Course 428 — Sample Paper 1

Timothy Murphy
1 Dec 1997

Credit will be given for the best 6 questions answered. Logarith-
mic tables will be available.

. State carefully, and prove, the Fundamental Theorem of Arithmetic
(the Unique Factorisation Theorem) for the natural numbers N.

Prove that there are an infinity of prime numbers.

Show that a number n = 5 mod 6 must have a prime factor p = 5 mod
6. Hence or otherwise show that there are an infinity of primes p =
5 mod 6.

Answer:

(a)

(b)

We say that p € N is prime if p > 1 and
dlp,d>1 = d=p.

Theorem 1. Fach natural number n > 0 is expressible as a prod-
uct of prime numbers

n=pi--pPr
and the expression is unique up to order.
The proof of this result depends on FEuclid’s Lemma

Lemma 1. If p is prime then
plab = plaorp|b (a,beZ).

This follows as a bye-product of the euclidean algorithm for com-
puting d = ged(m,n) for m,n € N, which shows that there exist
u,v € Z such that

um + vn = d.



(¢)

For suppose p{a. Then ged(p,a) =1, so there exist u,v € Z such
that
up +va = 1.

Multiplying by b,
upb + vab = 0.

Since p | ab it follows that

plb.

Lemma 2. Fach integer n > 1 is expressible as a product of
primes.

This follows by induction on n. If n is not prime then
n = ab,

and by induction a,b are expressible as products of primes.

Lemma 3. The expression for n as a product of primes is unique
up to order.

This also follows by induction on n.
Suppose
n=pi-Pr=4q1"""4gs

are two such expressions for n. By Fuclid’s Lemma,
Pl g
for some j. Since q; is prime,
P11 = gj.
The result follows on applying the inductive hypothesis to n/p;.
Suppose there are only a finite number of primes, say
Dis- s Pn-

Consider

N=pi-pt1
Suppose p is a prime factor of N. Then p = p; for some i, by
hypothesis. But

pi| N = p|1,

which is absurd.



(d) If p is an prime # 2,3 then

p = £1 mod 6.
Suppose
n=pi---p.
Then
P1y-..,0r =1 mod 6 = n =1mod 6.
So if n = —1 mod 6 it must have a prime factor = —1bmod6.
(e) Suppose there are only a finite number of primes = —1 mod 6, say
pl? A 7pn'
Consider

N =06p;---p,— L.

Then N = —1 mod 6; so N has a prime factor p = —1 mod 6. By
hypothesis p = p; for some i. But as before,

pi| N = pi|1,
which s absurd.

2. State carefully, and sketch the proof of, Gauss’ Law of Quadratic Reci-
procity.

Determine if 173 is a quadratic residue mod297.

Answer:

(a)

Theorem 2. If p,q are distinct odd primes then

(p) (q) _J+1 4ifp=T1mod4 orq=1mod 4,

q p —1 ifp=qg=3mod4.

(b) Here is the proof using permutations that I mentioned in the lec-
tures.

Lemma 4. If p is an odd prime, and ged(a,p) = 1 then

G-

where m = mw, 1s the permutation

v ax : Z/(p) — Z/(p)

(and e(m) = £1 according as m is even or odd).
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The proof would not be required in an exam, but I give it here.

Proof. Since 7(0) = 0, we may consider the restriction of 7 to
(Z/p)*; this will not affect the parity of the permutation.

Suppose the order of a mod p is r. Then the permutation 7w of
Z/p)* consists of (p — 1)/r cycles each of length 7.

We know that
<g) = aPY/2 mod p.
p

Thus 7 is even if and only if either r is odd or (p — 1)/r is even.
(Recall that a cycle of odd length is even, while a cycle of even
length is odd.)

We know of course that r | p—1. Thus if r is odd then r | (p—1)/2

and so (E) =1.
p

On the other hand if r is even then r | (p — 1)/2 if and only if
(p—1)/r is even. O

Alternatively, one could arque as follows:

Proof. There are certainly quadratic non-residues mod p, since the
equivalence

a? V2 =1 mod p
can be regarded as a polynomial equation

P12 — 1

in the finite field F, = Z/(p); and a polynomial equation of degree
d over any field has at most d roots.

If we write 7w, for the permutation defined by a, then
0 — e(ma) : (Zfp)* — {1}

is a homomorphism.

In particular

a1,

ie if b = a* is a quadratic residue then €(m,) = 1.
Consider the subgroup
G={a€(Z/p)” :e(m,)=1}.

This contains the subgroup formed by the quadratic residues,
which is of index 2. Since G is not the whole group, it must
be this subgroup. O



That is just the hors d’oevre. Now for the main part of the proof.
By the Chinese Remainder Theorem, the map

v : amod pg — (a mod p,a mod q) : Z/(pq) — Z/(p) X Z/(q)

s an isomorphism.

We consider two maps in the opposite direction,
a,B:Z[(p) x Z/(q) — Z/(pq),
given by
ala,b) =a+pb, p[(a,b) =qa+Db 0<a<p0<b<q).

If we imagine Z/(p) x Z/(q) as a p X q array of numbers then we
can think of o as the ordering of the pq entries by column, and (3
as the ordering by rows.

Since
7a(a’ b) = (av qb)v

yao permutes each row of the array by the permutation m,. Thus

Stmilarly,

The permutation

af™t: Z/(pq) — Z/(pq)

can be written
ga+b— a+pb 0<a<p, 0<b<q).

Recall that iof m is a permutatation of 1,...,n then

e(m) = (~1)",



where 1 is the number of reversals of order under w, ie the number
of pairs (i,7) with 1 <i < j <n such that

(i) > w(j).
So e(af™) = (=1)*, where p is the number of pairs (of pairs)
(a,b), (a',b")

with
qga+b<qa +0,
1€
a<ad ora=db<¥
such that
a+pb>ad + pl,
e

b>b orb=0Va>d.

Clearly there will be no reversal of order if a = a’, so we need only
consider the cases where a < a'. Again, there cannot be a reversal
of order if b=1"V". So p is the number of cases with

a<a andb>"V.

These are independent conditions; and the total number of solu-

tions 1s
p(p—1) q(g—1)
2 2 ’

Thus

since p,q are odd.

Hence



(¢)

while

Since

it follows that

But
(67 a) = e(aB™);

for
af™t =B )3,

and if f : X — Y is a bijection between finite sets, and w is a
permutation of X then frf~! is a permutation of Y, and

e(frf~") = e(m).

() ()-com

which is what we had to prove.

We conclude that

Here is a third proof, using Gauss sums. This is by far the best
proof - since the method has many applications in other areas -
except that it has one surprising point of difficulty.

Let .
e(x) = e2riT.

We define the Gauss sum

0<j<n

Lemma 5. If p is an odd prime, and p t a,

E(a,p) = (%)E(Lp)-



Proof. Suppose

say

Then

since bx runs over a complete set of residues mod p as = does.

g+

As z runs over a set of residues mod p coprime to p, ax® runs
over the quadratic non-residues mod p, each one twice. Hence

B+ B =23 (2

p
= 0.

Now suppose

Hence

Lemma 6. If p,q are distinct odd primes then

E(p,q)E(q,p) = E(1, pq).



Proof. We have

E(p.q)E(q.p) = > e(lﬁ) 5 €(q_y2)

-y <(px+qy)2)

0<z<q, 0<y<p

)

0<z<pq
= E(1, pg),
since pr + qy runs over the residues mod pq by the Chinese Re-
mainder Theorem. O

Evidently the complex conjugate

= FE(—a,n).
In particular, if p is an odd prime and p 1t a then

E(a,p) = E(—a,p)

It follows that

Ela,p) ERifp=1mod4
a? . .
€ iR if p=3 mod 4.

Lemma 7. If p is an odd prime then
[E(L,p)| = /-
Proof. We have

|E(L,p)]> = E(1,p) E(1,p
x? —
€

)




Suppose p t a. Then

22 —y* = amod p

has just p — 1 solutions, given by
r—y=t x+y=a/t

fort=1,2,...,p—1.
On the other hand
% — y2 =0 mod p
has 2p — 1 solutions (0,0), (1,£1),...,(p —1,£(p — 1)).
Thus

> () ce-nse-0 ¥ (Y

0<z,y<p 1<a<p-1
=2p-1)+(-1(-1)
Hence
|EQ1,p)* = p.

It follows that

B, p) = +,/p if p=1mod 4
PP £iyp if p= 3 mod 4

In fact the positive sign holds in each case:

B, p) = VP if p=1mod 4
Pr= VP if p=3mod 4

It is this that is surprisingly difficult to establish.

(d) While 173 is prime,
297 = 3% - 11.

()0

178 is not a quadratic residue mod3. So a fortiori it is not a
quadratic residue mod297

Since
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3. Define an algebraic number and an algebraic integer. Show that the
algebraic numbers form a field Q, and that the algebraic integers form
a ring Z.

Prove that

ZNQ="7.

Show that every algebraic number « is expressible in the form

_B
a="
n

where (3 is an algebraic integer, and n € N.

Answer:

(a)

(b)

(c)

We say that o € C is an algebraic number if it satisfies an equa-
tion of the form

"+ a4+ 4a, =0,

with aq,...,a, € Q.
We say that o is an algebraic integer if it satisfies an equation of
the form
4+ azr" 4+ 4a, =0,
with ay,...,a, € Z.
We have to show that if a, 5 € Q then o+ 8, a3 € Q; and if
a#0 then o™t € Q.
Suppose «a, 3 satisfy the equations

fla) =a™ +aiz™ ™ +

o) = 2" +ba" b,

where a;,b; € Q.

If a =0 or 8 = 0 the result is obvious; so we may suppose that
A -bp, # 0.

Let the roots of these equations be a = aq,...,q, and [ =

B1,...,0n, so that

fl@) = (@ —ar)--- (2 = am),
g(a) = (x =) (x = Bn).

11



Let

s(x) = H(SU —a; — 3),
p(z) = H(SU — ai;3)).
Then
s(z) = Hg(m — ;).

The coefficients of s(x) are symmetric polynomials in the «;. It
follows from the theory of symmetric polynomials that they are
expressible as polynomials in the coefficients of f(x), and so are

in Q. Thus s(x) € Qlz], and so

a+3eqQ.
Similarly
p(r) = (H a;)" 1;[(37/04@ —5;)
= ([ f[ gl/a)
= ljgi(ﬂf), |
where

gi(z) = 2" + a1 + - - - + ayal.

Again, the coefficients of p(x) are symmetric polynomials in the
a;, and so are in Q. Thus

af € Q.
Finally, o' satisfies the equation
U + Q1%+ -+ a2™ P+ 1=0.
Hence

aleq.

12



(d)

(¢)

(f)

If )
a,B €,

then we may assume that the coefficients a;,b; € Z.

In this case the coefficients of s(x), p(x) are symmetric polynomials
in the o; with integer coefficients; and the theory of symmetric
polynomials shows that they are expressible as polynomials in the
coefficients a; with integer coefficients. Hence the coefficients of
s(z),p(z) are in Z, and so

a,B €.
Suppose o € 7, say o satisfies
flx) =" +az" + -+ a, =0,

with a; € 7.
Now suppose a € Q, say
o =

v?
where u,v € Z with ged(u,v) = 1. Then
w4 au o+ - 4 au” = 0.

It follows that
v | u"

Since ged(u,v) = 1, this implies that v = £1, ie

a €.

Suppose o € Q, say « satisfies
"+ a4 4a, =0,

with a; € Q.
Multiplying by the lecm of the denominators of the a;, we can write

this as
box" + byt + -+ b, =0,

with b; € Z.. But now

(bo(lf)n —+ bobl(b()x)n_l + -+ bgbn = 0,

13



and so
ﬁ = boOé

satisfies the equation

" 4 boby "t 4 -+ B0, = 0.

Thus 3 € Z, and

with bo eZ.

4. State carefully, and prove, the Fundamental Theorem of Arithmetic in
the ring Z[i] of gaussian integers.

Show that the prime number p € N remains prime in Z[i] if and only
if p=3 mod 4.

Determine the number of ways of expressing 1075 as a sum of 2 squares
(of natural numbers).

Answer:

(a) We say that
m el =1ZJ[i

is a prime if
T=af = « or 3 is a unit (o, B €T).

(We say that € € I' is a unit if it is invertible in I".)

Theorem 3. Fach non-unit o € I' is expressible as a product of
primes,

is a second such expression, then v’ = r and there is a permutation
o of {1,...,r} such that, for each i,

/ f— . .
Tro‘(z) = €;T0;,

where €; is a unit.

14



(b) For
v=x+yi € Qi
we set
=77 =2 +y
Evidently,
772l = Il el
Lemma 8. If a € T" then

ais a unit <= |y| = 1.

Lemma 9. Given
v =1z +yi € Q[i
we can find o € T such that

1
—al < =,
v M_Q

Corollary 1. Given «,3 € I' (with 5 # 0) there exists v,§ € I’

such that
a =6+,

with
6] < |B].

This allows us to set up the Fuclidean Algorithm, from which we
derive the following result.

Lemma 10. Given o, € T there exists

§ = ged(a, B)
such that § | af and

§aB = & |4

Furthermore there exist u,vinl’ such that

ua + v = 4.
Corollary 2. If  is prime that

Tlaf = 7w |aorm|p.

Lemma 11. Each o € T is expressible as a product of primes.

15



This follows by induction on |«|.

Lemma 12. The expression is unique up to order.
This follows again by induction on |«|.
For if we have two expressions, as above, then
/

m |
for some j, and so (since 7} is prime)

7 =em

j 1

for some unit €.
The result follows on applying the inductive hypothesis to o /.

(¢) Let p be a rational prime.

1. Suppose
p = 3 mod 4;

and suppose p is not prime in I', say
p=apf.
Then
Ipl = p* = 1o |8].
It follows that
al = [8] = p.
Thus if « = u+ vt then

a’ + b =p.

Hence
a4+ b* = 3 mod 4,

which 1s impossible.

1. Suppose
p =1 mod 4;

(2> = a® Y2 mod p
D

We know that

It follows that



1e there exists a such that
a’+1=0mod p.
Thus
pl(a+i)(a—1).
If p were prime in T then this would imply that
plati,
which 1s absurd.
1s. Since
2=(1+4)(1—19),
2 is not prime in I’
We conclude that p remains prime in I if and only if p = 3 mod 4.

(d) We have
1075 = 52 - 43.

Suppose
1075 = a® + b* = (a + bi)(a — bi).

We know that 43 is prime in I'. Hence
43 | a £ bi,
1e
43 | a,b.
But then 43 divides both factors, and so
43% | 1075,

which is not true.
Hence 1075 cannot be expressed as the sum of two squares.

5. Prove that if m > 0 is not a square then Pell’s equation

2 —my? =1

has an infinity of solutions.

Does the equation

2 —my® = —1

have a solution in the cases m = 3,5, 77

Answer:

17



(a)

Lemma 13. If a € R there are an infinity of integers p,q with

1
q q

Applying this with o = \/m, there are an infinity of p,q with

1
Wm -2 <=
q q
But then »
Vin -+ 2] < 2y 1,
and so ) N
‘m_ %’ < ?7

where N = [2y/m] + 1.
Thus there are an infinity of integers x,y such that

|z — my?*| < N.

Consider the remainders x,y mod N. There must be some inte-
gers a,b € [0, N) such that there are an infinity of solutions with

r=a, y=>b mod N.
Let (x,y), (X,Y) be two such solutions, ie
r=X=a, z=X=a, bmodN.
Now
(22 — my*)(X? —mY?) = (2X —myY)? — m(zY —yX)>
But modulo N,

X —myY =2 —my? =N
=0,

while

Y —yX =xy —yx

18



Thus
N | zX —myY, zY —yX;

and so if we set

X —myY  zY —yX

v=—xN " N

then

u? —mo? = 1.

(b) i. The equation
vt -3y =1

has no integer solution. For one of x,y must be even, and one
odd. But
u? =0 or 1 mod 4.

It follows that
z? — 3y* = 0,102 mod 4.
1. The equation
2? — 5% = —1
has the solution v =2, y = 1.

1t. The equation

2?7y’ = —1

has no integer solution. For
u?>=0,1 or 4 mod 8,
and so

-1 =24+y*=0,1,2,40r 5mod 8.

6. Express /7 as a continued fraction.

Show that if the continued fraction for a number a € R is periodic then
« is a quadratic surd.

Sketch the proof of the converse, that any quadratic surd has a periodic
continued fraction.

Answer:

19



(a) We have

VT=2+(V7-2);
and
1 V742
VT -2 3
V7 -1
=1
T3
Now
3 _ g VTHl
Vi-1 6
_1+ﬁ_1,
2
and
2 VT+1
V-1 6
:1+ﬁ3_2

We are back to where we started; so

N S —

1+ !
1+---

(b) Suppose the continued fraction for « is periodic, say

a = [ag, ..., a, by, dots, bs]
Then
a = [CLO?"'JGT?ﬁ]
_ Pr +pr—1ﬁ
qr +Q7'—157
where ' '
B =1bi,...,0bs

and p;/q; is the ith convergent to «.

20



(¢)

If we show that (B is a quadratic surd it will follow that o is a
quadratic surd.

But

ﬁ: [61,...,65]
_ Ps + D1
¢+ 0
where pl/q; is the ith convergent to [3.
Thus 3 satisfies the quadratic equation

g2+ (¢, — Pz — ps = 0,

and so 1s a quadratic surd.

Suppose
a = [ag,a, -]

1 a quadratic surd, say « satisfies
Q(z) = Az® + 2Bz + C = 0,
where A, B,C € 7.

Let
ap = [an, Gpit, -]
Then
o= Pn—10, +pn—2 ‘
qn—1Cn + qn—2
Hence

A<pn7105n + pn72)2 + QB(pnflan + pn72)<QHflan + Qn72) + C(qnflan + an2>2 = O
e
An? + Buo, +
with
An = Ap?@_l + 2Bpn—IQn—1 + qu_l
= Qifl Q(pnfl/anl)v
Bn = Apn—lpn—? + B(pn—lQn—Q + Qn—lpn—2> + OQn—IQn—2
= Gn-19n—2 Ql(pn—l/qn—l7pn—2/%’b—2)u
Cn = Api72 + 2Bpn72%172 + quZL72
= quz—Z Q(pn—Q/Qn—2)v

21



where
Qi(z,y) = Ary + Bz +y) + C
is the ‘polarized’ form of the quadratic form Q(x).

We shall show that A,, B,,C, do not get large; this follows from
the fact that p;/q; is very close to a. More precisely,

[since « lies between p;/q; and pis1/qiv1 and pigis1 — @pis1 = 1/
Now
Q(z) — Qy) = (z —y)(Alz +y) + B).

Hence

Qpi/ai) = Qpi/ @) — Q)
= (pi/ai — a)(Ala +pi/a;) + B),

and so
Qi/a)| < |la—pi/ail |A|(2|la] + 1) +|B],
<c2,

7

where C' = 2(|la| + 1) + |B|. Thus
[Anl < C, |G| < C.
Finally,

Qu(z,y) — (2, y) = Alzy —2'y)+ Bz — 2" +y — /)
= (r —2")(Ay + B) + (y — v )(A2' + B).

Thus

Q1(Pn-1/Gn—1,Pn—2/n—2) = Q1(Pn-1/@n-1, Prn-2/Gn—2) — Q1(, @)
= (Pn-1/Gn-1 — ) (Apn-1/Gn-1 + B) + (Pn—2/qn-2 — @) (A

and so

|Q1(pn—1/Qn—1apn—Z/qn—2)| <C (|Oé —pn—l/Qn—1| + |Oé - pn—2/qn—2|)

1 1
<c ( i ) .
dn—19n qn—29n—1
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Thus
absB,, < 2C.

It follows that the v, are roots of a finite number of quadratics,
and so there must be a repetition,

Oty = Q.
In other words, the continued fraction for a is periodic.
7. Express 2/3 as a 2-adic number in standard form

ap + a2 + as2* + -+ (a; € {0,1}).

Show that the equation
2 —7=0

has no solution in the 2-adic ring Zs, while the equation

2 +7=0
has just two solutions.
Answer:
(a) We have
2
3= 0 mod 2,
and
12_1
23 3
Next
% = 1 mod 2,
and
1 (1 _ > _ !
2 \3 3
Continuing



and

Again,

and
1 -2 -1
2

We are back to where we were 2 steps ago. Thus

2
Z=0-14+1-24+1-2240-22+1-2"4+0-2°+---,

3
1€
2 2 o4 | o6
3 =2+2+20 420
Checking,
2 o4 | ob 22
242 2 2 cee =12
+22 420+ 20 + o
4
—92_
3
2
=3

[Remark. One could work in the opposite direction, by computing
the order of 2 mod3 (in this case). Thus

2?2 = 1 mod 3,
1€
3 (1-2%
In fact
P -1
1—-22 37



and so

as we saw.

Let us look at a slightly more complicated example from this point
of view: Suppose we are asked to express 2/5 as a 3-adic integer.

The order of 3 mod 5 is 4:

3*—-1=80=5"16.

Thus
1 -16
5 11— 3%
and so
2 -32
5 1—234
_1+81—32
B 134
49
=1
+1—34

Now ezpress 49 in the usual way to base 3:
49=3"+2-2+3+1.
Thus
%:(1+3+2-32+33)(1+34+38+---)
=1+34+2-324+3+3"+3+2-30+... ]

(b) The congruence
r* — 7 = 0 mod 2

has no solution, since
22 =0 or 1 mod 4.

Hence
22 —7=0

25



has no solution in Zs.

[1f
T =ag+ a2+ a2’ + -

were a solution in Zso, then
T =ag+ a2
would be a solution of the congruence
2% —7 =0 mod 2%
(c) Zs is an integral domain. Hence if 0 € Zo were a solution of

P +7=0

then
P+ 7= (z—-0)(z+0),

and so there would be just two solutions, +6.

To see that there is a solution, we start with the solution x =1 to

the congruence
2?4+ 7= 0mod 2°.

We must show that we can extend this to a solution mod 2¢ for all
e.

Suppose
22 +7 = 0 mod 2°,

where e > 3. We want to extend this to a solution mod2¢t!.
If this solution already satisfies

2? +7=0mod 2°™!
then there is nothing to do. Otherwise
2 4+ 7= 2°mod 2¢.
In this case,
(2 + 212 4+ 7T=2* +2-2°% + 7 mod 2°7!
= 2° + 2° mod 2°*!

= 0 mod 2°*!,

Thus © + 2671 is a solution mod2¢t!.

In this way we can extend the solution indefinitely, to give a solu-
tion wn Zso.
Remarks

26



1.

The argument could be expressed very simply in this case, be-
cause there are only 2 congruence classes mod2. But a simi-
lar argument works for an odd prime p as well. The essential
point is that if we have a solution x mod p® of a polynomial
equation f(x) =0 (where f(z) € Z[x]) then

f(z + zp®) = 0 mod p“**

reduces to a linear equation for z mod p, ie the solution of a
linear equation in the field ¥, = Z/(p).

That is the essential content of Hensel’s Lemma, which states
that: if x is a solution of

f(z) = 0 mod p°
and

f'(x) £ 0mod p

then x can be extended uniquely to a solution modp®t!.

There is a completely different way of solving this, using a bit
of ‘p-adic analysis’.
By the binomial theorem,

VT = (129

=1-(1/2)2% +

/2 -1/2,5  1/2--1/2--3/2

929 4 ...
1-2 1-2-3 *

We need only ensure that the power of 2 in 23 more than
swamps the power of 2 in the binomial coefficient

1/2
0 )
The power of 2 in the numerator of this is 27" ; while if

2¢||n!

then



Hence

1/2
< / )23"50m0d2”,

n

and the binomial series converges.

(Recall that
2

converges in Zy, if and only if

a, — 0.)
Note that the solution to

2 +7=0

obtained in this way is not in standard format; but there is
nothing wrong with that.

8. Show that a Dirichlet series
a; + a2+ a3+ (a; € C)

converges in some half-plane R(s) > o, and diverges in R(s) < o.
Show that o = 1 for the Riemann zeta function ((s)

Show how the definition of {(s) can be extended to R(s) > 0 by con-
sidering the function (1 — 2'7%)((s), and deduce that ((s) has just one
pole in this region.

Could this technique be used to extend the definition of ((s) to the
whole complex plane?

Answer:

(a)
Lemma 14. The series

Z bncn

converges if

1. The partial sums

are bounded; and
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Z|Cn - Cn+1

18 convergent.

Let
f(s)=a1+a2™® +az3 4 ---

We have to show that if f(s) is convergent for s = sy then it is
convergent for all s with

R(s) > R(so).

Let
s =50+ 5,

where

On applying the Lemma with

!
. —s . —s
b, =a,n"°, ¢c,=n

the result will follow if we show that

D I = (1)

18 convergent.

Now
! / ! n+1
n —(n+1)"° = [—x’s]
n+1 "
= s// ~6HD
But
E (s'+1) — p—(@'+1)
Hence
S (n+1"° |<|s|/ —(@ D gy
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(b)

(¢)

Thus
N ’ / ’S,| / ’
S =4 ) <5 (M = (V1))

M

and so
Y I = (n+1)77

18 convergent.

If
o= R(s)
then
In=*| =n"°.
But if o > 1,

S

converges, by comparison with

1
/x" dx = [2=(=D)].

oc—1

On the other hand, if o < 1 then

S

diverges, by comparison with
/a:_l dx = [log x].

We conclude that the abscissa of convergence for ((s) is o = 1.
We have

fls)=(1-227°)((s) =1—-2""+37" =47 +....

Now f(o) converges for real o > 0, since the terms of the series
are monotone decreasing and tend to 0.

On the other hand f(o) is not convergent for o < 0 since the
terms do not tend to 0.

It follows that the abscissa of convergence of f(s) is o = 0. Hence
f(s) is holomorphic in R(s) > 0; so
1

C(S):m

f(s)
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defines the analytic continuation of ((s) to the region.

The function
1—9l=s — 1 _ e(l—s)log2

has zeros wherever
(1 —s)log2 = 2nmi,
1€

2nm .

=1
S +log2z

(withn € Z).
On the fact of it, ((s) could have poles at these points. However,
we can consider the function

g(s) = (1=337°)((s) =1427°=2:37"+47°+5°=2:6 "+ - .

This series also converges for R(s) > 0, on taking the terms three
at a time. It follows that

C5) = g1y 905)

also defines the analytic continuation of ((s).

Since
1 — 31—8 —1— e(l—s)logS

has zeros where

(1 —s)log3 = 2mmi,

1€
14 2mm
s = i
log 3
(withn € Z).
These two sets overlap where
no_om
log2 log3
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e
2m = 3™,

The only solution of this is m = n = 0. It follows that ((s) can
only have a pole in R(s) > 0 at the point s = 1.

It does have a pole there, since
((0) = 00 as o — 1+

(ie as o — 1 from above).

(d) The technique could be used to continue ((s) to the whole complex
plane. Thus
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9. State the Prime Number Theorem, and sketch its proof.

Answer:

(a)

(b)

The Prime Number Theorem states that
m(x) ~ Li(z),
where 7(x) is the number of primes < x and

Todt

[

The steps in the proof of the PNT are:

Lemma 15.
T

Li(x)

~ log x
This is a simple exercise in integration by parts.

Lemma 16. The Riemann zeta function

((s)=> n*
is holomorphic in R(s) > 1, and can be extended to a meromorphic
function in R(s) with a single simple pole at s = 1.
Lemma 17. If R(s) > 1,
) =JJa-p)"

p

Corollary 3. ((s) has no zeros in R(s) > 1.
Lemma 18. If R(s) > 1,

¢'(s)
¢(s)

= logpp~® + h(s)
= /ws df(z) + h(s),
where

O(x) =Y logp

p<z

and h(s) is holomorphic in R(s) > 1/2.
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Lemma 19. The PNT is equivalent to

O(z) ~ x,
or equivalently
P(x) = o(x),
where
U(z) =0(x) — x.

This is proved using Riemann-Stieltjes integration by parts.

Lemma 20. ((s) has no zeros on R(s) = 1.

This is derived from the inequality
cos2t+4cost+3>0

which implies that
[C(o +2t0)] [¢(o +t)[* [C(o)* > 1.
Lemma 21.

@@y:[wxsmmw

is holomorphic in R(s) > 1 (ie in some open set containing this
region,).

Corollary 4.

U(s+1) = /00 2~ dy(z)

is holomorphic in R(s) > 0.

Lemma 22. The Tauberian theorem: if f(x) is bounded on (0, 00)
then

Py = [ et da

is holomorphic in R(s) > 0. Furthermore, if F(s) is holomorphic
in R(s) > 0 then

Amﬂ@dx:F@y
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Corollary 5. If g(x) is bounded on (1,00) then

G(s) = /100 2~ g(z) da

is holomorphic in R(s) > 0. Furthermore, if G(s) is holomorphic

in R(s) >0 then
| st 5 = G,

This ‘Mellin form’ of the Tauberian theorem follows at once from
the previous version on making the change of variable y = €* (and
changing back from y to x).

Lemma 23.

This ‘bootstrap lemma’ follows on considering the primes dividing
the binomial coefficient (2:)

Corollary 6.
v~ (x)
s bounded.

Lemma 24. The integral

CONVETGES.

[On integrating by parts,
U(s+1)= / =D @y (x)
1
— @]+ D) [ o) da
1

=—14+(s+1) /00 o~y (z) da
1

S

if R(s) > 0, since Y(x)/z is bounded as x — oo, while x~° — 0.

Thus - a( D4
~(5+2) () iy = ST

and the Tauberian Theorem can be applied.]

Y
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Lemma 25.

/ wx(f) dx convergent = 6(z) ~ .

This is a little tricky. It follows because ¥ (x) is not changing
rapidly; so if Y(X) > C > 0 then (x) > C/2 for z € [ X, X],
where the interval is long enough to contribute > C' to the integral,
which will contradict convergence if it happens infinitely often; and
similarly if (X) < —C < 0.
Remarks. The two main steps in the proof are:

i. establishing that ((s) has no zeros on R(s) = 1; and

71. the Tauberian theorem.
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