Course 428 - Sample Paper 2

Timothy Murphy

24 April 2006

Credit will be given for the best 6 questions answered. Logarithmic tables will be available.

1. Show that if $a, b \in \mathbb{Z}$ and $\operatorname{gcd}(a, b)=d$ then there exist $u, v \in \mathbb{Z}$ such that

$$
a u+b v=d
$$

Show that if $m, n \in \mathbb{N}$ with $\operatorname{gcd}(m, n)=1$ and $r, s \in \mathbb{Z}$ then there is an $x \in \mathbb{Z}$ such that

$$
x \equiv r \bmod m, \quad x \equiv s \bmod n .
$$

What is the smallest integer $x>0$ such that

$$
x \equiv 3 \bmod 28, \quad x \equiv 5 \bmod 101 ?
$$

Answer:

(a) Consider the set S of integers of the form

$$
a u+b v \quad(u, v \in \mathbb{Z})
$$

Let d be the smallest integer >0 in S. We claim that

$$
d=\operatorname{gcd}(a, b) .
$$

Firstly,

$$
d \mid a ;
$$

for otherwise we could divide a by d,

$$
a=q d+r,
$$

with $0<r<d$, and then $r \in S$, contradicting the minimality of d.

Similarly

$$
d \mid b
$$

Conversely,

$$
e|a, b \Longrightarrow e| d
$$

Hence

$$
d=\operatorname{gcd}(a, b),
$$

and the result follows.
[For an alternative proof, carry out the Euclidean algorithm to compute $\operatorname{gcd}(a, b)$:

$$
\begin{aligned}
a & =b q_{1}+r_{1}, \\
b & =r_{1} q_{2}+r_{2}, \\
& \left(0<r_{1}<b\right), \\
r_{1} & =r_{2} q_{3}+r_{3}, \\
& \left(0<r_{3}<r_{2}\right),
\end{aligned}
$$

until finally

$$
r_{n-1}=r_{n} q_{n+1},
$$

with $r_{n+1}=0$.
Then it follows, working backwards, that

$$
r_{n}=\operatorname{gcd}(a, b) .
$$

It also follows, working backwards, that r_{n} can be expressed in the form

$$
r_{n}=r_{i-1} u_{i}+r_{i} v_{i}
$$

with $u_{i}, v_{i} \in \mathbb{Z}$; and so, finally,

$$
\left.r_{n}=a u+b v .\right]
$$

(b) Consider the map

$$
\Theta: \mathbb{Z} /(m n) \rightarrow \mathbb{Z} /(m) \times \mathbb{Z} /(n)
$$

under which

$$
r \bmod m n \mapsto(r \bmod m, r \bmod n) .
$$

This map is injective. For suppose

$$
r \bmod m=s \bmod m, r \bmod n=s \bmod n,
$$

ie

$$
m|r-s, n| r-s
$$

Then

$$
m n \mid r-s
$$

since $\operatorname{gcd}(m, n)=1$, ie

$$
r \bmod m n=s \bmod m n .
$$

But each of the two sets $\mathbb{Z} /(m n)$ and $\mathbb{Z} /(m) \times \mathbb{Z} /(n)$ contains $m n$ elements. Hence

$$
\Theta \text { injective } \Longrightarrow \Theta \text { surjective. }
$$

In other words, given any $r, s \in \mathbb{Z}$ we can find $x \in \mathbb{Z}$ such that

$$
\Theta(x)=(r, s)
$$

ie

$$
x \bmod m=r, x \bmod n=s
$$

(c) Let us use the Euclidean Algorithm (slightly modified, to allow negative remainders) to determine $\operatorname{gcd}(28,101)$:

$$
\begin{aligned}
101 & =28 \cdot 4-11 \\
28 & =11 \cdot 3-5 \\
11 & =5 \cdot 2+1
\end{aligned}
$$

Thus $\operatorname{gcd}(28,101)=1$ (as is obvious anyway by factoring); and working backwards,

$$
\begin{aligned}
1 & =11-2 \cdot 5 \\
& =11-2(3 \cdot 11-28) \\
& =2 \cdot 28-5 \cdot 11 \\
& =2 \cdot 28-5(4 \cdot 28-101) \\
& =5 \cdot 101-18 \cdot 28
\end{aligned}
$$

Thus

$$
5 \cdot 101 \equiv 1 \bmod 28, \quad 18 \cdot 28 \equiv-1 \bmod 101
$$

It follows that

$$
n=3 \cdot 5 \cdot 101-5 \cdot 18 \cdot 28
$$

satisfies

$$
n \equiv 3 \bmod 28, \quad n \equiv 5 \bmod 101
$$

The general solution of these simultaneous congruences will be

$$
m=n+28 \cdot 101 q
$$

with $q \in \mathbb{Z}$.
We have to choose q so that

$$
0 \leq m<\cdot 28 \cdot 101
$$

ie

$$
m=\left[\frac{n}{28 \cdot 101}\right] .
$$

Computing,

$$
\begin{aligned}
n & =15 \times 101-90 \cdot 28 \\
& =1515-2520 \\
& =-1005
\end{aligned}
$$

Hence

$$
\begin{aligned}
m & =28 \cdot 101-1005 \\
& =2828-1005 \\
& =1823 .
\end{aligned}
$$

[Of course any method of arriving at this result would be valid.]
2. Show that if $2^{m}+1$ is prime then $m=2^{n}$ for some $n \in \mathbb{N}$.

Show that the Fermat number

$$
F_{n}=2^{2^{n}}+1,
$$

where $n>0$, is prime if and only if

$$
3^{2^{2^{n}-1}} \equiv-1 \bmod F_{n} .
$$

Use this test to determine the primality of F_{3}.
Answer:
(a) If r is odd then

$$
x+1 \mid x^{r}+1 .
$$

Thus if m contains an odd factor r, say $m=r s$, then

$$
2^{s}+1 \mid 2^{r s}+1
$$

It follows that if $2^{m}+1$ is prime then m has no odd factors, ie $m=2^{n}$ for some n.
(b) Suppose F_{n} is prime.

We assume the following result.
Lemma 2.1. If p is an odd prime then

$$
a^{\frac{p-1}{2}} \equiv\left(\frac{a}{p}\right) \bmod p
$$

for any a coprime to p.
Applying this with $p=F_{n}$,

$$
3^{2^{2^{n}}-1} \equiv\left(\frac{3}{p}\right) \bmod p
$$

Since

$$
F_{n} \equiv 1 \bmod 5
$$

it follows by Gauss' Recipricity Law that

$$
\left(\frac{3}{p}\right)=\left(\frac{p}{3}\right) .
$$

But

$$
2^{2^{n}} \equiv 1 \bmod 3
$$

(since $3^{2} \equiv 1$),

$$
p=F_{n} \equiv 2 \bmod 3
$$

Thus

$$
\left(\frac{p}{3}\right)=\left(\frac{2}{3}\right)=-1 .
$$

It follows that

$$
3^{2^{2^{n}-1}} \equiv-1 \bmod p .
$$

(c) Conversely, suppose

$$
3^{2^{2^{n}-1}} \equiv-1 \bmod F_{n}
$$

Suppose F_{n} is composite, say

$$
F_{n}=q r,
$$

where q is prime. Then

$$
3^{2^{2^{n}-1}} \equiv-1 \bmod q .
$$

It follows that the order of $3 \bmod q$ is $2^{2^{n}}$. But we know that

$$
3^{q-1} \equiv 1 \bmod q .
$$

It follows that

$$
2^{2^{n}} \mid q-1
$$

ie

$$
F_{n}-1 \mid q-1,
$$

which is impossible since $q<F_{n}$,
(d) Since

$$
F_{3}=2^{2^{3}}+1=2^{8}+1=257,
$$

we must compute

$$
3^{2^{7}}=3^{128} \bmod 257 .
$$

We know that the order of $3 \bmod ; 257$ divides 256, ie it is a power of 2. And

$$
3^{256} \equiv 1 \bmod 257 \Longrightarrow 3^{128} \equiv \pm 1 \bmod 257 ;
$$

while

$$
3^{128} \equiv 1 \bmod 257 \Longleftrightarrow 3^{64} \equiv \pm 1 \bmod 257
$$

We have to show that this is not the case.
Now

$$
3^{5}=3 \cdot 81=243 .
$$

Thus

$$
3^{5} \equiv-14 \bmod 257
$$

Hence

$$
3^{10} \equiv 14^{2}=196 \equiv-61 \bmod 257
$$

and so

$$
3^{12} \equiv-9 \cdot 61=-549 \equiv-35 \bmod 257
$$

Thus

$$
3^{14} \equiv-315 \equiv 58 \bmod 257,
$$

and

$$
3^{16} \equiv 522 \equiv 8=2^{3} \bmod 257,
$$

Hence

$$
3^{32} \equiv 2^{6} \bmod 257
$$

and so

$$
3^{64} \equiv 2^{12}=4096=4 \cdot 1024 \equiv 4 \cdot-4=-16 \bmod 257
$$

So

$$
3^{128} \equiv 16^{2} \equiv-1 \bmod 257
$$

and we conclude that F_{3} is prime.
3. Define the Jacobi symbol $\left(\frac{m}{n}\right)$ for $m \in \mathbb{N}, n \in \mathbb{Z}$ with m odd. Assuming Gauss' Law of Quadratic Reciprocity, show that if $m, n \in \mathbb{N}$ are both odd then

$$
\left(\frac{m}{n}\right)\left(\frac{n}{m}\right)=(-1)^{\frac{m-1}{2} \frac{n-1}{2}} .
$$

Prove that the odd number $n \in N$ is prime if and only if

$$
a^{\frac{n-1}{2}} \equiv\left(\frac{a}{n}\right) \bmod n
$$

for all a coprime to n.

Answer:

(a) If

$$
m=p_{1} \cdots p_{r}, \quad n=q_{1} \cdots q_{s}
$$

with p_{i}, q_{j} prime, then the Jacobi symbol is defined by

$$
\left(\frac{m}{n}\right)=\prod_{1 \leq i \leq r, 1 \leq j \leq s}\left(\frac{p_{i}}{q_{j}}\right)
$$

(b) Gauss' Law states that

$$
\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=(-1)^{\frac{p-1}{2} \frac{q-1}{2}} .
$$

It follows that

$$
\left(\frac{m}{n}\right)\left(\frac{n}{m}\right)=\prod_{i, j}\left(\frac{p_{i}-1}{2} \frac{q_{j}-1}{2}\right) .
$$

Lemma 3.1. If u, v are odd then

$$
\frac{u v-1}{2} \equiv \frac{u-1}{2}+\frac{v-1}{2} \bmod 2 .
$$

Proof. If u, v are odd then

$$
(u-1)(v-1) \equiv 0 \bmod 4,
$$

ie

$$
(u v-1) \equiv(u-1)+(v-1) \bmod 4,
$$

or

$$
\frac{u v-1}{2} \equiv \frac{u-1}{2}+\frac{v-1}{2} \bmod 2 .
$$

which is evident.
Repeated application of this Lemma gives

$$
\begin{aligned}
\frac{m-1}{2} & \equiv \sum_{i} \frac{p_{i}-1}{2} \\
\frac{n-1}{2} & \equiv \sum_{j} \frac{q_{j}-1}{2} .
\end{aligned}
$$

Multiplying these together,

$$
\begin{aligned}
\frac{m-1}{2} \frac{n-1}{2} & =\sum_{i, j} \frac{p_{i}-1}{2} \frac{q_{j}-1}{2} \\
& =\left(\frac{m}{n}\right)\left(\frac{n}{m}\right)
\end{aligned}
$$

(c) Suppose n is prime. Then

$$
a^{n-1} \equiv 1 \bmod n \Longrightarrow a^{\frac{n-1}{2}} \equiv \pm 1 \bmod n
$$

Suppose $\left(\frac{a}{n}\right)=1$. Then

$$
a \equiv b^{2} \Longrightarrow a^{\frac{n-1}{2}} \equiv b^{n-1} \equiv 1 \bmod n
$$

Now the equation

$$
x^{\frac{n-1}{2}}=1
$$

in the finite field $\mathbb{F}_{n}=\mathbb{Z} /(n)$ has at most $(n-1) / 2$ roots. But there are $(n-1) / 2$ quadratic residues. Hence

$$
a^{\frac{n-1}{2}} \equiv 1 \bmod n \Longleftrightarrow\left(\frac{a}{n}\right)=1
$$

Conversely, suppose this holds for all a coprime to n; and suppose n is not prime.
Then n must be square-free. For suppose

$$
n=p^{e} q,
$$

where p is prime and $\operatorname{gcd}(p, q)=1$.
By hypothesis

$$
a^{n-1} \equiv 1 \bmod n
$$

for all a coprime to n. Hence

$$
a^{n-1} \equiv 1 \bmod p^{e},
$$

ie the order of $a \bmod p^{e}$ divides $n-1$.
Since $\phi\left(p^{e}\right)=p^{e-1}(p-1)$, the order of

$$
a \in\left(\mathbb{Z} / p^{e}\right)^{\times}
$$

divides $p^{e-1}(p-1)$; and it is easy to see that there are elements whose order is divisible by p, eg $a=1+p$ is such an element, since

$$
a^{p-1} \equiv 1+(p-1) p \equiv 1-p \bmod p^{2},
$$

so the order of a does not divide $p-1$.

By the Chinese Remainder Theorem we can find a such that

$$
a \equiv 1+p \bmod p^{e}, a \equiv 1 \bmod q .
$$

Then a is coprime to n, and p divides the order of $a \bmod n$. Hence

$$
p \mid n-1,
$$

which is absurd.
Thus

$$
n=p_{1} p_{2} \cdots p_{r},
$$

with distinct primes p_{i}.
We can certainly find an a with

$$
\left(\frac{a}{n}\right)=-1,
$$

eg by the Chinese Remainder Theorem we can find a such that a is a quadratic non-residue mod p_{1} and a quadratic residue modulo the other p_{i}. Then

$$
a^{\frac{n-1}{2}} \equiv-1 \bmod n
$$

and so

$$
a^{\frac{n-1}{2}} \equiv-1 \bmod p_{i}
$$

for each i.
Suppose

$$
2^{e} \| n-1
$$

ie $2^{e} \mid n-1$ but $2^{e+1} \nmid n-1$. [In other words,

$$
n-1=2^{e} m,
$$

where m is odd. Note that in the following argument, we are only concerned with the power of 2 dividing the order of an element; if you like we are concerned with the 2-adic value of the order.]
Then the order of $a \bmod n$ is divisible by 2^{e}; hence the order of $a \bmod p_{i}$ is also divisible by 2^{e}. Thus

$$
2^{e} \mid p_{i}-1,
$$

ie

$$
p_{i} \equiv 1 \bmod 2^{e}
$$

for each i.
But now choose a so that it is a quadratic non-residue mod p_{1} and $\bmod p_{2}$ but a quadratic residue modulo the other p_{i}. Then

$$
\left(\frac{a}{n}\right)=(-1)(-1) 1 \cdots 1=1
$$

Hence

$$
a^{\frac{n-1}{2}} \equiv 1 \bmod n,
$$

and so

$$
a^{\frac{n-1}{2}} \equiv 1 \bmod p .
$$

Thus if

$$
2^{f} \| \operatorname{order}(a \bmod p)
$$

then

$$
f \leq e-1 ;
$$

while on the other hand, since $2^{e} \mid p-1$,

$$
a^{\frac{p-1}{2}} \equiv-1 \bmod p \Longrightarrow f \geq e
$$

We conclude that n must be prime.
Remarks:
(a) I've removed the part of this question which read:

Apply this test to determine the primality (or otherwise) of 10013.
I think I gave this question as homework in an earlier year when the course covered computer methods for primality testing and factorisation. I guess I expected the student to write a computer program to solve this question. I certainly don't see any way of solving it 'by hand' in the time available in an exam!
Running the program/usr/games/factor 10013 on the Maths computer system tells me that

$$
10013=17 \cdot 19 \cdot 31
$$

Recall that if p is an odd prime then

$$
\left(\frac{2}{p}\right)= \begin{cases}1 & \text { if } p \equiv \pm 1 \bmod 8 \\ -1 & \text { if } p \equiv \pm 3 \bmod 8\end{cases}
$$

Since

$$
10013 \equiv 5 \equiv-3 \bmod 8
$$

it follows that

$$
\left(\frac{2}{10013}\right)=-1
$$

Thus if $n=10013$ is prime then

$$
2^{5006} \equiv-1 \bmod 10013
$$

It is easy to compute this, knowing the factorisation of n.
The order of $2 \bmod 17$ is 5 since

$$
2^{4}=16 \equiv-1 \bmod 17
$$

The order of $2 \bmod 31$ is 5 since

$$
2^{5}=32 \equiv 1 \bmod 31
$$

It remains to compute the order of $2 \bmod 19$. This order divides $19-1=18$. Since it is not 2 or 3 , it must be 6,9 or 18 .
We have

$$
2^{6}=64 \equiv 7 \bmod 19 .
$$

Hence

$$
2^{9} \equiv 8 \cdot 7=56 \equiv-1 \bmod 19 .
$$

Thus the order of $2 \bmod 19$ is 18 .
Since

$$
5006 \bmod 5=1, \quad 5006 \bmod 18=2
$$

it follows that

$$
2^{5006}\left\{\begin{array}{l}
\equiv 1 \bmod 17, \\
\equiv 2 \bmod 19, \\
\equiv 1 \bmod 31 .
\end{array}\right.
$$

So certainly

$$
2^{5006} \not \equiv-1 \bmod 10013
$$

In fact this argument shows that

$$
2^{10012}\left\{\begin{array}{l}
\equiv 1 \bmod 17, \\
\equiv 4 \bmod 19, \\
\equiv 1 \bmod 31 .
\end{array}\right.
$$

So

$$
2^{10012} \not \equiv \equiv 1 \bmod 10013,
$$

and 10013 fails even Fermat's primality test.
(b) The method suggested in the question is a perfectly sensible probabilistic primality test, since it is easy to compute $\left(\frac{a}{n}\right)$ using the generalised Reciprocity Law given earlier in the question. It could be used as an alternative to the standard Miller-Rabin probabilistic primality test.
Let us recall the Miller-Rabin test for the primality of n.
Let

$$
n-1=2^{e} m,
$$

where m is odd.
If n is prime then

$$
a^{2^{2} m} \equiv 1 \bmod n \Longrightarrow a^{2^{2-1} m} \equiv \pm 1 \bmod n .
$$

If now

$$
a^{2^{e-1} m} \equiv 1 \bmod n
$$

then

$$
a^{2^{e-2} m} \equiv \pm 1 \bmod n
$$

Continuing in this way, we conclude that if $\operatorname{gcd}(a, n)=1$ then either

$$
a^{2^{f} m} \equiv-1 \bmod n
$$

for some $f \in[0, e-1]$, or else

$$
a^{m} \equiv 1 \bmod n .
$$

Conversely, if this is true for all a coprime to n then n must be prime.

The proof is very similar to that in the question, and depends in the same way on the power of 2 dividing the order of a modulo different numbers. To simplify the discussion, let us write

$$
v(a, n)=e
$$

if the order of $a \bmod n$ is r and

$$
2^{e} \| r
$$

It is not difficult to see that

$$
a^{2^{f} m} \equiv-1 \bmod n \Longleftrightarrow v(a, n)=f+1
$$

But if $p \mid n$ then

$$
a^{2^{f} m} \equiv-1 \bmod n \Longrightarrow a^{2^{f} m} \equiv-1 \bmod p \Longrightarrow v(a, p)=f+1 .
$$

Thus

$$
v(a, p)=v(a, n)
$$

if $p \mid n$. In particular, $v(a, p)$ is the same for all primes dividing n.
But it is easy to see that this cannot be the case if two distinct primes $p, q \mid n$.
For by the Chinese Remainder Theorem we can find a which is a quadratic residue mod p and a quadratic non-residue $\bmod q$. Then

$$
a^{\frac{p-1}{2}} \equiv 1 \bmod p, \quad a^{\frac{q-1}{2}} \equiv-1 \bmod q .
$$

On the other hand, we can find b which is a quadratic non-residue $\bmod p$ and a quadratic residue $\bmod q$. Then

$$
b^{\frac{p-1}{2}} \equiv-1 \bmod p, \quad b^{\frac{q-1}{2}} \equiv 1 \bmod q .
$$

But it follows from these that

$$
v(a, p)<v(b, p), \quad v(a, q)>v(b, q)
$$

which is clearly incompatible with

$$
v(a, p)=v(a, q), \quad v(b, p)=v(b, q) .
$$

It only remains to deal with the case

$$
n=p^{e} .
$$

But as we saw in our proof, it is easy to find a in this case such that

$$
a^{n-1} \not \equiv 1 \bmod n .
$$

4. Show that every irrational number $\alpha \in \mathbb{R} \backslash \mathbb{Q}$ has an infinity of rational approximations x / y with

$$
\left|\alpha-\frac{x}{y}\right|<\frac{1}{y^{2}} .
$$

Find five such approximations for $\sqrt{2}$.
Suppose $m>1$ is square-free. Show that the equation

$$
x^{2}-m y^{2}=1
$$

has an infinity of solutions.
Answer:
(a) Choose any integer $N>0$, and consider the remainders

$$
\{0 \alpha\},\{1 \alpha\},\{2 \alpha\}, \ldots\{N \alpha\}
$$

where

$$
\{x\}=x-[x] .
$$

These $N+1$ numbers lie in the interval $[0,1)$. Let us divide this interval into N equal parts

$$
[0,1 / N),[1 / N, 2 / N), \ldots,[(N-1) / N, 1)
$$

Two of the remainders, say $\{r \alpha\},\{s \alpha\}$ with $r<s$, must fall into the same sub-interval.
But then

$$
|\{s \alpha\}-\{r \alpha\}|<\frac{1}{N}
$$

In other words,

$$
|s \alpha-[s \alpha]-(r \alpha-[r \alpha])|<\frac{1}{N}
$$

On setting

$$
x=[s \alpha]-[r \alpha], \quad y=s-r,
$$

this can be written

$$
|y \alpha-x|<\frac{1}{N}
$$

from which the result follows since

$$
y \leq N .
$$

(b) We can get approximants to $\sqrt{2}$ from its continued fraction:

$$
\sqrt{2}=1+(\sqrt{2}-1)
$$

and

$$
\begin{aligned}
\frac{1}{\sqrt{2}-1} & =\sqrt{2}+1 \\
& =2+(\sqrt{2}-1)
\end{aligned}
$$

Thus

$$
\sqrt{2}=[1,2,2,2, \ldots] .
$$

The approximants are

$$
\frac{p_{n}}{q_{n}}
$$

where

$$
p_{n}=a_{n} p_{n-1}+p_{n-2}, \quad q_{n}=a_{n} q_{n-1}+q_{n-2},
$$

with

$$
p_{0}=a_{0}=1, q_{0}=1, \quad p_{1}=a_{0} a_{1}+1=2, q_{1}=a_{1}=1 .
$$

The first 6 approximants are

$$
\begin{aligned}
& \frac{1}{1}, \\
& \frac{2}{1}, \\
& \frac{2 \cdot 2+1}{2 \cdot 1+1}=\frac{5}{3}, \\
& \frac{2 \cdot 5+2}{2 \cdot 3+1}=\frac{12}{7}, \\
& \frac{2 \cdot 12+5}{2 \cdot 7+3}=\frac{29}{17}, \\
& \frac{2 \cdot 29+12}{2 \cdot 17+7}=\frac{70}{41} .
\end{aligned}
$$

These all satisfy

$$
\begin{aligned}
\left|\alpha-\frac{p_{n}}{q_{n}}\right| & <\frac{1}{q_{n} q_{n+1}} \\
& <\frac{1}{q_{n}^{2}}
\end{aligned}
$$

(c) Here is an alternative solution to Pell's equation

$$
x^{2}-m y^{2}=1
$$

based on the fact that the continued fraction for \sqrt{m} is periodic: say

$$
\sqrt{m}=\left[a_{0}, \ldots, a_{\ell-1}, \dot{a_{n}}, \ldots, a_{n+k}\right]
$$

ie the continued fraction for \sqrt{m} starts with an initial sequence of length ℓ, followed by a repeated sequence of length k.
Let p_{n} / q_{n} be the successive approximants, so that

$$
p_{n}=a_{n} p_{n-1}+p_{n-2}, \quad q_{n}=a_{n} q_{n-1}+q_{n-2} ;
$$

and let

$$
\alpha_{n}=\left[a_{n}, a_{n+1}, \ldots\right],
$$

so that

$$
\sqrt{m}=\left[a_{0}, \ldots, a_{n-1}, \alpha_{n}\right]=\frac{u_{n}}{v_{n}},
$$

where

$$
u_{n}=\alpha_{n} p_{n-1}+p_{n-2}, \quad v_{n}=\alpha_{n} q_{n-1}+q_{n-2} .
$$

Then

$$
\alpha_{n}=\alpha_{n+k}
$$

if $n \geq \ell$, or more generally

$$
\alpha_{n}=\alpha_{n+k j}
$$

for $j \geq 0$.
We know that

$$
p_{n} q_{n-1}-q_{n} p_{n-1}=(-1)^{n} .
$$

[This is readily proved by induction on n.] Thus if we set

$$
M_{n}=\left(\begin{array}{cc}
p_{n-1} & p_{n-2} \\
q_{n-1} & q_{n-2}
\end{array}\right)
$$

then

$$
\operatorname{det} M_{n}=(-1)^{n-1}
$$

In particular M_{n} is unimodular, ie its inverse is also an integer matrix.
Now

$$
M_{n}\binom{\sqrt{m}}{1}=\binom{u_{n}}{v_{n}}
$$

Since

$$
\alpha_{n+k}=\alpha_{n}
$$

if $n \geq \ell$,

$$
u_{n+k} / v_{n+k}=u_{n} / v_{n}
$$

Thus

$$
\binom{u_{n+k}}{v_{n+k}}=\lambda\binom{u_{n}}{v_{n}}
$$

for some λ.
It follows that

$$
M_{n+k}\binom{\sqrt{m}}{1}=\lambda M_{n}\binom{\sqrt{m}}{1} .
$$

Hence if we set

$$
M=M_{n}^{-1} M_{n+k}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

then

$$
M\binom{\sqrt{m}}{1}=\lambda\binom{\sqrt{m}}{1}
$$

ie

$$
a \sqrt{m}+b=\lambda \sqrt{m}, \quad c \sqrt{m}+d=\lambda .
$$

Eliminating λ,

$$
a \sqrt{m}+b=\sqrt{m}(c \sqrt{m}+d),
$$

ie

$$
(b-c m)+(a-d) \sqrt{m}=0 .
$$

Thus

$$
b=c m, a=d \text {. }
$$

But

$$
\operatorname{det} M=a d-b c= \pm 1,
$$

according as k is even or odd; and so

$$
a^{2}-m b^{2}= \pm 1
$$

Since we can replace k by $k j$, this gives a solution - in fact an infinity of solutions - of Pell's equation

$$
x^{2}-m y^{2}=1 .
$$

5. Determine the ring A of integers in the field $\mathbb{Q}(\sqrt{5})$, and show that the Fundamental Theorem of Arithmetic holds in this ring.
The Fibonacci numbers u_{i} are defined by the recursion relation

$$
u_{0}=0, u_{1}=1, u_{i+1}=u_{i}+u_{i-1} .
$$

Suppose $p \neq 5$ is a prime number. Show that

$$
p \mid u_{p-1} \text { if } p \equiv \pm 1 \bmod 5,
$$

while

$$
p \mid u_{p+1} \text { if } p \equiv \pm 2 \bmod 5,
$$

Answer:

(a) We assume the following result.

Lemma 5.1. The algebraic number α is an algebraic integer if and only if its minimal polynomial $m(x)$ over \mathbb{Q} has integer coefficients.

Suppose

$$
\alpha=u+v \sqrt{5} \in \overline{\mathbb{Z}}
$$

where $u, v \in \mathbb{Q}$.
Then α satisfies the equation

$$
(x-u)^{2}=5 v^{2},
$$

ie

$$
f(x)=x^{2}-2 u x+\left(u^{2}-5 v^{2}\right)=0 .
$$

If $v=0$ then the minimal polynomial of α is

$$
m(x)=x-u ;
$$

so $\alpha \in \overline{\mathbb{Z}}$ if and only if $u \in \mathbb{Z}$.
If $v \neq 0$ then $f(x)$ must be the minimal polynomial of α. Thus

$$
\alpha \in \overline{\mathbb{Z}} \Longleftrightarrow 2 u, u^{2}-5 v^{2} \in \mathbb{Z}
$$

Hence

$$
u=\frac{a}{2},
$$

with $a \in \mathbb{Z}$. Also

$$
5 v^{2}-\frac{a^{2}}{4} \in \mathbb{Z}
$$

and so

$$
5 v^{2}=\frac{c}{4},
$$

with $c \in \mathbb{Z}$. It follows that

$$
v=\frac{b}{2}
$$

with $b \in \mathbb{Z}$.
But now

$$
u^{2}-5 v^{2}=\frac{a^{2}-5 b^{2}}{4}
$$

Thus

$$
a^{2}-5 v^{2} \equiv 0 \bmod 4
$$

Since

$$
n^{2} \equiv 0 \text { or } 1 \bmod 4,
$$

this holds if and only if a, b are both odd or both even.
We conclude that the integers in $\mathbb{Q}(\sqrt{5})$ are the numbers of the form

$$
\frac{a+b \sqrt{5}}{2}
$$

where $a, b \in \mathbb{Z}$ and $a \equiv b \bmod 2$.
In other words, the integers are the numbers

$$
m+n \theta \quad(m, n \in \mathbb{Z})
$$

where

$$
\theta=\frac{1+\sqrt{5}}{2}
$$

6. Define an ideal \mathfrak{a} in a commutative ring A.

What is meant by saying that \mathfrak{a} is prime?
Show that a maximal ideal is necessarily prime. Does the converse hold?
Sketch the proof that in a number ring every ideal is a product of prime ideals, unique up to order.

Answer:

(a) An ideal $\mathfrak{a} \subset A$ is a non-empty subset such that
i. $a, b \in \mathfrak{a} \Longrightarrow a+b \in \mathfrak{a}$;
ii. $a \in A, b \in \mathfrak{a} \Longrightarrow a b \in \mathfrak{a}$.
(b) The ideal $\mathfrak{a} \neq A$ is prime if

$$
a b \in \mathfrak{a} \Longrightarrow a \in \mathfrak{a} \text { textor } b \in \mathfrak{a} .
$$

[An alternative, equivalent, definition is: The ideal $\mathfrak{p} \neq A$ is prime if

$$
\mathfrak{a b} \subset \mathfrak{p} \Longrightarrow \mathfrak{a} \subset \mathfrak{p} \text { or } \mathfrak{b} \subset \mathfrak{p}
$$

for any two ideals $\mathfrak{a}, \mathfrak{b} \subset$ A.]
(c) Suppose the ideal $\mathfrak{a} \subset A$ is maximal; and suppose

$$
a b \in \mathfrak{a} .
$$

Consider the ideal

$$
\mathfrak{a}^{\prime}=\mathfrak{a}+(a)=\{x+a y: x \in \mathfrak{a}, \operatorname{yin} A\}
$$

Evidently

$$
\mathfrak{a} \subset \mathfrak{a}^{\prime} \subset A
$$

Hence, from the maximality of \mathfrak{a},

$$
\mathfrak{a}^{\prime}=\mathfrak{a} \text { or } A .
$$

Thus if $a \notin \mathfrak{a}$ then $\mathfrak{a}^{\prime}=A$. In that case, $1 \in \mathfrak{a}^{\prime}$, ie

$$
x+a y=1
$$

for some $x \in \mathfrak{a}, y \in A$. But then, multiplying by b,

$$
b=b x+(a b) y
$$

Since $x, a b \in \mathfrak{a}$ it follows that

$$
b \in \mathfrak{a} .
$$

Thus \mathfrak{a} is prime.
(d) No. The ideal $(0) \subset \mathbb{Z}$ is prime but not maximal.
(e) i. Suppose A is a number ring.

Lemma 6.1. As an abelian group, A is finitely-generated:

$$
A \cong \mathbb{Z}^{r}
$$

It follows from this that every ideal $\mathfrak{a} \subset A$ is also finitelygenerated as an abelian group.
Lemma 6.2. Every non-zero ideal $\mathfrak{a} \in A$ contains a non-zero rational integer $n \in \mathbb{Z}$.
Lemma 6.3. If $\mathfrak{a} \in A$ is a non-zero ideal then the quotientring A / \mathfrak{a} is finite.
We define the norm of a non-zero ideal $\mathfrak{a} \subset A$ as

$$
|\mathfrak{a}|=\#(A / \mathfrak{a}),
$$

and set

$$
|(0)|=0 .
$$

Lemma 6.4. A finite integral domain is a field.
Lemma 6.5. Every non-zero prime ideal $\mathfrak{p} \subset A$ is maximal.
Lemma 6.6. Every non-zero ideal $\mathfrak{a} \subset A$ contains a product of maximal ideals:

$$
\mathfrak{p}_{1} \cdots \mathfrak{p}_{r} \subset \mathfrak{a}
$$

Proof. We argue by induction on $|\mathfrak{a}|$.
If \mathfrak{a} is prime, the result is immediate.
If not then there exist elements $a, b \in A$ such that

$$
a b \in \mathfrak{a}, \quad a, b \notin \mathfrak{a} .
$$

Then

$$
(\mathfrak{a}+(a))(\mathfrak{a}+(b)) \subset \mathfrak{a} .
$$

By the inductive hypothesis,

$$
\mathfrak{p}_{1} \cdots \mathfrak{p}_{r} \subset \mathfrak{a}+(a), \quad \mathfrak{q}_{1} \cdots \mathfrak{q}_{s} \subset \mathfrak{a}+(b) .
$$

Then

$$
\mathfrak{p}_{1} \cdots \mathfrak{p}_{r} \mathfrak{q}_{1} \cdots \mathfrak{q}_{s} \subset \mathfrak{a} .
$$

Suppose A is an integral domain with field of fractions k. A fractional ideal is a non-empty subset $\mathfrak{a} \subset k$ such that $c \mathfrak{a}$ is an ideal in A for some non-zero $c \in k$.

If \mathfrak{a} is a fractional ideal then we set

$$
\mathfrak{a}^{-1}=\{c \in k: c \mathfrak{a} \subset A\} .
$$

It is easy to see that \mathfrak{a}^{-1} is a fractional ideal, and that

$$
A \subset \mathfrak{a}^{-1}
$$

The non-zero fractional ideal \mathfrak{a} is said to be invertible if

$$
\mathfrak{a a}^{-1}=A .
$$

This is the same as saying that there is a fractional ideal \mathfrak{b} such that

$$
\mathfrak{a b}=A .
$$

The ideal $\mathfrak{a} \subset A$ is invertible if and only if there is an ideal $\mathfrak{b} \subset A$ such that

$$
\mathfrak{a} \mathfrak{b}=(c),
$$

where $c \in A$ is non-zero.
If $c \in A, c \neq 0$ and

$$
(c)=\mathfrak{a}_{1} \cdots \mathfrak{a}_{r}
$$

then the ideals $\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{r}$ are all invertible.
We assume again that A is a number ring.
Lemma 6.7. If $\mathfrak{p} \subset A$ is maximal then

$$
\mathfrak{p}^{-1} \neq A
$$

Proof. Choose $c \in \mathfrak{p}, c \neq 0$. Then there exist maximal ideals $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{r}$ such that

$$
\mathfrak{p}_{1} \cdots \mathfrak{p}_{r} \subset(c)
$$

Let us assume that r is minimal.
Since

$$
\mathfrak{p}_{1} \cdots \mathfrak{p}_{r} \subset(c) \subset \mathfrak{p}
$$

one of $\mathfrak{p}_{i}=\mathfrak{p}$. Let us assume that $\mathfrak{p}_{1}=\mathfrak{p}$.
Choose $a \in \mathfrak{p}_{2} \cdots p_{r}, a \notin(c)$. Then

$$
a \mathfrak{p} \subset(c) \text { but } a \notin(c) .
$$

It follows that

$$
a c^{-1} \in \mathfrak{p}^{-1} \text { but } a c^{-1} \notin A .
$$

Lemma 6.8. Every maximal ideal $\mathfrak{p} \subset A$ is invertible.
[This is the main Lemma, and the only one that makes use of the fact that A consists of algebraic integers.]
Proof. Clearly

$$
A \subset \mathfrak{p}^{-1}
$$

so

$$
\mathfrak{p p}^{-1}=\mathfrak{p} \text { or } A .
$$

In the second case \mathfrak{p} is invertible. Suppose then that

$$
\mathfrak{p p}{ }^{-1}=\mathfrak{p} ;
$$

and suppose $\alpha \in \mathfrak{p}^{-1}$. Then

$$
\alpha \mathfrak{p} \subset \mathfrak{p}
$$

It follows that α is an algebraic integer, ie

$$
\alpha \in k \cap \bar{Z}=A .
$$

Thus

$$
\mathfrak{p}^{-1} \subset A
$$

But we saw earlier that this was not the case; hence \mathfrak{p} is invertible.

Lemma 6.9. Every non-zero ideal $\mathfrak{a} \subset A$ is expressible as a product of prime ideals.
Proof. We argue by induction on $|\mathfrak{a}|$. If \mathfrak{a} is prime there is nothing to prove. Otherwise (from a Lemma above) we can find maximal ideals $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{r}$ such that

$$
\mathfrak{p}_{1} \mathfrak{p}_{2} \cdots \mathfrak{p}_{r} \subset \mathfrak{a}
$$

Let us assume that this is a minimal solution, ie there is no such product with $<r$ maximal ideals.
We know that \mathfrak{p}_{1} is invertible. Hence

$$
\mathfrak{p}_{2} \cdots \mathfrak{p}_{r} \subset \mathfrak{p}_{1}^{-1} \mathfrak{a}
$$

But $\mathfrak{p}_{1}^{-1} \mathfrak{a}$ is strictly larger than \mathfrak{a}, since otherwise

$$
\mathfrak{p}_{2} \cdots \mathfrak{p}_{r} \subset \mathfrak{a},
$$

contrary to the minimality of r.
Thus

$$
\left|p_{1}^{-1} \mathfrak{a}\right|<|\mathfrak{a}|,
$$

and so, by the inductive hypothesis,

$$
\mathfrak{p}_{1}^{-1} \mathfrak{a}=\mathfrak{q}_{1} \cdots \mathfrak{q}_{s}
$$

with $\mathfrak{q}_{1}, \ldots, \mathfrak{q}_{s}$ maximal.
But then, multiplying by \mathfrak{p},

$$
\mathfrak{a}=\mathfrak{p}_{1} \mathfrak{q}_{1} \cdots \mathfrak{q}_{s}
$$

Lemma 6.10. The expression of a non-zero ideal $\mathfrak{a} \subset A$ as a product of maximal ideals is unique up to order.

Proof. We argue by induction on the minimal number of ideals in such an expression.
Suppose

$$
\mathfrak{a}=\mathfrak{p}_{1} \cdots \mathfrak{p}_{r}=\mathfrak{q}_{1} \cdots \mathfrak{q}_{s} .
$$

Then

$$
\mathfrak{q}_{1} \subset \mathfrak{p}_{1} \cdots \mathfrak{p}_{r} \Longrightarrow \mathfrak{q}_{1}=\mathfrak{p}_{i}
$$

for some i.
We may suppose, after re-ordering the \mathfrak{p}_{i} if necessary, that $q_{1}=\mathfrak{p}_{1}$. Hence, multiplying by p_{1}^{-1},

$$
\mathfrak{p}_{1}^{-1} \mathfrak{a}=\mathfrak{p}_{2} \cdots \mathfrak{p}_{r}=\mathfrak{q}_{2} \cdots \mathfrak{q}_{s}
$$

and the result follows by the inductive hypothesis.
7. Show that the integral

$$
\Gamma(s)=\int_{0}^{\infty} e^{-x} x^{s-1} d x
$$

converges for all $s \in \mathbb{C}$ with $\Re(s)>0$.
Show how $\Gamma(s)$ can be extended to a meromorphic function in the whole of \mathbb{C}, and determine its poles and zeros.

Answer:

(a) If $x \in[0, \infty)$ then

$$
\left|x^{s}\right|=x^{\sigma}
$$

where $\sigma=\Re(s)$. Since

$$
e^{-x} x^{n} \rightarrow 0 \text { as } x \rightarrow \infty
$$

for all n, the integral converges at the top for all s.
At the bottom,

$$
\left|x^{s-1}\right|<x^{-(1+\epsilon)}
$$

if $\Re(s)>\epsilon$. Hence the integral converges at the bottom if $\Re(s)>0$.
(b) If $\Re(s)>0$ then, on integrating by parts,

$$
\begin{aligned}
\Gamma(s+1) & =\int_{0}^{\infty} e^{-x} x^{s} d x \\
& =\left[-e^{-x} x^{s}\right]_{0}^{\infty}+s \int_{0}^{\infty} e^{-x} x^{s-1} d x \\
& =s \int_{0}^{\infty} e^{-x} x^{s-1} d x \\
& =s \Gamma(s) .
\end{aligned}
$$

Thus

$$
\Gamma(s)=\frac{\Gamma(s+1)}{s}
$$

Now the right-hand side is meromorphic in $\Re(s)>-1$, with a single simple pole at $s=0$; so this formula defines an analytic continuation of $\Gamma(s)$ to $\Re(s)>-1$.
But repeating this argument, for any integer $r>0$,

$$
\Gamma(s)=\frac{\Gamma(s+r}{s(s+1) \cdots(s+r-1)},
$$

defining an analytic continuation of $\Gamma(s)$ to $\Re(s)>-r$.
In this way $\Gamma(s)$ is extended to a meromorphic function in the whole plane \mathbb{C}, with poles at $s=0,-1,-2, \ldots$.
We assume the following result:
Lemma 7.1. For all $s \in \mathbb{C} \backslash \mathbb{Z}$,

$$
\Gamma(s) \Gamma(1-s)=\frac{\pi}{\sin \pi s} .
$$

[This identity can be established in various ways. Perhaps the neatest is via the identity

$$
\int_{0}^{1} t^{u-1}(1-t)^{v-1} d t=\frac{\Gamma(u) \Gamma(v)}{\Gamma(u+v)}
$$

which can be established by expressing $\Gamma(u) \Gamma(v)$ as a double integral.]
It follows from this result that $\Gamma(s)$ has no zeros, since $\sin \pi s$ has no poles.
8. Show that the series

$$
\zeta(s)=1+2^{-s}+3^{-s}+\cdots
$$

converges for all $s \in \mathbb{C}$ with $\Re(s)>1$.
Does it converge for any s with $\Re(s)=1$?
Show how $\zeta(s)$ can be extended to a meromorphic function in $\Re(s)>0$.
Answer:
(a) If $s=\sigma+$ it then

$$
n^{s}=e^{s \log n}=e^{\sigma \log n} e^{i t \log n}
$$

Hence

$$
\left|n^{s}\right|=e^{\sigma \log n}=n^{\sigma} .
$$

Now

$$
\sum n^{-\sigma}
$$

converges if $\sigma>1$, by comparison with

$$
\int x^{-\sigma}=\left[\frac{1}{1-\sigma} x^{1-\sigma}\right] .
$$

[We are using the fact that if $f(x)$ is increasing and >0 then $\sum f(n)$ and $\int f(x) d x$ converge or diverge together.]
It follows that

$$
\sum n^{-s}
$$

is absolutely convergent for $\Re(s)>1$.
(b) The series

$$
\sum n^{-s}
$$

does not converges for any s on the real line $\Re(s)=1$. The result is obvious if $s=1$, so we may suppose that

$$
s=1+i t
$$

where $t \neq 0$.
We have

$$
\begin{aligned}
n^{-s} & =\frac{1}{n} n^{-i t} \\
& =\frac{1}{n} e^{-i t \log n} .
\end{aligned}
$$

Thus

$$
\Re\left(n^{-s}\right)=\frac{1}{n} \cos (t \log n) ;
$$

so it is sufficient to show that

$$
\sum_{n} \frac{1}{n} \cos (t \log n)
$$

is divergent.
Choose a large integer m, and consider the terms in the interval

$$
2 m \pi \leq t \log n \leq(2 m+1 / 4) \pi
$$

ie

$$
e^{2 m \pi / t} \leq n \leq e^{(2 m+1 / 4) \pi / t}=e^{2 m \pi / t} e^{\pi / 4 t}
$$

Within this range,

$$
\cos (t \log n) \geq \cos \pi / 4=1 / s q r t 2
$$

while

$$
\frac{1}{n}>e^{-(2 m+1 / 4) \pi / t}=C e^{-2 m \pi / t}
$$

where

$$
C=e^{-\pi / 4 t}
$$

The length of the interval is

$$
C^{\prime} e^{2 m \pi / t}
$$

where

$$
C^{\prime}=e^{\pi / 4 t}-1>0
$$

Thus the number of integers in the interval is

$$
>C^{\prime} e^{2 m \pi / t}-1
$$

Hence the contribution of these terms - all positive - is

$$
\begin{aligned}
& >\frac{C C^{\prime}}{\sqrt{2}}-\frac{C}{\sqrt{2}} e^{-2 m \pi / t} \\
& >\frac{C C^{\prime}}{2}
\end{aligned}
$$

for sufficiently large M.
We conclude that the series is not convergent.
(c) We can use Riemann-Stieltjes integration by parts to continue $\zeta(s)$ analytically to $\Re(s)>0$
Let

$$
f(x)=[x], \quad g(x)=x-[x]
$$

Then

$$
g(x)=x-f(x)
$$

and so

$$
\begin{aligned}
\sum_{1}^{N} n^{-s} & =1+\int_{1}^{N} x^{-s} d f(x) \\
& =1+\int_{1}^{N} x^{-s} d x-\int_{1}^{N} x^{-s} d g(x)
\end{aligned}
$$

Now

$$
\int_{1}^{N} x^{-s} d x=\frac{1-N^{-s+1}}{s-1} \rightarrow \frac{1}{s-1} \text { as } N \rightarrow \infty
$$

if $\Re(s)>1$, while

$$
\begin{aligned}
\int_{1}^{N} x^{-s} d g(x) & =\left[x^{-s} g(x)\right]_{1}^{N}+s \int_{1}^{N} x^{-s-1} g(x) d x \\
& \rightarrow 1+s \int_{1}^{\infty} x^{-s-1} g(x) d x
\end{aligned}
$$

Thus

$$
\zeta(s)=\frac{1}{s-1}+s \int_{1}^{\infty} x^{-s-1} g(x) d x
$$

if $\Re(s)>1$.
Since $g(x)$ is bounded, the integral on the right is convergent in $\Re(s)>0$, and defines a holomorphic function there. This formula therefore defines an analytic continuation of $\zeta(s)$ to $\Re(s)$, as a meromorphic function with a single simple pole at $s=1$ (with residue 1).
9. Outline the proof of Dirichlet's Theorem, that there are an infinity of primes in any arithmetic sequence $d n+r$ with $\operatorname{gcd}(r, d)=1$.

Answer:

(a) Let χ be a character of the group $(\mathbb{Z} / d)^{\times}$. We extend χ to a function on $\mathbb{Z} /(d)$ by setting

$$
\chi(a)=0 \text { if } \operatorname{gcd}(a, d)>1 ;
$$

and we then extend this to a function

$$
\chi: \mathbb{Z} \rightarrow \mathbb{C}
$$

(b) We define the corresponding L-function by

$$
L_{\chi}(s)=\sum_{n} \frac{\chi(n)}{n^{-s}}
$$

(c) This series converges absolutely for $\Re(s)>1$, and so defines a holomorphic function there.
(d) If $\chi \neq \chi_{0}$, the principal character mod d (corresponding to the trivial character of $\left.(\mathbb{Z} / d)^{\times}\right)$then

$$
\sum_{0 \leq n \leq d} \chi(n)=0
$$

[This follows from the orthogonality of the characters.]
(e) If $\chi \neq \chi_{0}$ then the series converges for $\Re(s)>0$, and so defines a holomorphic function there.
[This follows from the fact that the partial sums

$$
S(x)=\sum_{0 \leq n \leq x} \chi(n)
$$

are bounded. For

$$
\begin{aligned}
L_{\chi}(s) & =\int_{1-}^{\infty} x^{-s} d S(x) \\
& =\left[x^{-s} S(x)\right]_{1-}^{\infty}+s \int x^{-s-1} S(x) d x \\
& =s \int x^{-s-1} S(x) d x
\end{aligned}
$$

and the integral on the right converges for $\Re(s)>0$, since $S(x)$ is bounded.]
(f) The L-function can also be analytically continued to $\Re(s)>0$ if $\chi=\chi_{0}$, but in this case the function has a simple pole at $s=1$. [This follows on setting

$$
T(x)=\frac{\phi(d)}{d} x-S(x) .
$$

For $T(x)$ is bounded, and

$$
\begin{aligned}
E_{\chi_{0}}(s) & =\int_{1-}^{\infty} x^{-s} d S(x) \\
& =\int_{1-}^{\infty} x^{-s}\left(\phi(d / d) d x-\int_{1-}^{\infty} x^{-s} d T(x)\right. \\
& =\frac{\phi(d)}{d} \frac{1}{s-1}+s \int_{1}^{\infty} x^{-s-1} T(x) d x
\end{aligned}
$$

on integrating by parts. Since $T(x)$ is bounded, the integral is convergent in $\Re(s)>0$ and defines a holomorphic function there.]
(g) $L_{\chi}(s)$ satisfies the Euler Product Formula

$$
L_{\chi}(s)=\prod_{p}\left(1-\frac{\chi(p)}{p^{s}}\right)^{-1}
$$

for $\Re(s)>1$.
(h) It follows by logarithmic differentiation that

$$
\frac{L_{\chi}^{\prime}(s)}{L_{\chi}(s)}=-\sum_{p} \log p p^{-s}+h_{\chi}(s)
$$

where $h_{\chi}(s)$ is holomorphic in $\Re(s)>1 / 2$.
(i) The characters of a finite abelian group G form a basis for the functions on G.
In particular, we can find a linear combination

$$
f(n)=\sum_{\chi} c_{\chi} \chi(n)
$$

of the characters of $(\mathbb{Z} / d)^{\times}$such that

$$
f(n)= \begin{cases}1 & \text { if } n=r \\ 0 & \text { if } n \neq r\end{cases}
$$

Since

$$
\sum_{0 \leq n \leq d} \chi(n)= \begin{cases}0 & \text { if } \chi \neq \chi_{0} \\ \phi(d) & \text { if } \chi=c h i_{0}\end{cases}
$$

it follows that

$$
c_{\chi_{0}}=\frac{1}{\phi(d)} .
$$

(j) If now we take the same linear combination of the L-functions we see that

$$
\sum_{\chi} c_{\chi} \frac{L_{\chi}^{\prime}(s)}{L_{\chi}(s)}=-\sum_{p \equiv r \bmod d} \log p p^{-s}+h(s)
$$

where $h(s)$ is holomorphic in $\Re(s)>1 / 2$.
10. If there are only a finite number of primes $p \equiv r \bmod d$ then the function on the right is holomorphic in $\Re(s)>1 / 2$.
However, the term on the left corresponding to χ_{0} has a simple pole at $s=1$ since $L_{\chi_{0}}(s)$ has a pole there.
11. The proof is not quite complete, since if any of the L-functions had a zero at $s=1$ this would contribute a pole on the left, which might cancel out the pole from the χ_{0} term.

Lemma 11.1. $L_{\chi}(1) \neq 0$ for any L-function.
With this the proof of Dirichlet's Theorem is complete.
[I gave a proof of the Lemma in the course, but there was a gap in it; it was only valid if χ is non-real.

If χ is real (but $\neq \chi_{0}$), ie

$$
\chi(n)= \pm 1
$$

for all n, then a rather complicated calculation shows that

$$
L_{\chi}(1)>0,
$$

and so completes the proof of the Theorem.]

