
Course 428 — Sample Paper 1

Timothy Murphy

1 Dec 1997

Credit will be given for the best 6 questions answered. Logarith-
mic tables will be available.

1. State carefully, and prove, the Fundamental Theorem of Arithmetic
(the Unique Factorisation Theorem) for the natural numbers N.

Prove that there are an infinity of prime numbers.

Show that a number n ≡ 5 mod 6 must have a prime factor p ≡ 5 mod
6. Hence or otherwise show that there are an infinity of primes p ≡
5 mod 6.

Answer:

(a) We say that p ∈ N is prime if p > 1 and

d | p, d > 1 =⇒ d = p.

Theorem 1. Each natural number n > 0 is expressible as a prod-
uct of prime numbers

n = p1 · · · pr,

and the expression is unique up to order.

(b) The proof of this result depends on Euclid’s Lemma

Lemma 1. If p is prime then

p | ab =⇒ p | a or p | b (a, b ∈ Z).

This follows as a bye-product of the euclidean algorithm for com-
puting d = gcd(m,n) for m,n ∈ N, which shows that there exist
u, v ∈ Z such that

um+ vn = d.
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For suppose p - a. Then gcd(p, a) = 1, so there exist u, v ∈ Z such
that

up+ va = 1.

Multiplying by b,
upb+ vab = b.

Since p | ab it follows that

p | b.

Lemma 2. Each integer n > 1 is expressible as a product of
primes.

This follows by induction on n. If n is not prime then

n = ab,

and by induction a, b are expressible as products of primes.

Lemma 3. The expression for n as a product of primes is unique
up to order.

This also follows by induction on n.

Suppose
n = p1 · · · pr = q1 · · · qs

are two such expressions for n. By Euclid’s Lemma,

p1 | qj

for some j. Since qj is prime,

p1 = qj.

The result follows on applying the inductive hypothesis to n/p1.

(c) Suppose there are only a finite number of primes, say

p1, . . . , pn.

Consider
N = p1 · · · pn + 1.

Suppose p is a prime factor of N . Then p = pi for some i, by
hypothesis. But

pi | N =⇒ p | 1,
which is absurd.
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(d) If p is an prime 6= 2, 3 then

p ≡ ±1 mod 6.

Suppose
n = p1 · · · pr.

Then
p1, . . . , pr ≡ 1 mod 6 =⇒ n ≡ 1 mod 6.

So if n ≡ −1 mod 6 it must have a prime factor ≡ −1bmod6.

(e) Suppose there are only a finite number of primes ≡ −1 mod 6, say

p1, . . . , pn.

Consider
N = 6p1 · · · pn − 1.

Then N ≡ −1 mod 6; so N has a prime factor p ≡ −1 mod 6. By
hypothesis p = pi for some i. But as before,

pi | N =⇒ pi | 1,

which is absurd.

2. State carefully, and sketch the proof of, Gauss’ Law of Quadratic Reci-
procity.

Determine if 173 is a quadratic residue mod297.

Answer:

(a)

Theorem 2. If p, q are distinct odd primes then(
p

q

) (
q

p

)
=

{
+1 if p ≡ 1 mod 4 or q ≡ 1 mod 4,

−1 if p ≡ q ≡ 3 mod 4.

(b) Here is the proof using permutations that I mentioned in the lec-
tures.

Lemma 4. If p is an odd prime, and gcd(a, p) = 1 then(
a

p

)
= ε(π),

where π = πa is the permutation

x 7→ ax : Z/(p) → Z/(p)

(and ε(π) = ±1 according as π is even or odd).
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The proof would not be required in an exam, but I give it here.

Proof. Since π(0) = 0, we may consider the restriction of π to
(Z/p)×; this will not affect the parity of the permutation.

Suppose the order of a mod p is r. Then the permutation π of
Z/p)× consists of (p− 1)/r cycles each of length r.

We know that (
a

p

)
≡ a(p−1)/2 mod p.

Thus π is even if and only if either r is odd or (p − 1)/r is even.
(Recall that a cycle of odd length is even, while a cycle of even
length is odd.)

We know of course that r | p−1. Thus if r is odd then r | (p−1)/2

and so

(
a

p

)
= 1.

On the other hand if r is even then r | (p − 1)/2 if and only if
(p− 1)/r is even.

Alternatively, one could argue as follows:

Proof. There are certainly quadratic non-residues mod p, since the
equivalence

a(p−1)/2 ≡ 1 mod p

can be regarded as a polynomial equation

x(p−1)/2 = 1

in the finite field Fp = Z/(p); and a polynomial equation of degree
d over any field has at most d roots.

If we write πa for the permutation defined by a, then

a→ ε(πa) : (Z/p)× → {±1}

is a homomorphism.

In particular
a2 7→ 1,

ie if b = a2 is a quadratic residue then ε(πb) = 1.

Consider the subgroup

G = {a ∈ (Z/p)× : ε(πa) = 1}.

This contains the subgroup formed by the quadratic residues,
which is of index 2. Since G is not the whole group, it must
be this subgroup.
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That is just the hors d’oevre. Now for the main part of the proof.

By the Chinese Remainder Theorem, the map

γ : a mod pq 7→ (a mod p, a mod q) : Z/(pq) → Z/(p)× Z/(q)

is an isomorphism.

We consider two maps in the opposite direction,

α, β : Z/(p)× Z/(q) → Z/(pq),

given by

α(a, b) = a+ pb, β(a, b) = qa+ b (0 ≤ a < p, 0 ≤ b < q).

If we imagine Z/(p)× Z/(q) as a p× q array of numbers then we
can think of α as the ordering of the pq entries by column, and β
as the ordering by rows.

Since
γα(a, b) = (a, qb),

γα permutes each row of the array by the permutation πq. Thus

ε(γα) = ε(πq)
p

= ε(πq)

=

(
q

p

)
.

Similarly,

ε(γβ) =

(
p

q

)
.

The permutation

αβ−1 : Z/(pq) → Z/(pq)

can be written

qa+ b 7→ a+ pb (0 ≤ a < p, 0 ≤ b < q).

Recall that if π is a permutatation of 1, . . . , n then

ε(π) = (−1)µ,
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where µ is the number of reversals of order under π, ie the number
of pairs (i, j) with 1 ≤ i < j ≤ n such that

π(i) > π(j).

So ε(αβ−1) = (−1)µ, where µ is the number of pairs (of pairs)

(a, b), (a′, b′)

with

qa+ b < qa′ + b′,

ie

a < a′ or a = a′ b < b′

such that

a+ pb > a′ + pb′,

ie

b > b′ or b = b′ a > a′.

Clearly there will be no reversal of order if a = a′, so we need only
consider the cases where a < a′. Again, there cannot be a reversal
of order if b = b′. So µ is the number of cases with

a < a′ and b > b′.

These are independent conditions; and the total number of solu-
tions is

p(p− 1)

2

q(q − 1)

2
.

Thus

(−1)µ = (−1)
p(p−1)

2 (−1)
q(q−1)

2

= (−1)
(p−1)

2 (−1)
(q−1)

2 ,

since p, q are odd.

Hence
ε(αβ−1) = (−1)

p−1
2

q−1
2 ,
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while

ε(γα) =

(
q

p

)
, ε(γβ) =

(
p

q

)
.

Since
(γβ)−1(γα) = β−1α,

it follows that

ε(β−1α) =

(
p

q

) (
q

p

)
.

But
ε(β−1α) = ε(αβ−1);

for
αβ−1 = β(β−1α)β−1,

and if f : X → Y is a bijection between finite sets, and π is a
permutation of X then fπf−1 is a permutation of Y , and

ε(fπf−1) = ε(π).

We conclude that (
p

q

) (
q

p

)
= (−1)

p−1
2

q−1
2 ,

which is what we had to prove.

(c) Here is a third proof, using Gauss sums. This is by far the best
proof - since the method has many applications in other areas -
except that it has one surprising point of difficulty.

Let
ε(x) = e2πix.

We define the Gauss sum

E(a, n) =
∑

0≤j<n

ε

(
ax2

p

)
.

Lemma 5. If p is an odd prime, and p - a,

E(a, p) =

(
a

p

)
E(1, p).
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Proof. Suppose (
a

p

)
= 1,

say

a ≡ b2 mod p.

Then

E(a, p) =
∑

ε

(
ax2

p

)
=

∑
ε

(
(bx)2

p

)
=

∑
ε

(
x2

p

)
= E(1, p),

since bx runs over a complete set of residues mod p as x does.

Now suppose (
a

p

)
= −1.

As x runs over a set of residues mod p coprime to p, ax2 runs
over the quadratic non-residues mod p, each one twice. Hence

E(a, p) + E(1, p) = 2
∑

ε

(
x

p

)
= 0.

Hence

E(a, p) = −E(1, p)

=

(
a

p

)
E(1, p).

Lemma 6. If p, q are distinct odd primes then

E(p, q)E(q, p) = E(1, pq).
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Proof. We have

E(p, q)E(q, p) =
∑

0≤x<q

ε

(
px2

q

) ∑
0≤x<p

ε

(
qy2

p

)
=

∑
0≤x<q, 0≤x<p

ε

(
p2x2 + q2y2

pq

)
=

∑
0≤x<q, 0≤y<p

ε

(
(px+ qy)2

pq

)
=

∑
0≤z<pq

ε

(
z2

pq

)
= E(1, pq),

since px + qy runs over the residues mod pq by the Chinese Re-
mainder Theorem.

Evidently the complex conjugate

E(a, n) =
∑

ε

(
−ax2

n

)
= E(−a, n).

In particular, if p is an odd prime and p - a then

E(a, p) = E(−a, p)

=

(
−1

p

)
E(a, p).

It follows that

E(a, p)

{
∈ R if p ≡ 1 mod 4

∈ iR if p ≡ 3 mod 4.

Lemma 7. If p is an odd prime then

|E(1, p)| = √
p.

Proof. We have

|E(1, p)|2 = E(1, p) E(1, p)

=
∑

0≤x,y<p

ε

(
x2 − y2

p

)
.
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Suppose p - a. Then

x2 − y2 ≡ a mod p

has just p− 1 solutions, given by

x− y = t, x+ y = a/t

for t = 1, 2, . . . , p− 1.

On the other hand
x2 − y2 ≡ 0 mod p

has 2p− 1 solutions (0, 0), (1,±1), . . . , (p− 1,±(p− 1)).

Thus ∑
0≤x,y<p

ε

(
x2 − y2

p

)
= (2p− 1) + (p− 1)

∑
1≤a≤p−1

ε

(
a

p

)
= (2p− 1) + (p− 1)(−1)

= p.

Hence
|E(1, p)|2 = p.

It follows that

E(1, p) =

{
±√p if p ≡ 1 mod 4

±i√p if p ≡ 3 mod 4

In fact the positive sign holds in each case:

E(1, p) =

{√
p if p ≡ 1 mod 4

√
p if p ≡ 3 mod 4

It is this that is surprisingly difficult to establish.

(d) While 173 is prime,
297 = 33 · 11.

Since (
173

3

)
=

(
2

3

)
= −1,

173 is not a quadratic residue mod3. So a fortiori it is not a
quadratic residue mod297
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3. Define an algebraic number and an algebraic integer. Show that the
algebraic numbers form a field Q̄, and that the algebraic integers form
a ring Z̄.

Prove that
Z̄ ∩Q = Z.

Show that every algebraic number α is expressible in the form

α =
β

n

where β is an algebraic integer, and n ∈ N.

Answer:

(a) We say that α ∈ C is an algebraic number if it satisfies an equa-
tion of the form

xn + a1x
n−1 + · · ·+ an = 0,

with a1, . . . , an ∈ Q.

(b) We say that α is an algebraic integer if it satisfies an equation of
the form

xn + a1x
n−1 + · · ·+ an = 0,

with a1, . . . , an ∈ Z.

(c) We have to show that if α, β ∈ Q̄ then α + β, αβ ∈ Q̄; and if
α 6= 0 then α−1 ∈ Q̄.

Suppose α, β satisfy the equations

f(x) = xm + a1x
m−1 + · · · am,

g(x) = xn + b1x
n−1 + · · · bn,

where ai, bj ∈ Q.

If α = 0 or β = 0 the result is obvious; so we may suppose that
am.bn 6= 0.

Let the roots of these equations be α = α1, . . . , αm and β =
β1, . . . , βn, so that

f(x) = (x− α1) · · · (x− αm),

g(x) = (x− β1) · · · (x− βn).
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Let

s(x) =
∏
i,j

(x− αi − βj),

p(x) =
∏
i,j

(x− αiβj).

Then
s(x) =

∏
i

g(x− αi).

The coefficients of s(x) are symmetric polynomials in the αi. It
follows from the theory of symmetric polynomials that they are
expressible as polynomials in the coefficients of f(x), and so are
in Q. Thus s(x) ∈ Q[x], and so

α+ β ∈ Q̄.

Similarly

p(x) = (
∏

i

αi)
n
∏
i,j

(x/αi − βj)

= (
∏

i

αi)
n
∏

i

g(x/αi)

=
∏

i

gi(x),

where
gi(x) = xn + a1αi + · · ·+ anα

n
i .

Again, the coefficients of p(x) are symmetric polynomials in the
αi, and so are in Q. Thus

αβ ∈ Q̄.

Finally, α−1 satisfies the equation

am + am−1x+ · · ·+ a1x
m−1 + 1 = 0.

Hence
α−1 ∈ Q̄.
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(d) If
α, β ∈ Z̄,

then we may assume that the coefficients ai, bj ∈ Z.

In this case the coefficients of s(x), p(x) are symmetric polynomials
in the αi with integer coefficients; and the theory of symmetric
polynomials shows that they are expressible as polynomials in the
coefficients ai with integer coefficients. Hence the coefficients of
s(x), p(x) are in Z, and so

α, β ∈ Z̄.

(e) Suppose α ∈ Z̄, say α satisfies

f(x) = xn + a1x
n−1 + · · ·+ an = 0,

with ai ∈ Z.

Now suppose α ∈ Q, say

α =
u

v
,

where u, v ∈ Z with gcd(u, v) = 1. Then

un + a1u
n−1v + · · ·+ anv

n = 0.

It follows that
v | un.

Since gcd(u, v) = 1, this implies that v = ±1, ie

α ∈ Z.

(f) Suppose α ∈ Q̄, say α satisfies

xn + a1x
n−1 + · · ·+ an = 0,

with ai ∈ Q.

Multiplying by the lcm of the denominators of the ai, we can write
this as

b0x
n + b1x

n−1 + · · ·+ bn = 0,

with bi ∈ Z. But now

(b0x)
n + b0b1(b0x)

n−1 + · · ·+ bn0bn = 0,
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and so
β = b0α

satisfies the equation

xn + b0b1x
n−1 + · · ·+ bn0bn = 0.

Thus β ∈ Z̄, and

α =
β

b0
,

with b0 ∈ Z.

4. State carefully, and prove, the Fundamental Theorem of Arithmetic in
the ring Z[i] of gaussian integers.

Show that the prime number p ∈ N remains prime in Z[i] if and only
if p ≡ 3 mod 4.

Determine the number of ways of expressing 1075 as a sum of 2 squares
(of natural numbers).

Answer:

(a) We say that
π ∈ Γ = Z[i]

is a prime if

π = αβ =⇒ α or β is a unit (α, β ∈ Γ).

(We say that ε ∈ Γ is a unit if it is invertible in Γ.)

Theorem 3. Each non-unit α ∈ Γ is expressible as a product of
primes,

α = π1 · · ·πr;

and the expression is unique up to order, ie if

α = π′1 · · ·π′r′

is a second such expression, then r′ = r and there is a permutation
σ of {1, . . . , r} such that, for each i,

π′σ(i) = εiπi,

where εi is a unit.
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(b) For
γ = x+ yi ∈ Q[i]

we set
|γ| = γ γ̄ = x2 + y2.

Evidently,
|γ1γ2| = |γ1| |γ2|.

Lemma 8. If α ∈ Γ then

α is a unit ⇐⇒ |γ| = 1.

Lemma 9. Given
γ = x+ yi ∈ Q[i]

we can find α ∈ Γ such that

|γ − α| ≤ 1

2
.

Corollary 1. Given α, β ∈ Γ (with β 6= 0) there exists γ, δ ∈ Γ
such that

α = γβ + δ,

with
|δ| < |β|.

This allows us to set up the Euclidean Algorithm, from which we
derive the following result.

Lemma 10. Given α, β ∈ Γ there exists

δ = gcd(α, β)

such that δ | αβ and

δ′ | αβ =⇒ δ′ | δ.

Furthermore there exist u, vinΓ such that

uα + vβ = δ.

Corollary 2. If π is prime that

π | αβ =⇒ π | α or π | β.

Lemma 11. Each α ∈ Γ is expressible as a product of primes.
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This follows by induction on |α|.
Lemma 12. The expression is unique up to order.

This follows again by induction on |α|.
For if we have two expressions, as above, then

π1 | π′j

for some j, and so (since π′j is prime)

π′j = επ1

for some unit ε.

The result follows on applying the inductive hypothesis to α/π1.

(c) Let p be a rational prime.

i. Suppose
p ≡ 3 mod 4;

and suppose p is not prime in Γ, say

p = αβ.

Then
|p| = p2 = |α| |β|.

It follows that
|α| = |β| = p.

Thus if α = u+ vi then

a2 + b2 = p.

Hence
a2 + b2 ≡ 3 mod 4,

which is impossible.

ii. Suppose
p ≡ 1 mod 4;

We know that (
a

p

)
≡ a(p−1)/2 mod p

It follows that (
−1

p

)
= 1,
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ie there exists a such that

a2 + 1 ≡ 0 mod p.

Thus
p | (a+ i)(a− i).

If p were prime in Γ then this would imply that

p | a± i,

which is absurd.

iii. Since
2 = (1 + i)(1− i),

2 is not prime in Γ

We conclude that p remains prime in Γ if and only if p ≡ 3 mod 4.

(d) We have
1075 = 52 · 43.

Suppose
1075 = a2 + b2 = (a+ bi)(a− bi).

We know that 43 is prime in Γ. Hence

43 | a± bi,

ie

43 | a, b.

But then 43 divides both factors, and so

432 | 1075,

which is not true.

Hence 1075 cannot be expressed as the sum of two squares.

5. Prove that if m > 0 is not a square then Pell’s equation

x2 −my2 = 1

has an infinity of solutions.

Does the equation
x2 −my2 = −1

have a solution in the cases m = 3, 5, 7?

Answer:
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(a)

Lemma 13. If α ∈ R there are an infinity of integers p, q with

|α− p

q
| < 1

q2
.

Applying this with α =
√
m, there are an infinity of p, q with

|
√
m− p

q
| < 1

q2
.

But then
|
√
m+

p

q
| < 2

√
m+ 1,

and so

|m− p2

q2
| < N

q2
,

where N = [2
√
m] + 1.

Thus there are an infinity of integers x, y such that

|x2 −my2| < N.

Consider the remainders x, y mod N . There must be some inte-
gers a, b ∈ [0, N) such that there are an infinity of solutions with

x ≡ a, y ≡ b mod N.

Let (x, y), (X, Y ) be two such solutions, ie

x ≡ X ≡ a, x ≡ X ≡ a, bmodN.

Now

(x2 −my2)(X2 −mY 2) = (xX −myY )2 −m(xY − yX)2.

But modulo N ,

xX −myY ≡ x2 −my2 = N

≡ 0,

while

xY − yX ≡ xy − yx

≡ 0.
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Thus
N | xX −myY, xY − yX;

and so if we set

u =
xX −myY

N
, v =

xY − yX

N

then
u2 −mv2 = 1.

(b) i. The equation
x2 − 3y2 = −1

has no integer solution. For one of x, y must be even, and one
odd. But

u2 ≡ 0 or 1 mod 4.

It follows that

x2 − 3y2 ≡ 0, 1or2 mod 4.

ii. The equation
x2 − 5y2 = −1

has the solution x = 2, y = 1.

iii. The equation
x2 − 7y2 = −1

has no integer solution. For

u2 ≡ 0, 1 or 4 mod 8,

and so

x2 − 7y2 ≡ x2 + y2 ≡ 0, 1, 2, 4or 5 mod 8.

6. Express
√

7 as a continued fraction.

Show that if the continued fraction for a number α ∈ R is periodic then
α is a quadratic surd.

Sketch the proof of the converse, that any quadratic surd has a periodic
continued fraction.

Answer:
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(a) We have √
7 = 2 + (

√
7− 2);

and

1√
7− 2

=

√
7 + 2

3

= 1 +

√
7− 1

3
.

Now

3√
7− 1

= 3

√
7 + 1

6

= 1 +

√
7− 1

2
;

and

2√
7− 1

= 2

√
7 + 1

6

= 1 +

√
7− 2

3
.

We are back to where we started; so

√
7 = 2 +

1

1 +
1

1 + · · ·

(b) Suppose the continued fraction for α is periodic, say

α = [a0, . . . , ar, ḃ1, dots, ḃs]

Then

α = [a0, . . . , ar, β]

=
pr + pr−1β

qr + qr−1β
,

where
β = [ḃ1, . . . , ḃs]

and pi/qi is the ith convergent to α.
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If we show that β is a quadratic surd it will follow that α is a
quadratic surd.

But

β = [ḃ1, . . . , ḃs]

=
p′s + p′s−1β

q′s + q′s−1β
,

where p′i/q
′
i is the ith convergent to β.

Thus β satisfies the quadratic equation

q′s−1x
2 + (q′s − p′s−1)x− ps = 0,

and so is a quadratic surd.

(c) Suppose
α = [a0, a1, · · · ]

is a quadratic surd, say α satisfies

Q(x) = Ax2 + 2Bx+ C = 0,

where A,B,C ∈ Z.

Let
αn = [an, an+1, . . . ].

Then

α =
pn−1αn + pn−2

qn−1αn + qn−2

.

Hence

A(pn−1αn + pn−2)
2 + 2B(pn−1αn + pn−2)(qn−1αn + qn−2) + C(qn−1αn + qn−2)

2 = 0.

ie

Anα
2
n +Bnαn + Cn,

with

An = Ap2
n−1 + 2Bpn−1qn−1 + Cq2

n−1

= q2
n−1 Q(pn−1/qn−1),

Bn = Apn−1pn−2 +B(pn−1qn−2 + qn−1pn−2) + Cqn−1qn−2

= qn−1qn−2 Q1(pn−1/qn−1, pn−2/qn−2),

Cn = Ap2
n−2 + 2Bpn−2qn−2 + Cq2

n−2

= q2
n−2 Q(pn−2/qn−2),
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where
Q1(x, y) = Axy +B(x+ y) + C

is the ‘polarized’ form of the quadratic form Q(x).

We shall show that An, Bn, Cn do not get large; this follows from
the fact that pi/qi is very close to α. More precisely,

|α− pi

qi
| ≤ 1

qiqi+1

≤ 1

q2
i

[since α lies between pi/qi and pi+1/qi+1 and piqi+1−qipi+1 = ±1].

Now
Q(x)−Q(y) = (x− y)(A(x+ y) +B).

Hence

Q(pi/qi) = Q(pi/qi)−Q(α)

= (pi/qi − α)(A(α+ pi/qi) +B),

and so

|Q(pi/qi)| ≤ |α− pi/qi| |A|(2|α|+ 1) + |B|,

≤ C
1

q2
i

,

where C = 2(|α|+ 1) + |B|. Thus

|An| ≤ C, |Cn| ≤ C.

Finally,

Q1(x, y)−Q1(x
′, y′) = A(xy − x′y′) +B(x− x′ + y − y′)

= (x− x′)(Ay +B) + (y − y′)(Ax′ +B).

Thus

Q1(pn−1/qn−1, pn−2/qn−2) = Q1(pn−1/qn−1, (pn−2/qn−2)−Q1(α, α)

= (pn−1/qn−1 − α)(Apn−1/qn−1 +B) + (pn−2/qn−2 − α)(Aα+B),

and so

|Q1(pn−1/qn−1, pn−2/qn−2)| ≤ C (|α− pn−1/qn−1|+ |α− pn−2/qn−2|)

≤ C

(
1

qn−1qn
+

1

qn−2qn−1

)
.
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Thus
absBn ≤ 2C.

It follows that the αn are roots of a finite number of quadratics;
and so there must be a repetition,

αm+r = αm.

In other words, the continued fraction for α is periodic.

7. Express 2/3 as a 2-adic number in standard form

a0 + a12 + a22
2 + · · · (ai ∈ {0, 1}).

Show that the equation
x2 − 7 = 0

has no solution in the 2-adic ring Z2, while the equation

x2 + 7 = 0

has just two solutions.

Answer:

(a) We have

2

3
≡ 0 mod 2,

and

1

2

2

3
=

1

3
.

Next

1

3
≡ 1 mod 2,

and

1

2

(
1

3
− 1

)
=
−1

3
.

Continuing

−1

3
≡ 1 mod 2,
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and

1

2

(
−1

3
− 1

)
=
−2

3
.

Again,

−2

3
≡ 0 mod 2,

and

1

2

−2

3
) =

−1

3
.

We are back to where we were 2 steps ago. Thus

2

3
= 0 · 1 + 1 · 2 + 1 · 22 + 0 · 23 + 1 · 24 + 0 · 25 + · · · ,

ie

2

3
= 2 + 22 + 24 + 26 + · · · .

Checking,

2 + 22 + 24 + 26 + · · · = 2 +
22

1− 22

= 2− 4

3

=
2

3
.

[Remark. One could work in the opposite direction, by computing
the order of 2 mod3 (in this case). Thus

22 ≡ 1 mod 3,

ie

3 | (1− 22)

In fact
1

1− 22
=
−1

3
,
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and so

2

3
= 1 +

−1

3

= 1 +
1

1− 22
,

as we saw.

Let us look at a slightly more complicated example from this point
of view: Suppose we are asked to express 2/5 as a 3-adic integer.

The order of 3 mod 5 is 4:

34 − 1 = 80 = 5 · 16.

Thus
1

5
=

−16

1− 34
,

and so

2

5
=

−32

1− 34

= 1 +
81− 32

1− 34

= 1 +
49

1− 34

Now express 49 in the usual way to base 3:

49 = 33 + 2 · 23 + 3 + 1.

Thus

2

5
= (1 + 3 + 2 · 32 + 33)(1 + 34 + 38 + · · · )

= 1 + 3 + 2 · 32 + 33 + 34 + 35 + 2 · 36 + · · · .]

(b) The congruence
x2 − 7 ≡ 0 mod 22

has no solution, since

x2 ≡ 0 or 1 mod 4.

Hence
x2 − 7 = 0
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has no solution in Z2.

[If
x = a0 + a12 + a22

2 + · · ·
were a solution in Z2, then

x = a0 + a12

would be a solution of the congruence

x2 − 7 ≡ 0 mod 22.]

(c) Z2 is an integral domain. Hence if θ ∈ Z2 were a solution of

x2 + 7 = 0

then
x2 + 7 = (x− θ)(x+ θ),

and so there would be just two solutions, ±θ.
To see that there is a solution, we start with the solution x = 1 to
the congruence

x2 + 7 ≡ 0 mod 23.

We must show that we can extend this to a solution mod2e for all
e.

Suppose
x2 + 7 ≡ 0 mod 2e,

where e ≥ 3. We want to extend this to a solution mod2e+1.

If this solution already satisfies

x2 + 7 ≡ 0 mod 2e+1

then there is nothing to do. Otherwise

x2 + 7 ≡ 2e mod 2e+1.

In this case,

(x2 + 2e−1)2 + 7 ≡ x2 + 2 · 2ex+ 7 mod 2e+1

≡ 2e + 2e mod 2e+1

≡ 0 mod 2e+1.

Thus x+ 2e−1 is a solution mod2e+1.

In this way we can extend the solution indefinitely, to give a solu-
tion in Z2.

Remarks
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i. The argument could be expressed very simply in this case, be-
cause there are only 2 congruence classes mod2. But a simi-
lar argument works for an odd prime p as well. The essential
point is that if we have a solution x mod pe of a polynomial
equation f(x) = 0 (where f(x) ∈ Z[x]) then

f(x+ zpe) ≡ 0 mod pe+1

reduces to a linear equation for z mod p, ie the solution of a
linear equation in the field Fp = Z/(p).
That is the essential content of Hensel’s Lemma, which states
that: if x is a solution of

f(x) ≡ 0 mod pe

and
f ′(x) 6≡ 0 mod p

then x can be extended uniquely to a solution modpe+1.

ii. There is a completely different way of solving this, using a bit
of ‘p-adic analysis’.
By the binomial theorem,

√
−7 = (1− 23)1/2

= 1− (1/2)23 +
1/2 · −1/2

1 · 2
26 +

1/2 · −1/2 · −3/2

1 · 2 · 3
29 + · · · .

We need only ensure that the power of 2 in 23n more than
swamps the power of 2 in the binomial coefficient(

1/2

n

)
.

The power of 2 in the numerator of this is 2−n; while if

2e||n!

then

e =
[n
2

]
+

[ n
22

]
+ · · ·

≤ n

2
+
n

22
+ · · ·

≤ n.
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Hence (
1/2

n

)
23n ≡ 0 mod 2n,

and the binomial series converges.
(Recall that ∑

an

converges in Zp if and only if

an → 0.)

Note that the solution to

x2 + 7 = 0

obtained in this way is not in standard format; but there is
nothing wrong with that.

8. Show that a Dirichlet series

a1 + a22
−s + a33

−s + · · · (ai ∈ C)

converges in some half-plane <(s) > σ, and diverges in <(s) < σ.

Show that σ = 1 for the Riemann zeta function ζ(s)

Show how the definition of ζ(s) can be extended to <(s) > 0 by con-
sidering the function (1− 21−s)ζ(s), and deduce that ζ(s) has just one
pole in this region.

Could this technique be used to extend the definition of ζ(s) to the
whole complex plane?

Answer:

(a)

Lemma 14. The series ∑
bncn

converges if

i. The partial sums

Bn =
∑
r≤N

br

are bounded; and
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ii. ∑
|cn − cn+1|

is convergent.

Let
f(s) = a1 + a22

−s + a33
−s + · · · .

We have to show that if f(s) is convergent for s = s0 then it is
convergent for all s with

<(s) > <(s0).

Let
s = s0 + s′,

where
σ′ = <(s′) > 0.

On applying the Lemma with

bn = ann
−s0 , cn = n−s′

the result will follow if we show that∑
|n−s′ − (n+ 1)−s′|

is convergent.

Now

n−s′ − (n+ 1)−s′ =
[
−x−s′

]n+1

n

= s′
∫ n+1

n

x−(s′+1) dx

But
|x−(s′+1) = x−(σ′+1).

Hence

|n−s′ − (n+ 1|−s′| ≤ |s′|
∫ n+1

n

x−(σ′+1) dx

=
|s′|
σ′

(
n−σ′ − (n+ 1)−σ′

)
.
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Thus

N∑
M

|n−s′ − (n+ 1)−s′| ≤ |s′|
σ′

(
M−σ′ − (N + 1)−σ′

)
;

and so ∑
|n−s′ − (n+ 1)−s′|

is convergent.

(b) If
σ = <(s)

then
|n−s| = n−σ.

But if σ > 1, ∑
n−σ

converges, by comparison with∫
x−σ dx =

1

σ − 1
[x−(σ−1)].

On the other hand, if σ < 1 then∑
n−σ

diverges, by comparison with∫
x−1 dx = [log x].

We conclude that the abscissa of convergence for ζ(s) is σ = 1.

(c) We have

f(s) =
(
1− 2 2−s

)
ζ(s) = 1− 2−s + 3−s − 4−s + · · · .

Now f(σ) converges for real σ > 0, since the terms of the series
are monotone decreasing and tend to 0.

On the other hand f(σ) is not convergent for σ < 0 since the
terms do not tend to 0.

It follows that the abscissa of convergence of f(s) is σ = 0. Hence
f(s) is holomorphic in <(s) > 0; so

ζ(s) =
1

1− 21−s
f(s)
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defines the analytic continuation of ζ(s) to the region.

The function
1− 21−s = 1− e(1−s) log 2

has zeros wherever

(1− s) log 2 = 2nπi,

ie

s = 1 +
2nπ

log 2
i

(with n ∈ Z).

On the fact of it, ζ(s) could have poles at these points. However,
we can consider the function

g(s) =
(
1− 3 3−s

)
ζ(s) = 1+2−s−2 ·3−s+4−s+5−s−2 ·6−s+ · · · .

This series also converges for <(s) > 0, on taking the terms three
at a time. It follows that

ζ(s) =
1

1− 31−s)
g(s)

also defines the analytic continuation of ζ(s).

Since
1− 31−s = 1− e(1−s) log 3

has zeros where

(1− s) log 3 = 2mπi,

ie

s = 1 +
2mπ

log 3
i.

(with n ∈ Z).

These two sets overlap where

n

log 2
=

m

log 3
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ie

2m = 3n.

The only solution of this is m = n = 0. It follows that ζ(s) can
only have a pole in <(s) > 0 at the point s = 1.

It does have a pole there, since

ζ(σ) →∞ as σ → 1+

(ie as σ → 1 from above).

(d) The technique could be used to continue ζ(s) to the whole complex
plane. Thus
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9. State the Prime Number Theorem, and sketch its proof.

Answer:

(a) The Prime Number Theorem states that

π(x) ∼ Li(x),

where π(x) is the number of primes ≤ x and

Li(x) =

∫ x

e

dt

log t
.

(b) The steps in the proof of the PNT are:

Lemma 15.
Li(x) ∼ x

log x

This is a simple exercise in integration by parts.

Lemma 16. The Riemann zeta function

ζ(s) =
∑

n−s

is holomorphic in <(s) > 1, and can be extended to a meromorphic
function in <(s) with a single simple pole at s = 1.

Lemma 17. If <(s) > 1,

ζ(s) =
∏

p

(1− p−s)−1.

Corollary 3. ζ(s) has no zeros in <(s) > 1.

Lemma 18. If <(s) > 1,

ζ ′(s)

ζ(s)
=

∑
log p p−s + h(s)

=

∫
x−s dθ(x) + h(s),

where
θ(x) =

∑
p≤x

log p

and h(s) is holomorphic in <(s) > 1/2.
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Lemma 19. The PNT is equivalent to

θ(x) ∼ x,

or equivalently

ψ(x) = o(x),

where
ψ(x) = θ(x)− x.

This is proved using Riemann-Stieltjes integration by parts.

Lemma 20. ζ(s) has no zeros on <(s) = 1.

This is derived from the inequality

cos 2t+ 4 cos t+ 3 ≥ 0

which implies that

|ζ(σ + 2ti)| |ζ(σ + ti)|4 |ζ(σ)|3 ≥ 1.

Lemma 21.

Ψ(s) =

∫ ∞

1

x−sdψ(x)

is holomorphic in <(s) ≥ 1 (ie in some open set containing this
region).

Corollary 4.

Ψ(s+ 1) =

∫ ∞

1

x−(s+1) dψ(x)

is holomorphic in <(s) ≥ 0.

Lemma 22. The Tauberian theorem: if f(x) is bounded on (0,∞)
then

F (s) =

∫ ∞

0

e−xsf(x) dx

is holomorphic in <(s) > 0. Furthermore, if F (s) is holomorphic
in <(s) ≥ 0 then ∫ ∞

0

f(x) dx = F (0).
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Corollary 5. If g(x) is bounded on (1,∞) then

G(s) =

∫ ∞

1

x−(s+1)g(x) dx

is holomorphic in <(s) > 0. Furthermore, if G(s) is holomorphic
in <(s) ≥ 0 then ∫ ∞

1

g(x)
dx

x
= G(0).

This ‘Mellin form’ of the Tauberian theorem follows at once from
the previous version on making the change of variable y = ex (and
changing back from y to x).

Lemma 23.
θ(x) = O(x).

This ‘bootstrap lemma’ follows on considering the primes dividing
the binomial coefficient

(
2n
n

)
.

Corollary 6.
x−1ψ(x)

is bounded.

Lemma 24. The integral ∫ ∞

1

ψ(x)

x2
dx

converges.

[On integrating by parts,

Ψ(s+ 1) =

∫ ∞

1

x−(s+1) dψ(x)

=
[
x−(s+1)ψ(x)

]∞
1

+ (s+ 1)

∫ ∞

1

x−(s+2)ψ(x) dx

= −1 + (s+ 1)

∫ ∞

1

x−(s+2)ψ(x) dx

if <(s) > 0, since ψ(x)/x is bounded as x→∞, while x−s → 0.

Thus ∫ ∞

1

x−(s+2)ψ(x) dx =
Ψ(s+ 1) + 1

s+ 1
,

and the Tauberian Theorem can be applied.]
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Lemma 25.∫ ∞ ψ(x)

x2
dx convergent =⇒ θ(x) ∼ x.

This is a little tricky. It follows because ψ(x) is not changing
rapidly; so if ψ(X) > C > 0 then ψ(x) > C/2 for x ∈ [X,X ′],
where the interval is long enough to contribute > C ′ to the integral,
which will contradict convergence if it happens infinitely often; and
similarly if ψ(X) < −C < 0.

Remarks. The two main steps in the proof are:

i. establishing that ζ(s) has no zeros on <(s) = 1; and

ii. the Tauberian theorem.
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