroups, then in general these subgroups will not be unique, although their
orders (pe or ∞) will be.

The only case in which the expression will be unique is if A is cyclic. For
if that is so then either A = Z or else A is a finite cyclic group Z/(n). In
this last case each p-component Ap is also cyclic, since every subgroup of a
cyclic abelian group is cyclic. Thus the expression for A as a direct sum in
the Theorem is just the splitting of A into its p-components Ap; and we know
that this is unique.

Conversely, if A is not cyclic, then either

1. A has at least 2 Z summands; or

2. A has a component Z and F 6= {0}; or

3. some component Ap is not cyclic.

In each of these cases we have seen above that the splitting is not unique.
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Appendix B

Fermat’s Last Theorem when
n = 4

B.1 The Case n = 2

The equation
x2 + y2 = z2

certainly has solutions, eg (3, 4, 5) and (5, 12, 13). This does not contradict
Fermat’s Last Theorem, of course, since that only asserts there is no solution
if n > 2.

Pythagoras already knew that this equation (with n = 2) had an infin-
ity of solutions; and Diophantus later found all the solutions, following the
technique below.

In the first place, we may assume that

gcd(x, y, z) = 1.

We may also assume that x, y, z > 0. We shall use the term Pythagorean
triple for a solution with these properties.

Note that modulo 4

x2 =

{
0 mod 4 if x is even,

1 mod 4 if x is odd.

It follows that x and y cannot both be odd; for then we would have z2 =
2 mod 4, which is impossible. Thus just one of x and y is even; and so z
must be odd. We can assume without loss of generality that x is even, say
x = 2X. Our equation can then be written

4X2 = z2 − y2 = (z + y)(z − y).
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We know that 2 | z+ y, 2 | z− y, since y, z are both odd. On the other hand
no other factor can divide z + y and z − y:

gcd(z + y, z − y) = 2.

For
d | z + y, z − y =⇒ d | 2y, 2z.

It follows that

z + y = 2u2, z − y = 2v2, x = 2uv.

Thus
(x, y, z) = (2uv, u2 − v2, u2 + v2).

where gcd(u, v) = 1. Note that just one of u, v must be odd; for if both were
odd, x, y, z would all be even.

Every Pythagorean triple arises in this way from a unique pair (u, v) with
gcd(u, v) = 1, u > v > 0, and just one of u, v odd. The uniqueness follows
from the fact that

(u+ v)2 = z + x, (u− v)2 = z − x.

For this shows that x, y, z determine u+ v and u− v, and therefore u and v.

B.2 The Case n = 4

The only case of his “Theorem” that Fermat actually proved, as far as we
know, was the case n = 4:

x4 + y4 = z4.

His proof was based on a technique which he invented: the Method of Infinite
Descent. Basically, this consists in showing that from any solution of the
equation in question one can construct a second, smaller, solution.

Actually, we are going to apply this to the Diophantine equation

x4 + y4 = z2.

If we can show that this has no solution in non-zero integers, then the same
will be true a fortiori of Fermat’s equation with n = 4.

Suppose (x, y, z) is a solution of this equation. As before we may and
shall suppose that x, y, z > 0 and gcd(x, y.z) = 1. Evidently (x2, y2, z) is
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then a Pythagorean triple, and so can be expressed in the form (swapping
x, y if necessary)

x2 = 2ab, y2 = a2 − b2, z = a2 + b2,

where a, b are positive integers with gcd(a, b) = 1. Since x is even, 4 | x2,
and therefore just one of a and b must be even.

If a were even and b were odd, then a2 − b2 = 3 mod 4, so the second
equation y2 = a2 − b2 would be untenable. Thus b is even, and so from the
first equation x2 = 2ab we can write

a = u2, b = 2v2, x = 2uv,

where gcd(u, v) = 1, and u, v > 0.
The second equation now reads

y2 = u4 − 4v4.

Thus
4v4 + y2 = u4,

and so (2v2, y, u2) is a Pythagorean triple. It follows that we can write

2v2 = 2st, y = s2 − t2, u2 = s2 + t2,

where gcd(s, t) = 1. From the first equation we can write

s = X2, t = Y 2, v = XY,

where gcd(X, Y ) = 1, and X, Y > 0; and so on writing Z for u the third
equation reads

X4 + Y 4 = Z2,

which is just the equation we started from. So from any solution (x, y, z) of
the equation

x4 + y4 = z2

with gcd(x, y, z) = 1, x, y > 0 and x even, we obtain a second solution
(X, Y, Z) with gcd(X, Y, Z) = 1, X, Y > 0 and X even, where

x = 2uv = 2XY Z,

y = s2 − t2 = X4 − Y 4,

z = a2 + b2 = u4 + v4 = Z4 +X4Y 4.

The new solution is evidently smaller than the first in every sense. In
particular,

Z < z1/4;

so our infinite chain must (rapidly) lead to a contradiction, and Fermat’s
Last Theorem is proved for n = 4.
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Appendix C

Fermat’s Last Theorem when
n = 3

Having proved Fermat’s Last Theorem for n = 4, it only (?) remains to
prove it for odd primes 3, 5, 7, 11, . . . . It is convenient in this case to take the
equation in symmetric form

xp + yp + zp = 0

(on replacing z by −z).
Our proof for p = 3 is based, like that for n = 4, on Fermat’s Method of

Infinite Descent. But now we have to mix in a little algebraic number theory.

C.1 Algebraic numbers

Definition C.1 A number α ∈ C is said to be algebraic if it satisfies a
polynomial equation

f(x) = xn + a1x
n−1 + · · ·+ an = 0

with rational coefficients ai ∈ Q.

For example,
√

2 and i are algebraic.
A number is said to be transcendental if it is not algebraic. Both e and

π are transcendental. It is in general extremely difficult to prove a number
transcendental, and there are many open problems in this area, eg it is not
known if πe is transcendental.

Proposition C.1 The algebraic numbers form a field Q̄ ⊂ C.
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Proof I If α satisfies the equation f(x) = 0 then −α satisfies f(−x) = 0,
while 1/α satisfies xnf(1/x) = 0 (where n is the degree of f(x)). It follows
that −α and 1/α are both algebraic. Thus it is sufficient to show that if α, β
are algebraic then so are α + β, αβ.

Suppose α satisfies the equation

f(x) ≡ xm + a1x
m−1 + · · ·+ am = 0,

and β the equation

g(x) ≡ xn + b1x
n−1 + · · ·+ bn = 0.

Consider the vector space

V = 〈αiβj : 0 ≤ i < m, 0 ≤ j < n〉

over Q spanned by the mn elements αiβj. Evidently

α + β, αβ ∈ V.

But if θ ∈ V then the mn+ 1 elements

1, θ, θ2, . . . , θmn

are necessarily linearly dependent (over Q), since dimV ≤ mn. In other
words θ satisfies a polynomial equation of degree ≤ mn. Thus each element
θ ∈ V is algebraic. In particular α + β and αβ are algebraic. J

C.2 Algebraic integers

Definition C.2 A number α ∈ C is said to be an algebraic integer if it
satisfies a polynomial equation

f(x) = xn + a1x
n−1 + · · ·+ an = 0

with integral coefficients ai ∈ Z.

Proposition C.2 The algebraic integers form a ring Z̄ ⊂ Q̄. That is, if
α, β are algebraic integers, then so are α + β, α− β and αβ.

Proof I If α is a root of the monic polynomial f(x) then −α is a root of the
monic polynomial f(−x). It follows that if α is an algebraic integer then so
is −α. Thus it is sufficient to show that if α, β are algebraic integers then so
are α + β, αβ.
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Suppose α satisfies the equation

f(x) ≡ xm + a1x
m−1 + · · ·+ am = 0 (a1, . . . , am ∈ Z),

and β the equation

g(x) ≡ xn + b1x
n−1 + · · ·+ bn = 0 (b1, . . . , bn ∈ Z).

Consider the abelian group (or Z-module)

M = 〈αiβj : 0 ≤ i < m, 0 ≤ j < n〉

generated by the mn elements αiβj. Evidently

α + β, αβ ∈ V.

As a finitely-generated torsion-free abelian group, M is isomorphic to
Z
d for some d. Moreover M is noetherian, ie every increasing sequence of

subgroups of M is stationary: if

S1 ⊂ S2 ⊂ S3 · · · ⊂M

then for some N ,
SN = SN+1 = SN+2 = · · · .

Suppose θ ∈M . Consider the increasing sequence of subgroups

〈1〉 ⊂ 〈1, θ〉 ⊂ 〈1, θ, θ2〉 ⊂ · · · .

This sequence must become stationary; that is to say, for some N

θN ∈ 〈1, θ, . . . , θN−1〉.

In other words, θ satisfies an equation of the form

θN = a1θ
N−1 + a2θ

N−2 + · · · .

Thus every θ ∈ M is an algebraic integer. In particular α + β and αβ are
algebraic integers. J

Proposition C.3 A rational number c ∈ Q is an algebraic integer if and
only if it is a rational integer:

Z̄ ∩Q = Z.
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Proof I Suppose c = m/n, where gcd(m,n) = 1; and suppose c satisfies the
equation

xd + a1x
d−1 + · · ·+ ad = 0 (ai ∈ Z).

Then
md + a1m

d−1n+ · · ·+ adn
d = 0.

Since n divides every term after the first, it follows that n | md. But that is
incompatible with gcd(m,n) = 1, unless n = 1, ie c ∈ Z. J

Definition C.3 A number α ∈ C is said to be a unit if both α and 1/α are
algebraic integers.

Any root of unity, ie any number satisfying xn = 1 for some n, is a unit.
But these are not the only units; for example,

√
2− 1 is a unit.

The units form a multiplicative subgroup of Q̄×.

C.3 The field Q(ω)

Let
ω = e2πi/3.

Then ω3 = 1; more precisely,

ω2 + ω + 1 = 0.

Proposition C.4 The numbers of the form

a+ ωb (a, b ∈ Q)

form a field.

Proof I Q(ω) is closed under addition, subtraction and multiplication. It
only remains to show that it is closed under division. Suppose θ ∈ Q(ω),
θ 6= 0. Since Q(ω) is a vector space of dimension 2 over Q, the elements
1, θ, θ2 are linearly dependent over Q, ie θ satisfies an equation of degree 1
or 2 over Q.

If θ satisfies an equation of degree 1 over Q then θ ∈ Q, and so 1/θ ∈
Q ⊂ Q(ω).

Suppose θ satisfies the equation

θ2 + bθ + c = 0.

We may suppose c 6= 0 (or else divide the equation by θ). Then

θ−1 = −c−1θ − c−1b ∈ Q(ω).

J
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C.3.1 Automorphisms and norms

The conjugacy automorphism

z 7→ z̄ : C→ C

of the complex numbers induces an automorphism of Q(ω), under which

ω 7→ ω̄ = ω2,

and more generally

a+ ωb 7→ a+ ω2b = (a− b)− bω.

If ξ = a+ωb, we call ξ̄ = a+ω2b the conjugate of ξ in Q(ω). If ξ satisfies a
polynomial equation f(x) = with coefficients in Q, then so does its conjugate
ξ̄. (This follows on applying the automorphism to the equation f(ξ) = 0.
The coefficients of f will be left untouched, since they lie in Q, while each
power ξn will be replaced by ξ̄n.) In particular, if ξ is an algebraic integer,
then so is ξ̄

The product
N(ξ) = ξξ̄ = |ξ|2

is called the norm of ξ. Clearly the norm is multiplicative:

N(αβ) = N(α)N(β).

C.4 The ring Z[ω]

Which numbers in Q(ω) are algebraic integers? The answer is not obvious.
Certainly ω is an algebraic integer, since it satisfies x3 − 1 = 0; and so

are all the numbers in the set Z[ω] consisting of numbers of the form

a+ ωb (a, b ∈ Z)

since the algebraic integers are closed under addition and multiplication.

Proposition C.5 The algebraic integers in Q(ω) are just the elements of
Z[ω].

Proof I Suppose
ξ = a+ ωb (a, b ∈ Q)
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is an algebraic integer. Then so is its conjugate

ξ̄ = a+ ω2b = (a− b)− ωb.

Hence
ξ + ξ̄ = 2a− b

is an algebraic integer. Since this number is rational, it follows that

2a− b ∈ Z.

Similarly
ωξ = −b+ ω(a− b)

is an algebraic integer, and so by the previous argument

−2b− (a− b) = −a− b ∈ Z.

We deduce that
3a, 3b ∈ Z;

say

a =
r

3
, b =

s

3
,

where r, s ∈ Z.
But we also know that

N(ξ) = ξξ̄ = a2 − ab+ b2

is an algebraic integer, and therefore a rational integer. This means that

r2 − rs+ s2 = 0 mod 9.

It is readily verified that this is only soluble if r, s = 0 mod 3, ie if a, b ∈ Z.
J

C.5 Units in Z[ω]

Proposition C.6 There are just 6 units in Z[ω]:

±1,±ω,±ω2.
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Proof I Suppose ε is a unit. Then

N(ε)N(ε−1) = 1.

It follows that
N(ε) = 1.

Conversely, if N(ε) = 1 then ε is a unit, since

N(ε) = εε̄ = 1 =⇒ ε−1 = ε̄ ∈ Z[ω].

Thus we have to find all ε = a+ ωb with a, b ∈ Z satisfying

N(ε) = a2 − ab+ b2 = 1.

This equation can be re-written:

(2a− b)2 + 3b2 = 4.

Evidently b = 0,±1. It is a trivial matter to consider these cases separately,
and deduce that the only solutions are the 6 listed above. J

We say that π ∈ Z[ω] is a prime if for every factorisation

π = αβ (α, β ∈ Z[ω])

either α or β is a unit.
If π is a prime then so is επ for any unit ε. Two primes that differ only

by a unit factor are said to be equivalent, and we write

π ≡ π′ = επ.

In general, we do not distinguish between equivalent primes.

C.6 Unique Factorisation in Z[ω]

Let us recall the main steps in the proof of unique factorisation in Z (or N):

Division with Remainder Suppose a, b ∈ Z, with b 6= 0. Then we can
find q ∈ Z such that

a = bq + r,

where
|r| < |b|.
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The Euclidean Algorithm This is a procedure for determining the great-
est common divisor gcd(a, b) = d of a, b ∈ Z. We start by dividing a
by b:

a = q1b+ r1,

where |r1| < |b|. Now we divide b by the remainder r1:

b = q2r1 + r2,

where |r2| < |r1|. We continue in this way, successively dividing re-
mainders:

r1 = q3r2 + r3,

r2 = q4r3 + r4,

. . .

At some point, the process must terminate when an exact division
occurs (with zero remainder):

rn−1 = qn+1rn.

For the remainders have been getting steadily smaller:

|b| > |r1| > |r2| > . . .

and so must ultimately vanish.

The last non-zero remainder is the sought-for gcd:

d = gcd(a, b) = rn.

For d | rn−1, from the last line of the algorithm. Hence d | rn−2 from
the previous line; and so, working up the algorithm,

d | rn−3, rn−4, . . . , r1, b, a.

On the other hand, if e | a, b then working down the algorithm,

e | a, b, r1, r2, . . . , rn.

Thus
e | a, b =⇒ e | d.
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au+ bv = d The Euclidean Algorithm has one important consequence that
is not immediately obvious. Let us say that e is expressed linearly in
terms of c, d if we have an expression

e = cx+ dy

with x, y ∈ Z.

The last line but one of the algorithm expresses d = rn linearly in terms
of rn−1 and rn−2, say

d = rn−1x1 + rn−2y1.

The previous line expresses rn−1 in terms of rn−2 and rn−3, allowing us
to express d linearly in terms of rn−2 and rn−3, say

d = rn−2x2 + rn−3y2.

Continuing in this way, we obtain expressions

d = rn−3x3 + rn−4y3

. . .

d = r2xn−2 + r1yn−2

d = r1xn−1 + byn− 1

and finally
d = bxn + ayn.

Thus d is expressed linearly in terms of a, b:

d = au+ bv

for some u, v ∈ Z.

The Lemma Suppose p is a prime number. Then

p | ab =⇒ p | a or p | b.

We take the classic definition of a prime number: a number that has
no factors other than 1 and itself. If p 6 | a then gcd(p, a) = 1, and so
by the Euclidean Algorithm we can find u, v ∈ Z such that

pu+ av = 1.

Similarly if p 6 | b then we can find x, y ∈ Z such that

px+ by = 1.
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Multiplying these relations together

1 = (pu+ av)(px+ by)

= p(puv + uby + avx) + abvy

Now if p | ab then p divides all the terms on the right, and we deduce
that p | 1, which is absurd.

Unique Factorisation Firstly, we can prove by induction that any n ∈ N
is expressible as a product of primes. For if n is not prime then we can
write n = ab, where |a|, |b| < |n|. By our inductive hypothesis we can
express a, b as products of primes; and these combine to give such an
expression for n.

We can prove by induction on n that this expression is unique up to
order. For suppose

n = pe11 . . . perr = qf1

1 . . . qfss .

By repeated use of the lemma above, the first factor p1 on the left
must occur on the right. Dividing both sides by p1, we can apply the
inductive hypothesis to show that the the factors, with one p1 removed,
are the same up to order. Hence they are the same with the p1 restored
to both sides.

Now we see that the entire argument rests upon Division with Remainder.
Wherever this exists we will have unique factorisation.

One place where this holds is the ring k[x] of polynomials over a field k,
since we can divide one polynomial by another,

f(x) = g(x)q(x) + r(x),

leaving a remainder r(x) of lower degree than g(x). It follows by our argument
that there is unique factorisation into prime (or irreducible) polynomials in
k[x]. Note that the degree in this case plays the rôle of the absolute value
|n| in the case of Z above. The essential point is that it must be a positive
integer, to ensure that our reduction process ends.

Proposition C.7 Given α, β ∈ Z[ω] (with β 6= 0), we can find γ, δ ∈ Z[ω]
such that

α = βγ + δ,

where
N(δ) < N(β).
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Proof I We can certainly divide α by β in Q(ω), say

α

β
= r + ωs (r, s ∈ Z).

Now let us choose m,n to be the nearest integers to r, s, so that

|r −m| ≤ 1

2
, |s− n| ≤ 1

2
.

Set
γ = m+ ωn ∈ Z[ω];

and let
θ = (r −m) + ω(s− n) ∈ Q(ω).

Then

N(θ) = (r −m)2 − (r −m)(s− n) + (s− n)2

≤ 1

4
+

1

4
+

1

4
< 1,

and so
α = βγ + δ,

where
δ = γθ,

and
N(δ) = N(γ)N(θ) < N(γ).

J

Corollary There is unique factorisation into primes (up to equivalence and
order) in Z[ω].

C.7 Fermat’s Last Theorem in Z[ω]

It is convenient to take Fermat’s equation (for n = 3) in the symmetric form

x3 + y3 + z3 = 0.

Suppose first (x, y, z) is a solution in Z. As usual we assume that gcd(x, y, z) =
1.
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Suppose that x = 1 mod 3, say x = 1 + 3a. Then

x3 = (1 + 3a)3

= 1 + 32a+ 33a2 + 33a3

= 1 mod 32.

Similarly
x = −1 mod 3 =⇒ x3 = −1 mod 32.

It follows that one (and just one) of x, y, z must be divisible by 3, since
otherwise we would have an impossible congruence

±1± 1± 1 = 0 mod 32.

Our aim is to extend this idea to solutions in Z[ω], with the prime Π
playing the rôle of 3 (recalling that Π2 ≡ 3).

We note in the first place that there are just 3 residue classes in Z[ω]
modulo Π, representated by 0, 1, and − 1. (For the number of residues
modulo α is N(α), and N(Π) = 3.)

Lemma If x = 1 mod Π then

x3 = 1 mod Π4.

Proof I Suppose
x = 1 + Πα.

Then

x3 = (1 + Πα)3

= 1 + 3Πα + 3Π2α2 + Π3α3

= 1− ω2Π3α + Π3α3 mod Π4,

since 3 = −ω2Π2, while Π4 | 3Π2. Thus

x3 − 1 = α(−ω2 + α2)Π3 mod Π4

= α(α + ω)(α− ω)Π3 mod Π4.

Now 0, ω,−ω are in the 3 different residue classes modulo Π; and so therefore
are α, α+ ω, α− ω. It follows that just one of these must be divisible by Π;
and so

x3 = 1 mod Π4.

J
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Corollary If x = −1 mod Π then

x3 = −1 mod Π4.

This follows at once from the lemma on replacing x by −x.
Let us turn to Fermat’s equation

x3 + y3 + z3 = 0,

where we are now looking for solutions in Z[ω] (although this will, of course,
include solutions in Z). We assume as usual that gcd(x, y, z) = 1.

One of x, y, z must be divisible by Π. For otherwise, by the Lemma and
Corollary above, we will have an impossible congruence

±1± 1± 1 = 0 mod Π4.

In fact we can go further; one of x, y, z must be divisible by Π2. For otherwise
we would have

Π3α3 ± 1± 1 = 0 mod Π4,

where Π 6 | α.
We may thus suppose that x = Π2x′, so that

Π6x′
3

= −(y3 + z3)

= −(y + z)(y + ωz)(y + ω2z).

How can the prime-power Π6 be distributed among the 3 factors on the
right? Evidently one factor must be divisible by Π2 at least. On replacing z
by ωz or ω2z, if necessary, we may assume that Π2 | (y + z). But

(y + ωz)− (y + z) = (ω − 1)z ≡ Πz.

Thus
Π2 | y + z =⇒ Π ‖ y + ωz,

where πe ‖ α means that πe | α but πe+1 6 | α. Similarly

Π2 | y + z =⇒ Π ‖ y + ω2z.

It follows that
Π4 | y + z, Π ‖ y + ωz, Π ‖ y + ω2z.

Thus it follows from unique factorisation that

y + z ≡ Π4X3, y + ωz ≡ ΠY 3, y + ω2z ≡ ΠZ3,
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where gcd(ΠX, Y, Z) = 1. But

(y + z) + ω(y + ωz) + ω2(y + ω2z) = 0.

This yields a relation of the form

ε1Π3X3 + ε2Y
3 + ε3Z

3 = 0,

where ε1, ε2, ε3 are units, and gcd(ΠX, Y, Z) = 1. We can assume that ε2 = 1.
Since Π 6 | Y, Z, we have Y 3, Z3 = ±1 mod Π3. Thus

±1± ε3 = 0 mod Π3.

This congruence can only be satisfied if ε3 = ±1. After replacing Z by −Z
if required, we may therefore assume that ε3 = 1. Thus the equation reads

εΠ3X3 + Y 3 + Z3 = 0.

Proposition C.8 The equation

εΠ3x3 + y3 + z3 = 0

has no solution (x, y, z) in Z[ω] with gcd(Πx, y, z) = 1 for any unit ε.

Proof I Since Π 6 | y, z,

y3, z3 = ±1 mod Π4.

Thus
εΠ3x3 ± 1± 1 = 0 mod Π4.

The only way this congruence can be satisfied is if Π | x, say x = Πx′. Then

εΠ6x′
3

= −(y3 + z3)

= −(y + z)(y + ωz)(y + ω2z).

Our earlier argument still holds — the introduction of the unit ε makes no
difference. After replacing z by ωz or ω2z, if necessary, we have

y + z ≡ Π4X3, y + ωz ≡ ΠY 3, y + ω2z ≡ ΠZ3,

where gcd(ΠX, Y, Z) = 1. As before, we deduce that

ε1Π3X3 + ε2Y
3 + ε3Z

3 = 0,
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where ε1, ε2, ε3 are units. Dividing by ε2 we have

εΠ3X3 + Y 3 + ε′Z3 = 0.

This is only soluble modulo Π3 if ε′ = ±1; and we may assume that ε′ = 1,
on replacing Z by −Z if necessary. Thus we are led to a new solution of our
equation

εΠ3X3 + Y 3 + Z3 = 0,

with gcd(ΠX, Y, Z) = 1.
It remains to show that this solution is ‘smaller’, in some sense, than the

first. To this end, note that

x = ΠXY Z.

Thus
N(x) = 3N(X)N(Y )N(Z),

and so
max(N(x), N(y), N(z)) > max(N(X), N(Y ), N(Z)).

J

Corollary Fermat’s Last Theorem holds for n = 3.
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Appendix H

Elliptic Curve Factorisation

Lenstra’s Elliptic Curve Factorisation (ECF) technique is an analogue of
Pollard’s so-called ‘p − 1 method’, in which the group Z/p)× is replaced
by the group on an elliptic curve E(Fp) over a finite field. So we start by
describing Pollard’s method.

H.1 The Pollard “p− 1 method”

We want to factorise a large number n.
It is a straightforward matter to determine whether n is prime, using the

Miller-Rabin algorithm. We may therefore suppose that n is composite.
Suppose p is a prime factor of n. By Fermat’s Little Theorem, if p - a

then
ap−1 ≡ 1 mod p.

Hence
ak ≡ 1 mod p

if p− 1 | k.
It follows that

d = gcd(ak − 1, n) > 1

since p is a factor of both numbers.
It would be very bad luck if we found a factor d of n in this way, and

then discovered that d = n. We may therefore suppose in this case that we
have a proper factor of n.

But how do we choose k? We make the assumption at this point that the
prime-factors of p− 1 are all (relatively) small.
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H.2 Elliptic curve factorisation

Let n, as before, be a large composite integer that we wish to factorise.
Suppose p is a prime factor of n. Let

E(Q) : y2 = x3 + bx+ c (b, c ∈ Z)

be an elliptic curve over Q. Unless we are very unlucky (or very lucky) p will
be a good prime for E , ie the curve

E(Fp) : y2 = x3 + bx+ c

over the finite field Fp is still elliptic. (We say lucky because p is a bad prime
if and only if

p | ∆ = −(4b3 + 27c2).

Thus if p is a bad prime,

d = gcd(∆, n) > 1;

so if we wished we could compute this gcd at the outset. However, the prob-
ability of p being bad is so small that this is probably not worth considering.)

Suppose the curve E(Fp) contains N points. By Hasse’s Theorem,

p+ 1− 2
√
p < N < p+ 1 + 2

√
p.

Suppose N is b-smooth. As before, let

k =
∏
q≤b

qe(q).

Then
N | k.

Suppose P ∈ E(Q). We express P in homogeneous coordinates:

P = [X,Y, Z],

where X, Y, Z ∈ Z.
It is a straightforward matter to find a formula for the sum of two points:

[X1, Y1, Z1] + [X2, Y2, Z2] = [X3, Y3, Z3],

where X3, Y3, Z3 are polynomials in X1, Y1, Z1, X2, Y2, Z2 with integer coeffi-
cients:

X3, Y3, Z3 ∈ Z[X1, Y1, Z1, X2, Y2, Z2].
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In effect, we simply have to dress up our usual computation

x1 + x2 + x3 = m2, y3 = mx3 + c

in homogeneous form.
As a special case, this gives a formula for the double of a point:

2[X, Y, Z] = [X1, Y1, Z1],

where X1, Y1, Z1 are polynomials over Z in X, Y, Z.
Using these formulae we can compute

rP = [Xr, Yr, Zr]

for any r ∈ N.
Now let

Pp = [X mod p, Y mod p, Z mod p]

be the point of E(Fp) corresponding to P ∈ E(Q). By Lagrange’s Theorem,

NPp = 0,

and therefore

kPp = 0.

But kPp is just the point we get from

kP = [Xk, Yk, Zk]

by reduction modp. It follows that

Zk ≡ 0 mod p.

(We also have Xk ≡ 0 mod p. However, this follows from the result for Zk
since the only point of E(Fp) on the line at infinity Z = 0 is O = [0, 1, 0].)

It follows that
d = gcd(Zk, n) > 1;

and unless we are very unlucky this will give us a proper factor of n.
Note that in constructing Zk for this purpose we can work throughout

modn.
This method has one very large advantage over Pollard’s p − 1 method;

by changing the coefficients b, c in the elliptic curve we change N , which
probably ranges at random over the interval (p+1−2

√
p, p+1+2

√
p). This
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allows us many chances of finding a ‘smooth’ N, while Pollard’s method only
gives us the one chance p− 1.

Analysis shows that if we have some idea of the size of p then it pays to
choose b of order

√
p, and move on to another elliptic curve if this fails.

Incidentally, it is easier to choose the point P = [X, Y, Z] first, and then
find b, c so that the elliptic curve contains this point, rather than choosing
the curve and then looking for a rational point on it.

428–99 H–4


