

Course 3413 - Group Representations Sample Paper II

Dr Timothy Murphy

December 2010

Attempt 6 questions. (If you attempt more, only the best 6 will be counted.) All questions carry the same number of marks.
Unless otherwise stated, all groups are compact (or finite), and all representations are of finite degree over \mathbb{C}.

1. What is a group representation?

What is meant by saying that a representation is simple?
What is meant by saying that a representation is semisimple?
Prove that every finite-dimensional representation α of a finite group over \mathbb{C} is semisimple.
2. Show that all simple representations of an abelian group are of degree 1.

Determine from first principles all simple representations of $D(6)$.
3. Determine all groups of order 30 .
4. Prove that the number of simple representations of a finite group G is equal to the number of conjugacy classes in G.

Show that if the finite group G has simple representations $\sigma_{1}, \ldots, \sigma_{s}$ then

$$
\operatorname{deg}^{2} \sigma_{1}+\cdots+\operatorname{deg}^{2} \sigma_{s}=|G| .
$$

Determine the degrees of the simple representations of S_{6}.
5. Determine the conjugacy classes in A_{5}, and draw up the character table of this group.
6. If α is a representation of the finite group G and β is a representation of the finite group H, define the representation $\alpha \times \beta$ of the product-group $G \times H$.
Show that if α and β are simple then so is $\alpha \times \beta$, and show that every simple representation of $G \times H$ is of this form.
Show that the symmetry group G of a cube is isomorphic to $C_{2} \times S_{4}$. Into how many simple parts does the permutation representation of G defined by its action on the vertices of the cube divide?
7. Show that every representation of a compact group is semisimple.

Determine the simple representations of $\mathrm{U}(1)$.
Verify that the simple characters of $\mathrm{U}(1)$ are orthogonal.
8. Show that $\mathrm{SU}(2)$ has just one simple representation of each degree $0,1,2, \ldots$.

Determine the simple representations of $\mathrm{U}(2)$.
9. Show that $\mathrm{SU}(2)$ is isomorphic to $\mathrm{Sp}(1)$ (the group of unit quaternions).

Define a 2-fold covering $\mathrm{Sp}(1) \rightarrow \mathrm{SO}(3)$, and so determine the simple representations of $\mathrm{SO}(3)$.

