
Course 3413 — Group Representations

Sample Paper III

Dr Timothy Murphy

2 hour paper

Attempt 3 questions. (If you attempt more, only the best 3 will
be counted.) All questions carry the same number of marks.
Unless otherwise stated, all groups are compact (or finite), and
all representations are of finite degree over C.

1. Define a group representation.

What is meant by saying that a representation α is simple? Determine
all simple representations of S3. from first principles.

Determine the characters of S4 induced by the simple characters of S3.
Hence or otherwise draw up the character table for S4

Answer:

(a) A representation α of a group G in a vector space V is a homo-
morphism

α : G→ GL(V ).

(b) The representation α of G in V is said to be simple if no subspace
U ⊂ V is stable under G except for U = 0, V . (The subspace U is
said to be stable under G if

g ∈ G, u ∈ U =⇒ gu ∈ U.)
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(c) Writing s, t for the permutations (123), (12) we have

S3 = 〈s, t : s3 = t2 = 1, st = ts2〉.

Suppose α is a 1-dimensional representations of S3. ie a homo-
morphism

α : S3 → C∗.

Let
α(s) = λ, α(t) = µ.

Then

λ3 = 1, µ2 = 1, λµ = µλ2 =⇒ λ = 1, µ = ±1.

Thus there are just 2 1-dimensional representations 1, ε given by

s 7→ 1, t 7→ ±1.

Suppose α is a simple representation of degree d > 1 in the vector
space V over C. Let e be an eigenvector of s, say

se = λe.

Then
s(te) = ts2e = λ2(te),

ie f = te is a λ2-eigenvector of s.

The vector subspace
U = 〈e, f〉

is stable under S3 since

se = λe, te = f sf = λ2f, tf = t2e = e.

Hence
V = U = 〈e, f〉 .

Thus α is of degree 2.

Since s3 = 1,

λ3 = 1,

ie

λ ∈ {1, ω, ω2},



where ω = e2πi/3.

If λ = 1 then

se = e, te = f sf = f, tf = e.

It follows that

s(e+ f) = e+ f, t(e+ f) = e+ f.

Thus the 1-dimensional subspace 〈e+ f〉 is stable under S3, so α
is not simple.

Hence λ = ω or ω2, giving the representations

s 7→
(
ω 0
0 ω2

)
, t 7→

(
0 1
1 0

)
,

and

s 7→
(
ω2 0
0 ω

)
, t 7→

(
0 1
1 0

)
.

These representations are equivalent, on swapping e, f .

Hence S3 has just 3 simple representations, of degrees 1,1,2.

(d) Recall that if β is a representation of H ⊂ G, then it induces a
representation α of G with character

χα([g]) =
#G

#H

∑
[h]⊂[g]

#[h]

#[g]
χβ[h],

where the sum is over the classes [h] of H contained in the class
[g] of G.

From above, the character table of S3 is

13 21 3
1 1 1 1
ε 1 −1 1
α 2 0 −1

S4 has 5 classes: 14, 212, 22, 31, 4. We have

14 ∩ S3 = 13,

212 ∩ S3 = 21,

22 ∩ S3 = ∅,
31 ∩ S3 = 3,

4 ∩ S3 = ∅.



Also

[S4 : S3] = 24/6 = 4, [14 : 13] = 1/1 = 1, [212 : 21] = 6/3 = 2, [31 : 3] = 8/2 = 4.

Thus from our formula above the simple characters of S3 induce
the following characters of S4:

14 212 22 31 4
1S4 4 2 0 1 0
εS4 4 −2 0 1 0
αS4 8 0 0 −1 0

We assume known the two representations of S4 of degree 1:

14 212 22 31 4
1 1 1 1 1 1
ε 1 −1 1 1 −1

We have

I(1S4 , IS4) =
1

24

(
42 + 6 · 22 + 8 · 12

)
= 2.

Thus 1S4 splits into two parts, of which one is evidently the trivial
representation, giving the simple representation

φ = 1S4 − 1

of S4.

Similarly
ε(1S4 , εS4) = 2,

while

I(εS4 , ε) =
1

24
(4 · 1 + 6 · −2 · −1 + 8 · 1 · 1) = 1.

Thus εS4 splits into two parts, of which one is ε, giving the simple
representation

ψ = εS4 − 1

Since S4 has 5 classes, it has 5 simple representations, of which
we have found 4:

14 212 22 31 4
1 1 1 1 1 1
ε 1 −1 1 1 −1
φ 3 1 −1 0 −1
ψ 3 −1 −1 0 1



(Evidently ψ = εφ.)

Finally, we have

α(1S4 , αS4) =
1

24

(
82 + 6 ·+8 · 12

)
= 3.

So αS4 splits into three parts. We have

I(αS4 , 1) =
1

24
(8− 8) = 0,

and similarly

I(αS4 , ε) =
1

24
(8− 8) = 0.

Thus the three parts of αS4 must be φ, ψ and the last simple rep-
resentation

θ = αS4 − φ− ψ,

enabling us to complete the table

14 212 22 31 4
1 1 1 1 1 1
ε 1 −1 1 1 −1
φ 3 1 −1 0 −1
ψ 3 −1 −1 0 1
θ 2 0 2 −1 0

2. Show that the number of simple representations of a finite group G is
equal to the number s of conjugacy classes in G.

Determine the conjugacy classes in A4 (formed by the even permuta-
tions in S4), and draw up its character table.

Determine also the representation-ring for this group, ie express the
product αβ of each pair of simple representation as a sum of simple
representations.

Answer:

(a) Let the simple representations of G be σ1, . . . , σr; and let χi(g) be
the character of σi.

The simple characters χ1, . . . , χr are linearly independent. For if
say

ρ1χ1(g) + · · ·+ ρsχs(g) = 0



it follows from the formula for the intertwining number that for
any representation α

ρ1I(α, σ1) + · · ·+ ρrI(α, σr) = 0.

But on applying this with α = σi we deduce that ρi = 0 for each i.

The characters are class functions:

χ(gxg−1) = χ(x).

The space of class functions has dimension s, the number of classes
in G. It follows that r ≤ s.

To prove that r = s, it is sufficient to show that the characters
span the space of class functions.

Suppose g ∈ G has order e. Let [g] denote the class of g, and let
C = 〈g〉 be the cyclic group generated by g.

The group C has e 1-dimensional representations θ1, . . . , θe given
by

θi : g 7→ ωi,

where ω = e2πi/e.

Let

f(x) = θ0(x) + ω−1θ1(x) + ω−2θ2(x) + · · ·+ ω−e+1θe−1(x)

Then

f(gj) =

{
e if j = 1

0 otherwise.

Now let us “induce up” each of the characters θi from C to G. We
have

θGi (x) =
|G|
|S||[x]|

∑
y∈[x]∩C

θi(y).

Let F (x) be the same linear combination of the induced characters
that f(x) was of the θi. Then

F (x) =
|G|
|S||[x]|

∑
y∈[x]∩C

f(y).

Since f(y) vanishes away from g, we deduce that F (x) vanishes
off the class [g], and is non-zero on that class:

F (x)

{
> 0 if x ∈ [g],

= 0 if x /∈ [g].



It follows that every class function on G can be expressed as a lin-
ear combination of characters, and therefore as a linear combina-
tion of simple characters. Hence the number of simple characters
is at least as great as the number of classes.

We have shown therefore that the number of simple representations
is equal to the number of classes.

(b)

Lemma 1. Suppose [g] is an even class in Sn. Then [g] splits
in An if and only if there is no odd permutation t ∈ Sn which
commutes with g; and if that is so then [g] splits into two equal
parts.

Proof. By Lagrange’s Theorem

#[g] =
#Sn

#Z(g)
,

where
Z(g) = {x ∈ Sn : xg = gx}.

Similarly, if [g]′ is the class of g in An, and

Z ′(g) = {x ∈ An : xg = gx}

then

#[g]′ =
#An

#Z ′(g)
,

If no odd permutation commutes with g then

Z ′(g) = Z(g),

and so

#[g]′ =
1

2
#[g].

Since this is true for any An-class in [g], it follows that [g] splits
into two equal classes.

Conversely, if there an odd permutation commutes with g then

#Z ′(g) < #Z(g),

and so

#[g]′ >
1

2
#[g].



Since this is true for any An-class in [g] it follows that

[g]′ = [g].

There are 3 even classes in A4: 14, 22, 31. Since the first two
contain an odd number of elements they cannot split.

If x commutes with (abc) ∈ 31 then x(d) = d, and so

Z(abc) = 〈(abc)〉

contains no odd permutations.

Hence the class 31 splits. On considering the action of V4 =
{1, (ab)(cd), (ac)(bd), (ad)(bc)} on (abc), it follows that the A4-
class of (abc) is

31′ = {(abc), (bad), (cad), (dcb),

while the inverses of these elements form the other class

31′′ = {(cba), (dab), (dac), (bcd)}.

(c) Since
V4 / A4,

with
A4/V4 = C3.

It follows that the 3 representations of C3 of degree 1 define 3
representations of A4 of degree 1, which we may call 1, ω, ω2, with
characters

14 22 31′ 31′′

1 1 1 1 1
ω 1 1 ω ω2

ω2 1 1 ω2 ω

Since
12 + 12 + 12 + 32 = 12

there must be a 4th simple representation of degree 3 (and so the
class 31 must split, as we have seen).

We know that the natural representation ρ of S4 of degree 4 (de-
fined by permutation of the coordinates) splits into two simple parts

ρ = 1 + α,



with character
14 212 22 31 4

ρ 4 3 0 1 0
α 3 2 −1 0 −1

The restriction θ = α|A4 has character

14 22 31′ 31′′

θ 3 −1 0 0

Since

I(θ, θ) =
1

12

(
32 + 3 · (−1)2

)
= 1,

θ is simple, allowing us to complete the character table for A4:

14 22 31′ 31′′

1 1 1 1 1
ω 1 1 ω ω2

ω2 1 1 ω2 ω
θ 3 −1 0 0

(d) Since the product of a simple representation with a representation
of degree 1 is simple, and since θ is the only simple representation
of degree 3,

1θ = ωθ = ω2θ = θ.

The products of the representations of degree 1 are trivial,

ω · ω = ω2,

etc.

This leave the product θ2 of degree 9 to compute. Recall that

I(αβ, γ) = I(α, β∗θ).

Since θ∗ is simple, and of degree 3,

θ∗ = θ,

and so

I(1, θ2) = I(θ∗, θ) = I(θ, θ) = 1,

I(ω, θ2) = I(ωθ∗, θ) = I(θ, θ) = 1,

I(ω2, θ2) = I(ω2θ∗, θ) = I(θ, θ) = 1.



It follows that
θ2 = 1 + ω + ω2 + 2θ.

In summary, the representation-ring is:

1 ω ω2 θ
1 1 ω ω2 θ
ω ω ω2 1 θ
ω2 ω2 1 ω θ
θ θ θ θ 1 + ω + ω2 + 2θ

3. Determine all groups of order 8 (up to isomorphism); and for each such
group G determine as many simple representations (or characters) of
G as you can.

Answer:

(a) Suppose first that the group is abelian. From the Structure Theo-
rem for Finite Abelian Groups, such a group is a direct product of
cylic groups. In our case there are 3 such groups:

C2 × C2 × C2, C4 × C2, C8.

Now suppose the group G is non-abelian.

We know that a group in which every element satisfies g2 = 1 is
necessarily abelian.

Also, if there is an element of order 8 in the group then G = C8

is abelian.

It follows that there is at least one element h ∈ G of order 4. Since
the subgroup

H = 〈h〉 = C4

is of index 2 in G, it is normal in G:

H / G.

Suppose there is an element g ∈ G\H of order 2. Then g−1hg ∈ H
is of order 4; so

g−1hg = h or h−1.

If g−1hg = h then G is abelian, and has already been determined.
Thus

g−1hg = h−1 = h3,



giving
G =

〈
g, h : g2 = h4 = 1, hg = gh3

〉
,

which we regognise as D4.

Finally, suppose all the elements of G \H are of order 4, Let g be
one such element. Then

g−1hg = h−1.

as before. Also. g2 ∈ H, since [G : H] = 2. Since g2 is of order
2, it follows that

g2 = h2.

Thus
G =

〈
g, h : h4 = 1, g2 = h2, hg = gh3

〉
,

which we recognise as the quaternion group

Q8 = {±1,±i,±j,±k}.

(b) The simple representations of H×K are the representations α×β,
where α, β are simple representations of H,K.

Also
Cn = 〈g〉

has just n simple representations, all of degree 1, given by

g 7→ ωr (r = 0, 1, . . . , n− 1),

where ω = e2πi/n.

It follows that a finite abelian group of order n has just n simple
representations, all of degree 1.

In particular, each of the 3 abelian groups of order 8 has 8 simple
representations of degree 1.

Turning to
D4 =

〈
s, t : s4 = t2 = 1, ts = s3t

〉
,

we see that this has 4 representations of degree 1, given by

s 7→ ±1, t 7→ ±1.

Recall that if the finite group G of order n has simple representa-
tions σ1, . . . , σs or degrees d1, . . . , ds then

d2
1 + · · ·+ d2

s = n.



This implies that D4 has one further simple representation, of
degree 2. This is the natural representation of D4, regarded as the
symmetry group of a square, acting on R2, extended to C2.

Thus D4 has 5 simple representations, of degrees 1,1,1,1,2.

Similarly,
Q8 =

〈
s, t : s4 = 1, t2 = s2, ts = s3t

〉
has 4 representations of degree 1, given by

s 7→ ±1, t 7→ ±1.

As with D4, it must have one further simple representation, of
degree 2.

If we regard the complex numbers C as a sub-algebra of the quater-
nions H then H becomes a 2-dimensional vector space over C, with
basis 1, j. This gives the required representation of Q8 ⊂ H, with
s = i, t = j acting by

s 7→
(
i&0

0 i

)
, t 7→

(
0&− 1

1 0

)
.

4. Determine the conjugacy classes in SU(2); and prove that this group
has just one simple representation of each dimension.

Define a covering homomorphism

Θ : SU(2)→ SO(3);

and hence or otherwise show that SO(3) has one simple representation
of each odd dimension 1, 3, 5, . . . .

Answer:

(a) Suppose U ∈ SU(2). The eigenvalues λ, µ of U satisfy

|λ| = |µ| = 1, λµ = 1.

Hence we can write the eigenvalues as

e±iθ,

where we may take −π < θ ≤ π.

We can diagonalize U , ie find V ∈ SU(2) such that

V −1UV = U(θ) =

(
eiθ0
0 e−iθ

)
.



(For if e is a λ-eigenvector with e∗e = 1, then we can extend to
an orthonormal basis e, f , and setting V = (e, f) we have

V −1UV =

(
λ b
c d

)
.

But since this matrix is unitary,

λ∗λ+ b∗b = 1, λ∗λ+ c∗c = 1

and so b = c = 0.)

It is evident that
U(−θ) ∼ U(θ),

on swapping the basis elements.

On the other hand, since

trU(θ) = 2 cos θ

it follows that the matrices U(θ) 0 ≤ θ < π are not similar.

Hence there is a conjugacy class C(θ) corresponding to each θ ∈
[0, π], consisting of all U with

trU = 2 cos θ.

(b) Suppose n ∈ N, Let V (n) denote the space of homogeneous poly-
nomials P (z, w) of degree n in z, w. Thus V (n) is a vector space
over C of dimension n+ 1, with basis zn, zn−1w, . . . , wn.

Suppose U ∈ SU(2). Then U acts on z, w by(
z
w

)
7→
(
z′

w′

)
= U

(
z
w

)
.

This action in turn defines an action of SU(2) on V (n):

P (z, w) 7→ P (z′, w′).

We claim that the corresponding representation of SU(2) — which
we denote by Dn/2 — is simple, and that these are the only simple
(finite-dimensional) representations of SU(2) over C.

To prove this, let

U(1) ⊂ SU(2)



be the subgroup formed by the diagonal matrices U(θ). The action
of SU(2) on z, w restricts to the action

(z, w) 7→ (eiθz, e−iθw)

of U(1). Thus in the action of U(1) on V (n),

zn−rwr 7→ e(n−2r)iθzn−rwr,

It follows that the restriction of Dm/1 to U(1) is the representation

Dn/2|U(1) = E(n) + E(n− 2) + · · ·+ E(−n)

where E(n) is the representation

eiθ 7→ eniθ

of U(1).

In particular, the character of Dn/2 is given by

χn/2(U) = eniθ + e(n−2iθ + · · ·+ e−niθ

if U has eigenvalues e±iθ.

Now suppose Dn/2 is not simple, say

Dn/2 = α + β.

(We know that Dn/2 is semisimple, since SU(2) is compact.) Let
a corresponding split of the representation space be

V (n) = W1 ⊕W2.

Since the simple parts of Dm/2|U(1) are distinct, the expression
of V (n) as a direct sum of U(1)-spaces,

V (n) = 〈zn〉 ⊕ 〈zn−1w〉 ⊕ · · · ⊕ 〈wn〉

is unique. It follows that W1 must be the direct sum of some of
these spaces, and W2 the direct sum of the others. In particular
zn ∈ W1 or zn ∈ W2, say zn ∈ W1. Let

U =
1√
2

(
1 −1
1 1

)
∈ SU(2).



Then (
z
w

)
7→ 1√

2

(
z + w
−z + w

)
under U . Hence

zm 7→ 2−m/2(z + w)m.

Since this contains non-zero components in each subspace 〈zm−rwr〉,
it follows that

W1 = V (n),

ie the representation Dm/2 of SU(2) in V (m) is simple.

To see that every simple (finite-dimensional) representation of
SU(2) is of this form, suppose α is such a representation. Con-
sider its restriction to U(1). Suppose

α|U(1) = erE(r)+er−1E(r−1)+· · ·+e−rE(−r) (er, er−1, . . . , e−r ∈ N).

Then α has character

χ(U) = χ(θ) = ere
riθ + er−1e

(r−1)iθ + · · ·+ e−re
−riθ

if U has eigenvalues e±iθ.

Since U(−θ) ∼ U(θ) it follows that

χ(−θ) = χ(θ),

and so

e−i = ei,

ie

χ(θ) = er(e
riθ + e−riθ) + er−1(e

(r−1)iθ + e−(r−1)iθ) + · · · .

It is easy to see that this is expressible as a sum of the χj(θ) with
integer (possibly negative) coefficients:

χ(θ) = a0χ0(θ)+a1/2χ1/2(θ)+· · ·+asχs(θ) (a0, a1/2, . . . , as ∈ Z).

Using the intertwining number,

I(α, α) = a2
0 + a2

1/2 + · · ·+ a2
s



(since I(Dj, Dk) = 0). Since α is simple,

I(α, α) = 1.

It follows that one of the coefficients aj is ±1 and the rest are 0,
ie

χ(θ) = ±χj(θ)
for some half-integer j. But

χ(θ) = −χj(θ) =⇒ I(α,Dj) = −I(Dj, Dj) = −1,

which is impossible. Hence

χ(θ) = χj(θ),

and so (since a representation is determined up to equivalence by
its character)

α = Dj.

(c) Let V be the space of hermitian 2×2-matrices with trace 0. (Thus
V consists of the matrices of form

X =

(
x y − iz

y + iz −x

)
,

with x, y, z ∈ R.)

Then V is a real vector space of dimension 3, with basis

E =

(
1 0
0 −1

)
, F =

(
0 1
1 0

)
, G =

(
0 i
−i 0

)
.

Suppose U ∈ SU(2), X ∈ V . Let

Y = U−1XU = U∗XU.

Then
Y ∗ = U∗X∗U = U∗XU = Y,

ie Y is hermitian; and

trY = trX = 0.

Thus Y ∈ V , and we have defined an action of SU(2) on V , giving
a homomorphism

Θ : SU(2)→ GL(3,R).



We can define a positive-definite inner product on V by

〈X, Y 〉 = tr(X∗Y );

and this inner-product is preserved by the action, ie

tr((U∗XU)∗U∗Y U) = tr(X∗Y ).

Thus
im Θ ⊂ O(3).

In fact, since SU(2) is connected (it is homeomorphic to the 3-
sphere S3) it follows that

im Θ ⊂ SO(3).

Thus we have defined a homomorphism

Θ : SU(2)→ SO(3).

We have
ker Θ = {±I}.

For if U ∈ ker Θ then
UX = XU

for all X ∈ V .

Since any hermitian matrix can be written as λI+X, with X ∈ V ,
it follows that

UX = XU

for all hermitian matrices.

Since ever skew-hermitian matrix is of the form iX, with X her-
mitian, it follows that

UX = XU

for all skew-hermitian matrices; and since every matrix is the sum
of a hermitian and a skew-hermitian matrix, it follows that

UX = XU

for all 2× 2-matrices over C. Hence

U = ±I.



It remains to show that Θ is surjective, ie

im Θ = SO(3).

It is easy to see that

ΘU(θ) = R(2θ, Ox)

(the rotation in V through angle 2θ about the axis Ox).

Also Θ(F ), Θ(G) (where F,G are the matrices defined above) are
half-turns about Oy, Oz respectively.

Since these rotations generate SO(3) we have shown that Θ is
surjective.

(d) If we have a surjective homomorphism

θ : G→ H,

then each representation of H defines a representation of G (in
the same vector space); and a representation of G arises in this
way precisely if it is trivial on ker θ. Also the representation of G
is simple if and only if the representation of H is simple.

It follows that the simple representations of SO(3) correspond to
the simple representations of SU(2) which are trivial on {±I}.
But it is easy to see that −I acts on V (n) by

P (z, w) 7→ (−1)nP (z, w).

Thus the action is trivial if and only if n is even, ie if and only if
the degree n+ 1 of the representation is odd.

In other words, the simple representations of SO(3) correspond to
the representations Dj of SU(2) with j ∈ N.


