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Attempt 6 questions. (If you attempt more, only the best 6 will
be counted.) All questions carry the same number of marks.
Unless otherwise stated, all groups are compact (or finite), and
all representations are of finite degree over C.

1. What is a group representation?

What is meant by saying that a representation is simple?

What is meant by saying that a representation is semisimple?

Prove that every finite-dimensional representation α of a finite group
over C is semisimple.

Answer:

(a) A representation α of a group G in a vector space V is a homo-
morphism

α : G → GL(V ).

(b) The representation α of G in V is said to be simple if no subspace
U ⊂ V is stable under G except for U = 0, V . (The subspace U is
said to be stable under G if

g ∈ G, u ∈ U =⇒ gu ∈ U.)
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(c) The representation α of G in V is said to be semisimple if it can
be expressed as a sum of simple representations:

α = σ1 + · · ·+ σm.

This is equivalent to the condition that each stable subspace U ⊂ V
has a stable complement W :

V = U ⊕W.

(d) Suppose α is a representation of the finite group G in the vector
space V . Let

P (u, v)

be a positive-definite hermitian form on V . Define the hermitian
form Q on V by

Q(u, v) =
1

‖G‖
∑
g∈G

H(gu, gv).

Then Q is positive-definite (as a sum of positive-definite forms).

Moreover Q is invariant under G, ie

Q(gu, gv) = Q(u, v)

for all g ∈ G, u, v ∈ V . For

Q(hu, hv) =
1

‖G‖
∑
g∈G

H(ghu, ghv)

=
1

|G|
∑
g∈G

H(gu, gv)

= Q(u, v),

since gh runs over G as g does.

Now suppose U is a stable subspace of V . Then

U⊥ = {v ∈ V : Q(u, v) = 0∀u ∈ U}

is a stable complement to U .

2. Show that all simple representations of an abelian group are of degree
1.

Determine from first principles all simple representations of D(6).

Answer:



(a) Suppose α is a simple representation of the abelian group G in V .

Suppose g ∈ G. Let λ be an eigenvalue of g, and let E = Eλ be
the corresponding eigenspace. We claim that E is stable under G.
For suppose h ∈ G. Then

e ∈ E =⇒ g(he) = h(ge) = λhe =⇒ he ∈ E.

Since α is simple, it follows that E = V , ie gv = λv for all v, or
g = λI.

Since this is true for all g ∈ G, it follows that every subspace of V
is stable under G. Since α is simple, this implies that dim V = 1,
ie α is of degree 1.

(b) We have
D6 = 〈t, s : s6 = t2 = 1, st = ts5〉.

Let us first suppose α is a 1-dimensional representations of D6.
ie a homomorphism

α : D6 → C∗.

Suppose
α(s) = λ, α(t) = µ.

Then
λ6 = µ2 = 1, λµ = µλ5.

The last relation gives
λ4 = 1.

Hence
λ2 = 1, µ2 = 1.

Thus there are just 4 1-dimensional representations given by

s 7→ ±1, t 7→ ±1.

Now suppose α is a simple representation of D6 in the vector space
V over C, where dim V ≥ 2. Let e ∈ V be an eigenvector of s:

se = λe;

and let
f = te.

Then
sf = ste = ts5e = λ5te = λ5f.



It follows that the subspace

〈e, f〉 ⊂ V

is stable under D6, since

se = λe, sf = λ5f, te = f, tf = t2e = e.

Since V by definition is simple, it follows that

V = 〈e, f〉.

Since s6 = 1 we have λ6 = 1, ie λ = ±1,±ω,±ω2 (where ω =
e2πi/3).

It also follows from the argument above that if λ is an eigenvalue
of s then so is λ5 = 1/λ.

If λ = 1 then s would have eigenvalues 1, 1 (since 15 = 1). But
we know that s (ie α(s)) is diagonalisable. It follows that s = I.
Similarly if λ = −1 then s has eigenvalues −1,−1 and so s =
−I. In either of these cases s will be diagonal with respect to any
basis. Since we can always diagonalise t, we can diagonalise s, t
simultaneously. But in that case the representation would not be
simple; since the 1-dimensional space 〈e〉 would be stable under
D6.

Thus we are left with the cases λ = ±ω,±ω2. If λ = ω2 then on
swapping e and f we would have λ = ω; and similarly if λ = −ω2

then on swapping e and f we would have λ = −ω.

So we have just two 2-dimensional representation (up to equiva-
lence):

s 7→
(

ω 0
0 ω2

)
, t 7→

(
0 1
1 0

)
,

and

s 7→
(
−ω 0
0 −ω2

)
, t 7→

(
0 1
1 0

)
.

We note that these representations are not equivalent, since in the
first case

χ(s) = tr(α(s)) = ω + ω2 = −1,

while in the second case

χ(s) = tr(α(s)) = −ω − ω2 = 1.



3. Determine all groups of order 30.

Answer: This is an exercise in Sylow’s Theorem and semi-direct prod-
ucts.

Suppose #G = 30.

If G is abelian then we know from the Structure Theorem for Finitely
Generated Abelian Groups that

G = C2 × C3 × C5 = C30.

Three other fairly obvious cases are:

G = S3 × C5,

G = C3 ×D5,

G = D15.

Lemma 1. C15 is the only group of order 15.

Proof. By Sylow’s Theorem, the number n(5) of Sylow 5-subgroups
satisfies

n(5) ≡ 1 mod 5.

If two such subgroups C5 have an element g 6= e in common then they
are identical (both being generated by g). Hence the Sylow 5-subgroups
contain 4n(5) + 1 elements altogether.

It follows that n(5) = 1, ie
C5 / G.

Now let C3 be a Sylow 3-subgroup. Then C3 acts on C5 by

(g, x) 7→ gxg−1.

This defines a homomorphism

α : C3 → Aut(C5) = C4.

(Thus G is the semi-direct product C5 nα C3.)

Since there are no elements of order 3 in C4, α is trivial, and so H is
the direct product

H = C5 × C3 = C15.



Lemma 2. G must contain a subgroup H of order 15.

Proof. Consider the number n(5) of Sylow 5-subgroups in G. As above,
the Sylow 5-subgroups contain 4n(5)+1 elements in total. Since n(5) ≡
1 mod 5 it follows that

n(5) = 1 or 6.

If n(5) = 1 then
C5 / G.

It follows that if C3 is a Sylow 3-subgroup of G then

C5C3 = C3C5

is a subgroup of G of order 15. (Note that in any group G, if N, H are
subgroups with N/G then NH = {nh : n ∈ N, h ∈ H} is a subgroup of
G; and if N ∩H = {e} then this subgroup contains #N #H elements.)

On the other hand, if n(5) = 6 then there are 24 elements of order 5 in
G, leaving just 6 elements.

But there are 2n(3) elements of order 3, and n(3) ≡ 1 mod 3. It follows
that n(3) = 1, ie

C3 / G.

It follows that if C5 is a Sylow 5-subgroup of G then

C3C5 = C5C3

is a subgroup of G of order 15.

Thus we have
C15 / G.

It follows that if C2 is a Sylow-2 subgroup of G then C2 acts on C15

and
G = C15 nα C2,

where
α : C2 → Aut(C15)

is a homomorphism.

Now

Aut(C15) = Aut(C3 × C5)

= Aut(C3)× Aut(C5)

= C2 × C4.



(For any automorphism must send elements of order 3 into elements
of order 1 or 3, and similarly for elements of order 5.)

If C2 = {e, g} then g must map into an automorphism of order 1 or 2.

If g maps into the trivial automorphism then the semi-direct product is
direct, and

G = C15 × C2 = C30.

There are 3 elements of order 2 in C2 × C4, namely

(1 mod 2, 1), (1, 2 mod 4), (1 mod 2, 2 mod 4).

In the first case C2 acts trivially on C5, and

G = (C3 nβ C2)× C5.

But there is only one non-trivial homomorphism

β : C2 → Aut(C3) = C2,

so there is just one non-abelian group of order 6, namely S3 = D3; and
we get just 2 groups in this case,

G = C5 × C6 = C30 and C5 × S3,

which we have already noted.

Similarly in the second case C2 acts trivially on C3, and

G = (C5 nβ C2)× C3.

But there is only one non-trivial homomorphism

β : C2 → Aut(C5) = C4

(since C4 has just one element of order 2, namely 2 mod 4); so there
is just one non-abelian group of order 10, namely D5; and we get just
2 groups in this case,

G = C3 × C10 = C30 and C3 ×D5,

which we have already seen.

Finally, the third case gives us

G = D15.



This follows since it is the last case, and we have not met D15 before.

But we can show this directly. If C2 = {e, g} and x, y are elements of
order 3 and 5 in C15 then

gxg−1 = x−1 and gyg−1 = y−1.

(For these are the two automorphisms of C3 and C5 of order 2.) Hence

g(xy)g−1 = x−1y−1 = (xy)−1.

(Note that x, y are in the abelian group C15.) Thus we have the standard
presentation of D15:

D15 = 〈g, s : g2 = s15 = 1, gsg−1 = s−1〉.

We conclude that the only groups of order 15 are the 4 groups we listed
at the beginning:

C15, S3 × C5, C3 ×D5 and D15.

4. Prove that the number of simple representations of a finite group G is
equal to the number of conjugacy classes in G.

Show that if the finite group G has simple representations σ1, . . . , σs

then
deg2 σ1 + · · ·+ deg2 σs = |G|.

Determine the degrees of the simple representations of S6.

Answer:

(a)

5. Determine the conjugacy classes in A5, and draw up the character table
of this group.

Answer:

(a)

Lemma 3. The even class C = 〈g〉 in Sn splits in An if and only
if every permutation commuting with g is even.



Proof. Let Z(g,G) denote the elements of G commuting with g.
Then the given condition is equivalent to

Z(g, Sn) = Z(g, An).

By Lagrange’s Theorem

#C =
#Sn

#Z(g, Sn)

(considering the action (g, x) 7→ gxg−1 of G on [g]). Similarly if
C ′ is the class of g in An then

#C ′ =
#An

#Z(g, An)

=
#An

#Z(g, Sn)

=
1

2

#Sn

#Z(g, Sn)

=
#C

2

It follows that C splits into two equal classes in An.

On the other hand, if there is an odd permutation in Z(g, Sn)
then it follows by the argument above that

#C ′ >
#C

2
.

But — again by the same argument — each An class in C contains
at least #C/2 elements.

It follows that C does not split in An.

There are 4 even classes in S5: 15, 221, 312, 5, containing 1, 15, 20, 24
elements.

The first 2 classes cannot split, since they contain an odd number
of elements. Also 312 does not split, since the odd permutation
(de) commutes with the permutation (abc) ∈ 312.

But since 24 - 60 the last class must split into 2 classes 5′ and 5′′

each containing 12 permutations.



(b) It follows that A5 has 5 simple representations, of degrees 1, a, b, c, d,
say.

Then

12 + a2 + b2 + c2 + d2 = 60,

ie

a2 + b2 + c2 + d2 = 59 ≡ 3 mod 8.

It follows that 3 of these 4 degrees, say a, b, c are odd, while 4 |
d. (For n2 ≡ 1 mod 8 if n is odd, while n2 ≡ 4 mod 8 if n ≡
2 mod 4.)

Since 82 > 60 it follows that d = 4, and so

a2 + b2 + c2 = 43,

with a, b, c ∈ {1, 3, 5}.
We could show directly that the trivial representation is the only
representation of degree 1. However, it is not necessary, since it
is readily verified that the only solution is

a, b, c = 3, 3, 5.

Recall that the natural representation of Sn splits into 2 simple
parts 1 + σ. Restricting σ to An gives the character

15 221 312 5′ 5′′

γ 4 0 1 −1 −1

Since

I(γ, γ) =
1

60

(
1 · 42 + 20 · 12 + 12 · (−1)2 + 12 · (−1)2

)
= 1,

it follows that γ is simple.

At the moment the character table looks like

# 1 15 20 12 12
15 221 312 5′ 5′′

1 1 1 1 1 1
α 3
β 3
γ 4 1 2 0 0
δ 5



Note that if θ is a representation of G then det θ is a 1-dimensional
representation of G. (If θ takes the matrix form g 7→ T (g) then
g 7→ det T (g) under det θ.)

Since the trivial representation is the only 1-dimensional repre-
sentation of A5, it follows that det θ = 1 for θ = α, β, γ.

Consider the two 3-dimensional representations. If g ∈ 221 then
g2 = 1 and so g has eigenvalues ±1 Since det α = det β = 1, the
eigenvalues are either 1, 1, 1 or 1,−1,−1.

If g has eigenvalues 1, 1, 1 then g 7→ I, and so g ∈ ker α. It follows
that the subgroup generated by the class 312 lies in ker α. But this
subgroup is normal, and so must be the whole of A5 since A5 is
simple. (It is theorem that An is simple for all n ≥ 5; but this is
easy to establish for A5, since a normal subgroup must be a union
of classes, and no proper subset of 1, 15, 20, 12, 12 including 1 has
sum dividing 60, except {1}). Thus

χ(221) = −1.

(Alternatively, ∑
|χ(g)|2 = #G = 60,

since I(θ, θ) = 1 for a simple representation. If the eigenvalues
were 1, 1, 1 then χ(221) = 3, and the 15 elements in this class
would already contribute 15.32 = 135 to the sum.)

Now suppose g ∈ 312. Then g3 = 1, and so g has eigenvalues
λ, µ, ν ∈ {1, ω, ω2}, where ω = e2iπ/3. Since g ∼ g2, if ω is
an eigenvalue so is ω2, and vice versa. Hence g has eigenvalues
1, 1, 1 or 1, ω, ω2. The first is impossible, as above. Hence

χα(312) = χβ(312) = 1 + ω + ω2 = 0.

Turning to the classes 5′ and 5′′: suppose g = (abcde) ∈ 5′ has
eigenvalues λ, µ, ν ∈ {1, τ, τ 2, τ 3, τ 4}, where τ = e2iπ/5. Now g ∼
g−1 in A5, since

(abcde) = x(edcba)x−1 with x = (ae)(bd).

Thus if τ is an eigenvalue of g then so is τ−1, and similarly if τ 2

is an eigenvalue of g then so is τ−2.

The eigenvalues cannot be 1, 1, 1, as above; so they are either
1, τ, τ−1 or 1, τ 2, τ−2.



Also g 6∼ g2, since otherwise τ, τ 2, τ 3, τ 4 would all be eigenvalues
of g. It follows that g2 ∈ 5′′.

Thus, on swapping the classes 5′, 5′′ if necessary, we have

χα(5′) = 1 + τ + τ−1, χα(5′′) = 1 + τ 2 + τ−2.

Since χβ 6= χα, and all the other values of χbeta are determined,
we must have

χβ(5′) = 1 + τ 2 + τ−2, χβ(5′′) = 1 + τ + τ−1.

Note that if
λ = τ + τ−1

then
λ2 = τ 2 + τ−2 + 2.

Since

1 + τ + τ 2 + τ 3 + τ 4 =
τ 5 − 1

τ − 1
= 0,

it follows that
τ 2 + τ−2 = −1− (τ + τ−1).

Thus λ satisfies the quadratic equation

x2 + x− 1 = 0,

and it is easy to see that the other root of this equation is µ =
τ 2 + τ−2. So

τ + τ−1, τ 2 + τ−2 =
−1±

√
3

2
.

We have almost completed the character table:

# 1 15 20 12 12
15 221 312 5′ 5′′

1 1 1 1 1 1

α 3 −1 0 1+
√

3
2

1−
√

3
2

β 3 −1 0 1−
√

3
2

1+
√

3
2

γ 4 0 1 −1 −1
δ 5

It only remains to determine the 5-dimensional representation δ.



Recall that the regular representation ρ splits into simple parts

ρ = 1 + 3(α + β) + 4γ + 5δ,

while

χρ(g) =

{
#G = 60 if g = 1,

0 if g 6= 1,
,

This gives a simple way of completing a character table if all but
one character is known.

Thus for any class C 6= {1}.

5χδ(C) = −1− 3(χα(C) + χβ(C))− 4χγ(C),

So

χδ(2
21) =

−1− 2 · 3 · −1− 4 · 0
4

= 1,

χδ(312) =
−1− 2 · 3 · 0− 4 · 1

4
= −1,

χδ(5
′) =

−1− 3 · −1− 4 · −1

4
= 0,

χδ(5
′′) =

−1− 3 · 1− 4 · −1

4
= 0.

The table is complete:

# 1 15 20 12 12
15 221 312 5′ 5′′

1 1 1 1 1 1

α 3 −1 0 1+
√

3
2

1−
√

3
2

β 3 −1 0 1−
√

3
2

1+
√

3
2

γ 4 0 1 −1 −1
δ 5 1 −1 0 0

Three remarks

(a) The relation between the 2 3-dimensional representations α and β
can be looked at in two different ways.

First of all, if g is an odd permutation in S5 then the map

Θ : A5 → A5 : x 7→ gxg−1

is an automorphim (a non-inner or outer automorphism) of A5.



An automorphism Θ of a group G acts on the representations of
G, sending each representation α into a representation α′ = Θ(α)
of the same dimension, given by

α′(g) = α(Θ(g)).

If Θ is an inner automorphism then Θ sends each class into itself,
and so Θ(α) = α. So only outer automorphisms are of use in this
context.

The outer automorphism of A5 defined above swaps the classes 5′

and 5′′, and so maps α into β, and vice versa.

(b) Another way of looking at the relation between α and β is to apply
galois theory. The cyclotomic extension Q(τ)/Q has galois group
C5, generated by the field automorphism τ 7→ τ 2.

This galois group acts on the representations of G, sending α into
β and vice versa.

To be a little more precise (but going well outside the course), if
χ is a character of a finite group G then χ(g) ∈ Q̄, the field of
algebraic numbers, since χ(g) is a sum of nth roots of unity, where
n = #G.

If Q ⊂ K ⊂ Q̄ then any automorphism θ of K extends to an
automorphism Θ of Q̄. It is not hard to see that any representation
α of G can be expressed by matrices A(g) with algebraic entries
Aij ∈ Q̄.

It follows that if the character table of G contains an irrational
(but algebraic) entry like χ(C) = (1+

√
3)/2 then there will be an-

other representation (of the same dimension) with entry χ′(C) =
(1 −

√
3)/2. So if G has only one representation χ of a given

dimension then χ(C) must be rational for each class C.

Actually, we can go further: χ(C) is in fact an algebraic integer
— again because it is a sum of roots of unity. Now an algebraic
integer that is rational is necessarily an ordinary integer. So if a
rational number appears in a character table it must be an integer.

This explains why the entries in character tables are mostly inte-
gers.

(c) There are of course many ways of drawing up the character table
of a finite group, one important tool being induced representations.

In the case of the representations α, β of A5, it is clear that we
would have to start with some character of a subgroup involving



τ . An obvious choice is the 1-dimensional representation θ of
〈(abcde)〉 = C5 given by

(abcde) 7→ τ = e2πi/5.

Inducing this up will give a representation Θ = θA5 of A5, of
dimension 60/5 = 12.

Recall the formula for this character:

χΘ([g]) =
#G

#H

∑
[h]⊂[g]

#[h]

#[g]
χθ([h]).

Setting g = (abcde),

221∩C5 = ∅, 312∩C5 = ∅, 5′∩C5 = {g, g−1), 5′′∩C5 = {g2, g−2).

Hence

χΘ(5′) = 12 · 1

12
(τ + τ−1) =

−1 +
√

3

2
,

and similarly

χΘ(5′′) =
−1−

√
3

2
,

Thus we have the character

15 221 312 5′ 5′′

Θ 12 0 0 −1+
√

3
2

−1−
√

3
2

It is easy to see that
Θ = α + γ + δ.

6. If α is a representation of the finite group G and β is a representation of
the finite group H, define the representation α×β of the product-group
G×H.

Show that if α and β are simple then so is α× β, and show that every
simple representation of G×H is of this form.

Show that the symmetry group G of a cube is isomorphic to C2 × S4.

Into how many simple parts does the permutation representation of G
defined by its action on the vertices of the cube divide?

Answer:



(a) If α, β are representations of G, H in the vector spaces U, V over
k, then α×β is the representation of G×H in the tensor product
U ⊗ V defined by

(g, h)
∑

u⊗ v =
∑

gu⊗ hv.

(b) Evidently
(g, h) ∼ (g′, h′) ⇐⇒ g ∼ g′, h ∼ h′.

It follows that the conjugacy classes in G×H are

C ×D,

where C, D are classes in G, H. In particular if there are s classes
in G and t classes in H then there are st classes in G×H,

It follows that if k = C then G×H has st simple representations.

Evidently too
χα×β(g, h) = χα(g)χβ(h).

Recall that (always assuming k = C) a representation α is simple
if and only if

I(α, α) = 1.

Now suppose α, β are simple. Then

I(α× β, α× β) =
1, #G×H∑

(g,h)∈G×H

χα×β(g, h)

=
1, #G#H∑

g∈G

χα(g)
∑
h∈H

χβ(h)

= 1× 1 = 1.

Hence α× β is simple.

Thus we have st simple representations of G ×H. They are dif-
ferent, since it follows by the same argument that

I(α× β, α′ × β′) = I(α, α′)I(β, β′) = 0

unless α = α′, β = β′).

It follows that every simple representation of G×H is of the form
α× β, with α, β simple.



(c) It is easy to see that the symmetry group G of the cube has centre

ZG = {I, J},

where J is reflection in the centre O of the cube.

Since J is improper it follows that

G = PG× ZG,

where PG is the subgroup of proper symmetries of the cube.

Consider the action of PG on the 4 diagonals of the cube. This
gives a homomorphism

θ : PG → S4.

It is easy to see that the only symmetries sending each diagonal
into itself (ie sending each vertex into itself or the antipodal vertex)
are I, J . It follows that θ is injective.

The cube has 48 symmetries. For the subgroup S sending a given
face into itself is isomorphic to D4; and the symmetries sending
this face into the other faces correspond to the left cosets of S.
Hence S has order 8 and index 6, and so

#G = 6 · 8 = 48.

Just half of these cosets are improper (since Jg is improper if g is
proper). Thus

#PG = 24 = #S4.

Hence θ is bijective, and so

G = C2 × S4.

(d) Let γ be the representation of G defined by its action on the 8
vertices. Then

deg γ = 8.

Recall that S4 has 5 classes C = 14, 212, 22, 31, 4, of sizes 1, 6, 3, 8, 6,
corresponding to these 5 cyclic types. Thus G has 10 classes
{I} × C, {J} × C.

We know that a proper isometry in 3 dimensions leaving a point
O fixed is a rotation about an axis through O.

It is easy to identify the 5 proper classes corresponding to PG = S4

geometrically. Thus



• 14 corresponds to I;

• 212 corresponds to the 6 half-turns about the axes joining mid-
points of opposite edges;

• 22 corresponds to the 3 half-turns about the axes joining mid-
points of opposite faces;

• 31 corresponds to the rotations through ±2π/3 about the 4
diagonals;

• 4 corresponds to the rotations through ±π/2 about the axes
joining mid-points of opposite faces.

Each of the 5 improper classes is of the form JC, where C is one
of the proper classes, ie the rotations in C followed by reflection
in the centre.

Recall that if ρ is the permutation representation arising from the
action of a finite group G on a set X then

χ(g) = m,

the number of elements left fixed by g.

It is easy to determine the character of γ from this:

Class I × 14 I × 212 I × 22 I × 31 I × 4 J × 14 J × 212 J × 22 J × 31 J × 4
Size 1 6 3 8 6 1 6 3 8 6
γ 8 0 0 2 0 0 4 0 0 0

Suppose
γ = n1σ1 + n2σ2 + · · ·+ nrσr.

Then
I(γ, γ) = n2

1 + n2
2 + · · ·+ n2

r.

From the table above

I(γ, γ) =
1

48

(
1 · 82 + 8 · 22 + 6 · 42

)
= 4.

Thus either

γ = 2σ or γ = σ1 + σ2 + σ3 + σ4.

But from the table

I(1, γ) =
1

58
(1 · 8 + 8 · 2 + 6 · 4) = 1.



(This can also be seen directly from the fact that if ρ is the repre-
sentation arising from an action of G on X then I(1, ρ) is equal
to the number of orbits, in this case 1.) It follows that γ must
split into 4 simple parts.

7. Show that every representation of a compact group is semisimple.

Determine the simple representations of U(1).

Verify that the simple characters of U(1) are orthogonal.

Answer:

(a) We assume Haar’s Theorem, that there exists an invariant mea-
sure dg on any compact group G; and we assume that this measure
is strictly positive, ie

f(g) ≥ 0∀g =⇒
∫

f(g)dg ≥ 0,

with equality only if f(g) = 0 for all g.

Now suppose α is a representation of G in V . Choose a positive-
definite hermitian form P (u, v) on V . Define the hermitian form
Q(u, v) by

Q(u, v) =

∫
G

P (gu, gv) dg,

where dg denotes the normalised Haar measure on G. Then Q is
positive-definite and invariant under G.

It follows that if U ⊂ V is a stable subspace, then its orthogonal
complement U⊥ with respect to Q is also stable. Thus every stable
subspace has a stable complement, and so the representation is
semisimple.

(b) Since U(1) is abelian every simple representation α (over C) is of
degree 1; and since the group is compact

im α ⊂ U(1),

ie α is a homomorphism

U(1) → U(1).

For each n ∈ Z the map

E(n) : z → zn



defines such a homomorphism. We claim that every representation
of U(1) is of this form.

For suppose
α : U(1) → U(1)

is a representation of U(1) distinct from all the E(n).

Then
I(En, α) = 0

for all n, ie

cn =
1

2π

∫ 2π

0

α(eiθ)e−inθ dθ = 0.

In other words, all the Fourier coefficients of α(eiθ) vanish.

But this implies (from Fourier theory) that the function itself must
vanish, which is impossible since α(1) = 1.

(c) The invariant measure on U(1) (identified with the complex num-
bers eiθ of absolute value 1) is

1

2π
d θ.

Suppose m 6= n. Then

I(E(m), E(n)) =
1

2π

∫ 2π

0

χm(θ)χn(θ)dθ

=
1

2π

∫ 2π

0

e−imθeinθd θ

=
1

2π

∫ 2π

0

ei(n−m)θd θ

=
1

2π

[
1

i(n−m)
ei(n−m)θ

]2π

0

= 0,

ie E(m), E(n) are orthogonal.

8. Show that SU(2) has just one simple representation of each degree
0, 1, 2, . . . .

Determine the simple representations of U(2).

Answer:



(a) Suppose m ∈ N, Let V (m) denote the space of homogeneous poly-
nomials P (z, w) in z, w. Thus V (m) is a vector space over C of
dimension m + 1, with basis zm, zm−1w, . . . , wm.

Suppose U ∈ SU(2). Then U acts on z, w by(
z
w

)
7→

(
z′

w′

)
= U

(
z
w

)
.

This action in turn defines an action of SU(2) on V (m):

P (z, w) 7→ P (z′, w′).

We claim that the corresponding representation of SU(2) — which
we denote by Dm/2 — is simple, and that these are the only simple
(finite-dimensional) representations of SU(2) over C.

To prove this, let

U(1) ⊂ SU(2)

be the subgroup formed by the diagonal matrices

U(θ) =

(
eiθ 0
0 e−iθ

)
,

The action of SU(2) on z, w restricts to the action

(z, w) 7→ (eiθz, e−iθw)

of U(1). Thus in the action of U(1) on V (m),

zm−rwr 7→ e(m−2r)iθzm−rwr,

It follows that the restriction of Dm/1 to U(1) is the representation

Dm/2|U(1) = E(m) + E(m− 2) + · · ·+ E(−m)

where E(m) is the representation

eiθ 7→ emiθ

of U(1).

Any U ∈ SU(2) then U has eigenvalues e±iθ (where θ ∈ R); and
it is not difficult to show that

U ∼ U(θ)



in SU(2). It follows that the character of any representation of
SU(2), and therefore the representation itself, is completely deter-
mined by its restriction to the subgroup U(1).

In particular, the character of Dm/2 is given by

χm/2(U) = emiθ + e(m−2iθ + · · ·+ e−miθ

if U has eigenvalues e±iθ.

Now suppose Dm/2 is not simple, say

Dm/2 = α + β.

(We know that Dm/2 is semisimple, since SU(2) is compact.) Let
a corresponding split of the representation space be

V (m) = W1 ⊕W2.

Since the simple parts of Dm/2|U(1) are distinct, the expression
of V (m) as a direct sum of U(1)-spaces,

V (m) = 〈zm〉 ⊕ 〈zm−1w〉 ⊕ · · · ⊕ 〈wm〉

is unique. It follows that W1 must be the direct sum of some of
these spaces, and W2 the direct sum of the others. In particular
zm ∈ W1 or zn ∈ W2, say zm ∈ W1. Let

U =
1√
2

(
1 −1
1 1

)
∈ SU(2).

Then (
z
w

)
7→ 1√

2

(
z + w
−z + w

)
under U . Hence

zm 7→ 2−m/2(z + w)m.

Since this contains non-zero components in each subspace 〈zm−rwr〉,
it follows that

W1 = V (m),

ie the representation Dm/2 of SU(2) in V (m) is simple.

To see that every simple (finite-dimensional) representation of
SU(2) is of this form, suppose α is such a representation. Con-
sider its restriction to U(1). Suppose

α|U(1) = erE(r)+er−1E(r−1)+· · ·+e−rE(−r) (er, er−1, . . . , e−r ∈ N).



Then α has character

χ(U) = χ(θ) = ere
riθ + er−1e

(r−1)iθ + · · ·+ e−re
−riθ

if U has eigenvalues e±iθ.

Since U(−θ) ∼ U(θ) it follows that

χ(−θ) = χ(θ),

and so

e−i = ei,

ie

χ(θ) = er(e
riθ + e−riθ) + er−1(e

(r−1)iθ + e−(r−1)iθ) + · · · .

It is easy to see that this is expressible as a sum of the χj(θ) with
integer (possibly negative) coefficients:

χ(θ) = a0χ0(θ)+a1/2χ1/2(θ)+· · ·+asχs(θ) (a0, a1/2, . . . , as ∈ Z).

Using the intertwining number,

I(α, α) = a2
0 + a2

1/2 + · · ·+ a2
s

(since I(Dj, Dk) = 0). Since α is simple,

I(α, α) = 1.

It follows that one of the coefficients aj is ±1 and the rest are 0,
ie

χ(θ) = ±χj(θ)

for some half-integer j. But

χ(θ) = −χj(θ) =⇒ I(α, Dj) = −I(Dj, Dj) = −1,

which is impossible. Hence

χ(θ) = χj(θ),

and so (since a representation is determined up to equivalence by
its character)

α = Dj.



(b) Each U ∈ U(2) can be written as

U = eiθV

with V ∈ SU(2), since | det U | = 1.

This gives a surjective homomorphism

θ : U(1)× SU(2) → U(2),

where we have identified U(1) with {z ∈ C : |z| = 1}.
We have

ker θ = {(1, I), (−1,−I)},

since U ∈ U(1) can be written in two ways, as

U = eiθV and U = −eiθ(−V ) = ei(π+θ)(−V ).

It follows that the simple representations of U(2) arise from the
simple representations α of U(1)× SU(2) which map (−1,−I) to
the identity.

Thus the simple representations of U(2) are

E(n)×D(j),

where
n + 2j ≡ 0 mod 2.

9. Show that SU(2) is isomorphic to Sp(1) (the group of unit quaternions).

Define a 2-fold covering Sp(1) → SO(3), and so determine the simple
representations of SO(3).

Answer:

(a) We can write each q ∈ H in the form

q = z + jw (z, w ∈ C),

allowing us to identify H with C2. Note that

jw = w̄j

for any w ∈ C.

Then Q ∈ Sp(1) acts on H = C2 by left multiplication:

µ : q 7→ Qq.



Suppose
Q = Z + jW.

Then

Q(z + jw) = (Z + jW )(z + jw)

= Zz + Zjw + jWz + jWjw

= (Zz − W̄w) + j(Wz + Z̄w).

In other words,(
z w

)
7→

(
Z −W̄//W Z̄

) (
z w

)
,

ie
µ(Q) =

(
Z −W̄//W Z̄

)
Also

|Q| = 1 ⇐⇒ ZZ̄ + WW̄ = 1 ⇐⇒ µ(Q) ∈ SU(2).

Thus we have established an isomorphism between Sp(1) and SU(2).

(b) The quaternion

q = t + xi + yj + zk (t, x, y, z ∈ R)

is said to be purely imaginary if t = 1. This is the case if and only
if

q̄ = −q.

The purely imaginary quaternions form a 3-dimensional vector
space V over R.

If Q ∈ H, v ∈ V then

(QvQast)∗ = Qv∗Q∗ = −QvQ∗.

Thus

QvQ∗ ∈ V.

Thus each Q ∈ H defines a linear map

θ(Q) : V → V

under which
v 7→ QvQ∗.



It is a straightforward matter to verify that

θ(Q1Q2) = θ(Q1)θ(Q2),

so that if Q ∈ Sp(1) then

θ(Q)θ(Q∗) = I,

establishing that the map under which Q ∈ Sp(1) acts on V by

v 7→ QvQ∗

is a homomorphism

Θ : Sp(1) → GL(V ) = GL(R, 3).

Suppose v ∈ V, |v| = 1. Then v ∈ Sp(1); and if T = Θ(v) then

Tv = v2v∗ = v.

Thus Θ(v) is a rotation about the axis v; and since v2 = −|v| =
−1, v is in fact a half-turn about this axis.

Since half-turns generate SO(3) it follows that Θ is surjective.

Suppose Q ∈ ker Θ, ie
QvQ∗ = v

for all v ∈ V , ie
Qv = vQ

for all v. Since Qt = tQ for all t ∈ R, it follows that

Qq = qQ

for all qinH, ie
Q ∈ ZH = {±1}.

Thus
ker Θ = {±1}.

Thus the simple representations of SO(3) correspond to the repre-
sentations D(j) of SU(2) which act trivially on −I. It is easy to
see that these are the D(j) with j ∈ N


