
Chapter 1

Linear groups

We begin, as we shall end, with the classical groups—those familiar groups
of matrices encountered in every branch of mathematics. At the outset, they
serve as a library of linear groups, with which to illustrate our theory. Later
we shall find that these same groups also serve as the building-blocks for the
theory.

Definition 1.1 A linear group is a closed subgroup ofGL(n, R).

Remarks:

1. We could equally well say that:A linear group is a closed subgroup of
GL(n, C). For as we shall see shortly,GL(n, C) has an isomorphic im-
age as a closed subgroup ofGL(2n, R); while conversely it is clear that
GL(n, R) can be regarded as a closed subgroup ofGL(n, C).

2. By GL(n, k) (wherek = R or C) we mean the group of invertiblen × n
matrices, ie

GL(n, k) = {T ∈M(n, k) : det T 6= 0}

whereM(n, k) denotes the space of alln × n real or complex matrices
(according ask = R or C).

3. We define a norm‖X‖ onM(n, k) by

‖X‖2 =
∑
i,j

|Xij|2 =

{
tr(X ′X) if k = R,
tr(X∗X) if k = C,

where as usualX ′ denotes the transpose andX∗ the conjugate transpose.
This is just the usual Euclidean norm, if we identifyM(n, k) with kN , where
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N = n2, by taking as the coordinates of the matrixX its n2 entriesXij. The
requirement that a linear group should be closed inGL(n, k) refers to this
metric topology. In other words, ifT (i) is a sequence of matrices inG
tending towards the matrixT ∈ GL(n, k), ie

‖T (i)− T‖ → 0,

thenT must in fact lie inG.

Examples:

1. Thegeneral linear groupGL(n, R)

2. Thespecial linear group

SL(n, R) = {T ∈ GL(n, R) : det(T ) = 1}

3. Theorthogonal group

O(n) = {T ∈ GL(n, R) : T ′T = I}

In other words

O(n) = {T : Q(Tv) = Q(v) ∀v ∈ Rn},

where
Q(v) = x2

1 + . . . + x2
n (v = (x1, . . . , xn) ∈ Rn),

ieO(n) is the subgroup ofGL(n, R) leaving the quadratic formQ invariant.

4. Thespecial orthogonal group

SO(n) = O(n) ∩ SL(n)

5. Thecomplex general linear groupGL(n, C). This calls for some explana-
tion, sinceGL(n, C) is not a group of real matrices, as required by Defini-
tion 1. However, we can represent each complex matrixZ ∈M(n, C) by a
real matrixRZ ∈M(2n, R) in the following way. (Compare the “realifica-
tion” of a representation discussed in Part I Chapter 11.)

If we “forget” scalar multiplication by non-reals, the complex vector space
V = Cn becomes a real vector spaceRV of twice the dimension, with basis

(1, 0, . . . , ), (i, 0, . . . , 0), (0, 1, . . . , 0), (0, i, . . . , 0), . . . , (0, 0, . . . , 1), (0, 0, . . . , i).
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Moreover each matrixZ ∈M(n, C), ie each linear map

Z : V → V

defines a linear map
RZ : RV → RV,

ie a matrixRZ ∈M(2n, R).

Concretely, in passing fromZ to RZ each entry

Zj,k = Xj,k + iYj,k

is replaced by the2× 2 matrix(
Xj,k −Yj,k

Yj,k Xj,k

)

The map
Z 7→ RZ : M(n, C)→M(2n, R)

is injective; and it preserves the algebraic structure, ie

• R(Z + W ) = RZ + RW

• R(ZW ) = (RZ)(RW )

• R(aZ) = a(RZ) ∀a ∈ R
• RI = I

• R(Z∗) = (RZ)′.

It follows in particular thatRZ is invertible if and only ifZ is; soR restricts
to a map

Z 7→ RZ : GL(n, C)→ GL(2n, R).

Whenever we speak ofGL(n, C), or more generally of any groupG of
complex matrices, as a linear group, it is understood that we refer to the
imageRG of G under this injectionR.

The matrixX ∈ GL(2n, R) belongs toGL(n, C) if is built out of 2 × 2
matrices of the form (

x −y
y x

)
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This can be expressed more neatly as follows. Let

iI 7→ J =



0 −1
1 0

0 −1
1 0

...


Since any scalar multiple of the identity commutes with all matrices,

X ∈M(n, C) =⇒ (iI)X = X(iI).

Applying the operatorR,

X ∈ RM(n, C) =⇒ JX = XJ.

Converseley, ifJX = XJ then it is readily verified thatX is of the required
form. Thus

RM(n, C) = {X ∈M(2n, R) : JX = XJ};

and in particular

GL(n, C) = {T ∈ GL(2n, R) : JX = XJ}

6. Thecomplex special linear group

SL(n, C) = {T ∈ GL(n, C) : det T = 1}

Note that the determinant here must be computed inM(n, C), not inM(2n, R).
Thus

T =
(

i
)

/∈ SL(1, C),

although

RT =

(
0 −1
1 0

)
∈ SL(2, R).

7. Theunitary group

U(n) = {T ∈ GL(n, C) : T ∗T = I}

whereT ∗ denotes the complex transpose ofT . In other words

U(n) = {T : H(Tv) = H(v) ∀v ∈ Cn},
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whereH is the Hermitian form

H(v) = |x1|2 + . . . + |xn|2 (v = (x1, . . . , xn) ∈ Cn).

SinceR(T ∗) = (RT )′, a complex matrix is unitary if and only if its real
counterpart is orthogonal:

U(n) = GL(n, C) ∩O(2n)

8. Thespecial unitary group

SU(n) = U(n) ∩ SL(n, C)

9. Thequaternionic general linear groupGL(n, H). The quaternions

q = t + xi + yj + zk (t, x, y, z ∈ R),

with multiplication defined by

i2 = j2 = k2 = −1, jk = −kj = i, ki = −ik = j, ij = −ji = k

form adivision algebraor skew field. For the product of any quaternion

q = t + xi + yj + zk

with its conjugate
q̄ = t− xi− yj − zk

gives itsnorm-square

‖q‖2 = q̄q = t2 + x2 + y2 + z2,

so that ifq 6= 0,

q−1 =
q̄

‖q‖2
.

We can equally well regardH as a 2-dimensional algebra overC, with each
quaternion taking the form

q = z + wj (z, w ∈ C),

and multiplication inH being defined by the rules

jz = z̄j, j2 = −1
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Surprisingly perhaps, the entire apparatus of linear algebra extends almost
unchanged to the case of anon-commutativescalar field. Thus we may
speak of ann-dimensional vector spaceW overH, of a linear mapt : W →
W , etc.

A quaternionic vector spaceW defines a complex vector spaceCW by
“forgetting” scalar multiplication by non-complex quaternions (ie those in-
volving j or k), in just the same way as a complex vector spaceV defines
a real vector spaceRV . If W has quaternionic dimensionn, with basis
{e1, e2, . . . , en}, thenCW has complex dimension2n, with basis

{e1, je1, e2, je2, . . . , en, jen}.

Moreover each matrixQ ∈M(n, H), ie each linear map

Q : W → W

defines a linear map
CQ : CW → CW,

ie a matrixCQ ∈M(2n, C).

Concretely, in passing fromW to CW each entry

Qr,s = Zr,s + iWr,s

is replaced by the2× 2 complex matrix(
Zr,s −Wr,s

Wr,s Zr,s

)

The map
Q 7→ CQ : M(n, H)→M(2n, C)

is injective; and it preserves the algebraic structure, ie

• C(Q + Q′) = CQ + CQ′

• C(QQ′) = (CQ)(CQ′)

• C(aQ) = a(CQ) ∀a ∈ C
• CI = I

• C(Q∗) = (CQ)∗.



1–7

In this last relation,Q∗ denotes the quaternionic matrix with entries

(Q∗)rs = Qsr.

To identify M(n, H) as a subspace ofM(2n, C), consider the automor-
phism ofH

q 7→ q̃ = jqj−1.

In terms of its 2 complex components,

q = z + wj 7→ q̃ = z̄ + w̄j.

(Note thatq̃ 6= q̄; indeed, the mapq 7→ q̄ is not an automorphism ofH, but
an anti-automorphism.)

Let J denote the diagonal matrix

J =


j 0
0 j

...

 ∈M(n, H);

and consider the map

Q 7→ Q̃ = JQJ−1 : M(n, H)→M(n, H).

We see from above that
C(Q̃) = CQ,

whereX̄ denotes (forX ∈M(n, C)) the matrix with entries

X̄r,s = Xr,s.

Now

J 7→ CJ =



0 −1
1 0

0 −1
1 0

...

 ,

which we take the liberty of also denoting byJ (as we did earlier, when
defining the embedding ofGL(n, C) in GL(2n, R), although there we re-
gardedJ as a real matrix rather than a complex one).

Thus
M(n, H) ⊂ {X ∈M(2n, C) : JXJ−1 = X̄}
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Conversely, it is readily verified that ifJXJ−1 = X̄, thenX is constructed
from 2×2 matrices of the form specified above, and so arises from a quater-
nionic matrix. Hence

M(n, H) = {X ∈M(2n, C) : JXJ−1 = X̄}

It follows from the properties of the mapC listed above that ifQ is invertible
then so isCQ; soC restricts to a map

T 7→ CT : GL(n, H)→ GL(2n, C).

In fact, our argument above gives the concrete embedding

GL(n, H) = {T ∈ GL(2n, C) : JTJ−1 = T̄}

10. Thesymplectic group

Sp(n) = {T ∈ GL(n, H) : T ∗T = I}

Since(CT )∗ = C(T ∗) it follows that

T ∈ Sp(n) =⇒ (CT )∗(CT ) = I,

and so
Sp(n) = GL(n, H) ∩U(2n)

Thus

Sp(n) = {T ∈ GL(2n, C) : JTJ−1 = T̄ & TT ∗ = I}.

SinceT̄−1 = T ′ from the second relation, the first relation can be re-written

T ′JT = J.

This gives an alternative description of the symplectic group:

Sp(n) = {U ∈ U(2n) : U ′JU = J}

In other words,Sp(n) consists of those unitary matrices leaving invariant
the skew-symmetric form

J(x, y) = x1y2 − x2y1 + x3y4 − x4y3 + . . . + x2n−1y2n − x2ny2n−1.
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11. TheLorentz group

O(1, 3) = {T ∈ GL(4, R) : G(Tv) = G(v) ∀v ∈ R4}

whereG is the space-time metric

G(v) = t2 − x2 − y2 − z2.

In matrix terms
O(1, 3) = {T : T ′GT = G},

where

G =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1
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Exercises

1. Prove that every linear group islocally compact. (Hint: Show that every
open subset, and every closed subset, of a locally compact space is locally
compact.)

2. Show that
SO(2) ∼= U(1), Sp(1) ∼= SU(2).

3. Show that ifG andH are linear groups thenG×H is linearisable, ie there
is a linear group isomorphic toG×H.

4. Show that there is a discrete linear group isomorphic to any finite groupG.

5. Show that there is a discrete linear group isomorphic toZn.

6. Show thatR is linearisable.

7. Show thatR∗ is linearisable. Show also that

R∗ ∼= R× C2

(whereC2 denotes the cyclic group of order 2).

8. Show thatC is linearisable.

9. Show thatC∗ is linearisable. Show also that

C∗ 6∼= C×G

for any topological groupG.
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The Exponential Map

Napier introduced logarithms to convert difficult multiplication into easy
addition. Our motivation is much the same, though we are dealing with
matrices rather than numbers. As in the numerical case, it is simpler to
start with the exponential function—defined by an everywhere convergent
matrix power-series—and derive the logarithmic function as the inverse in a
suitable restricted zone.

Proposition 2.1 For each matrixX ∈M(n, k) (wherek = R or C) the exponen-
tial sequence

I + X +
X2

2!
+

X3

3!
+ · · ·

converges.

Proof I In Chapter 1 we defined the norm‖X‖ onM(n, k) by

‖X‖2 =
∑
i,j

‖Xij‖2,

In other words,

‖X‖2 =

{
tr(X ′X) if k = R
tr(X∗X) if k = C

Lemma 2.1 1. ‖X + Y ‖ ≤ ‖X‖+ ‖Y ‖

2. ‖XY ‖ ≤ ‖X‖‖Y ‖

3. ‖aX‖ = |a|‖X‖(a ∈ k)

Proof of LemmaB We suppose thatk = C; the real case is identical, withX ′ in

place ofX∗.

2–1
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1. We know that
tr Z∗Z = ‖Z‖2 ≥ 0

for all Z ∈M(n, k). SettingZ = X + λY (whereλ ∈ R),

tr X∗X + λ (tr X∗Y + tr Y ∗X) + λ2 tr Y ∗Y ≥ 0

for all λ ∈ R. Hence

| tr X∗Y + tr Y ∗X|2 ≤ 4‖X‖2‖Y ‖2,

and so
| tr X∗Y + tr Y ∗X| ≤ 2‖X‖‖Y ‖.

We note for future reference thatif X and Y are hermitian, ie X∗ =
X, Y ∗ = Y , thentr X∗Y = tr XY = tr Y X = tr Y ∗X; and so

X,Y hermitian=⇒ tr XY ≤ ‖X‖‖Y ‖.

But now (takingλ = 1),

‖X + Y ‖2 = ‖X‖2 + tr(X∗Y + Y ∗X) + ‖Y ‖2

≤ ‖X‖2 + 2‖X‖‖Y ‖+ ‖Y ‖2;

whence
‖X + Y ‖ ≤ ‖X‖+ ‖Y ‖.

2. We have

‖XY ‖2 = tr(XY )∗XY

= tr Y ∗X∗XY

= tr X∗XY Y ∗

= tr PQ,

where
P = X∗X, Q = Y Y ∗.

These 2 matrices are hermitian and positive-definite; and

‖X‖2 = tr P, ‖Y ‖2 = tr Q.

Thus it is sufficient to show that for any 2 such matrices

tr PQ ≤ tr P tr Q.
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But as we noted in the first part of the proof,

tr PQ ≤ ‖P‖‖Q‖.

It is sufficient therefore to show that

‖P‖ ≤ tr P.

for any positive hermition matrixX. Since

‖P‖2 = tr P ∗P = tr(P 2),

this is equivalent to proving that

tr(P 2) ≤ (tr P )2.

But if the eigenvalues ofP areλ1, . . . , λn, then those ofP 2 areλ2
1, . . . , λ

2
n,

and
tr(P 2) = λ2

1 + · · ·+ λ2
n ≤ (λ1 + · · ·+ λn)2 = (tr P )2.

sinceλi ≥ 0 for all i.

For a ‘tensorial’ proof of this result, letS denote the ‘skew-symmetrizer’

Sik
jl =

1

2

(
δi
jδ

k
l − δi

lδ
k
j

)
.

under which

S(u⊗ v) =
1

2
(u⊗ v − v ⊗ u);

and let
Z = S(X∗ ⊗ Y ).

Then
Z∗ = (X ⊗ Y ∗)S,

and so, sinceS2 = S,

tr Z∗Z = tr(X ⊗ Y ∗)S(X∗ ⊗ Y )

= tr S(X∗ ⊗ Y )(X ⊗ Y ∗)

= tr S(X∗X ⊗ Y Y ∗)

=
1

2
(tr X∗X tr Y Y ∗ − tr X∗XY Y ∗)

=
1

2
(tr X∗X tr Y ∗Y − tr(XY )∗XY )

=
1

2

(
‖X‖2‖Y ‖2 − ‖XY ‖2

)
Sincetr Z∗Z ≥ 0, we conclude that

‖XY ‖ ≤ ‖X‖‖Y ‖.
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3. We have

‖aX‖2 = tr X∗āaX

= āa tr X∗X

= |a|2‖X‖2.

C

To show that the exponential series converges for any matrixX, we compare
its partial sums with those in the scalar case. By the lemma above,

‖X i/i! + . . . + Xj/j!‖ ≤ xi/i! + · · ·+ xj/j!,

wherex = ‖X‖.
It follows that

‖X i/i! + . . . + Xj/j!‖ → 0

as i, j 7→ ∞. Since every Cauchy sequence converges inRN , this proves the
proposition. J

Definition 2.1 For each matrixX ∈M(n, k) (wherek = R or C) we set

eX = I + X +
X2

2!
+

X3

3!
+ · · ·

Examples:

1. e0 = I

2. If X is diagonal, say

X =


λ1

.. .
λn


theneX is also diagonal:

eX =


eλ1

...
eλn


Proposition 2.2 If X, Y ∈M(n, k) commute, ie

XY = Y X,

then
eXeY = eX+Y = eY eX .
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Proof I SinceXY = Y X, (X + Y )m can be expanded by the binomial theorem:

(X + Y )m = Xm + mXm−1Y + . . . + Y m.

The result follows on summation as in the ordinary (scalar) case

ex+y = exey,

all convergences being absolute.J

Corollary 2.1 For all X ∈M(n, k),

eX ∈ GL(n, k),

ie eX is invertible, with
(eX)−1 = e−X .

Thus the exponential establishes a map

M(n, k)→ GL(n, k) : X 7→ eX .

Proposition 2.3 For T ∈ GL(n, k), X ∈M(n, k),

TeXT−1 = eTXT−1

.

Proof I For eachm,
(TXT−1)m = TXmT−1.

The result follows on summation. J

Proposition 2.4 If the eigenvalues ofX are

λ1, . . . , λn

then the eigenvalues ofeX are

eλ1 , . . . , eλn .

Proof I As we saw in Chapter 1, each matrixX ∈ M(n, C) defines a matrix
RX ∈M(2n, R). Conversely, each matrixX ∈M(n, R) defines a matrixCX ∈
M(n, C), namely the matrix with the same entries (now regarded as complex
numbers).

Lemma 2.2 1. C(eX) = eCX for all X ∈M(n, R)
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2. R(eX) = eRX for all X ∈M(n,C)

Proof of LemmaB

1. This is immediate, since the matrices arising on each side are identical, the
only difference being that in one case they are regarded as real and in the
other as complex.

2. This follows from
(RX)m = R(Xm),

on summation.

C

Proof of Proposition 4, continued:SinceX andCX have the same eigenvalues,
we can supposeX complex, by Part 1 of the Lemma.

• Although a complex matrix cannot in general be diagonalised, it can always
be brought to triangular form:

TXT−1 = Y =


λ1 a12 . . . a1n

0 λ2 . . . a2n
...

...
...

...
0 0 . . . λn


(This can be proved by induction onn. Taking an eigenvector ofX as first
element of a new basis,

SXS−1 =


λ b12 . . . b1n

0
... T1

0


The result follows on applying the inductive hypothesis to the(n − 1) ×
(n− 1) matrixT1.)

• But then

Y m =


λm

1 c12 . . . c1n

0 λm
2 . . . c2n

...
...

...
0 0 . . . λm

n
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and so on summation

eY =



eλ
1 w12 . . . w1n

0 eλ
2 . . . w2n

...
...

...
. . .
0 0 . . . eλ

n


The result now follows, since

eY = TeXT−1

by Proposition 3; soeX andeY have the same eigenvalues.

J

Corollary 2.2 For eachX ∈M(n, k),

det eX = etr X .

Proof I If the eigenvalues ofX areλ1, . . . , λn then

det X = λ1 . . . λn

tr X = λ1 + . . . + λn.

Hence
det eX = eλ1 · · · eλn = eλ1+···+λn = etr X .

J

Proposition 2.5 1. eX′
= (eX)′ for all X ∈M(n, R)

2. eX∗
= (eX)∗ for all X ∈M(n, C)

Proof I For eachm,

(X ′)m = (Xm)′,

(X∗)m = (Xm)∗.

The result follows on summation. J

We turn to the analytic properties of the exponential map.

Proposition 2.6 There exists an open neighbourhoodU 3 0 in M(n, R) which
is mapped homeomorphically by the mapX 7→ eX onto an open neighbourhood
V = eU 3 I in GL(n, R).
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Lemma 2.3 SupposeX ∈M(n, R) satisfies

‖X‖ < 1.

Then

1. T = I + X ∈ GL(n, R).

2. The series

log T = X − X2

2
+

X3

3
− . . .

is convergent.

3. elog T = T .

Proof of LemmaB

1. Explicitly,
(I + X)−1 = I −X + X2 −X3 + . . . .

2. Convergence follows as in the scalar case, but with the matrix norm‖X‖ in
place of the absolute value|x|.

3. We know that if|x| < 1 then

1 + x = elog(1+x) = 1 + (x− x2/2 + . . .) + (x− x2/2 + . . .)2/2! + . . . .

Moreover the convergence on the right is absolute; and the identity therefore
holds for any matrixX satisfying‖X‖ < 1.

C

Proof of PropositionI Let

V = {T ∈ GL(n, R) : ‖T − I‖ < 1};

and let
U = log V = {log T : T ∈ V }.

Then it follows from Part 3 of the Lemma that the maps

T 7→ log T : V → U andX 7→ eX : U → V

are mutually inverse. SinceeX and log T are continuous (as in the scalar case)
andV is open, it follows thatU is also open. J
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Remark:We shall call the regionU (and also occasionally its imageV ) the loga-
rithmic zone, since forT ∈ U the exponential has the well-defined inverselog T :

elog T = T for all T ∈ U

log eX = X for all X ∈ V

Proposition 2.7 For eachX ∈M(n, R) the map

t 7→ etX : R→ GL(n, R)

is a continuous homomorphism; and every continuous homomorphismR→ GL(n, R)
is of this form.

Proof I SincesX andtX commute, it follows from Proposition 3 that

esXetX = e(s+t)X .

Hence the mapt→ etX is a homomorphism, which is clearly continuous.
Conversely, suppose

T : R→ GL(n, R)

is a continuous homomorphism. For sufficiently smallt, say

t ∈ J = [−c, c],

T (t) must lie in the logarithmic zone; and we can therefore set

X(t) = log T (t)

for t ∈ J .
SinceT : R→ GL(n, R) is a homomorphism,

T (s)T (t) = T (s + t).

We want to convert this to the additive form

X(s) + X(t) = X(s + t)

by taking logarithms. To this end, note first thatT (s) andT (t) commute:

T (s)T (t) = T (s + t) = T (t)T (s) for all s, t.
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It follows thatX(s) andX(t), as power-series inT (s) andT (t), also commute:

X(s)X(t) = X(t)X(s) for all s, t ∈ J.

So by Proposition 2, ifs, t ands + t all lie in J ,

eX(s)+X(t) = eX(s)eX(t) = T (s)T (t) = T (s + t) = eX(s+t).

Now if s andt are small enough, say

s, t ∈ J ′ = [−c′, c′],

then not onlyX(s), X(t) andX(s + t), but alsoX(s) + X(t), will lie in the
logarithmic zoneV . In that case, on taking logarithms in the last relation,

X(s) + X(t) = X(s + t) for all s, t ∈ J ′.

We want to deduce from this that

X(t) = tX

for someX. Note first that, on replacingt by c′t (and X by c′−1X), we can
suppose thatc′ = 1, ie that the last relation holds for

s, t ∈ I = [−1, 1].

We have to show that

X(t) = tX(1) for all t ∈ I.

Suppose first thats is a positive integer. By repeated application of the basic
identity,

sX(
1

s
) = X(

1

s
) + . . . + X(

1

s
) = X(

1

s
+ . . . +

1

s
) = X(1),

ie

X(
1

s
) =

1

s
X(1).

Now suppose0 ≤ r ≤ s. Then

X(
r

s
) = X(

1

s
) + . . . + X(

1

s
) = rX(

1

s
) =

r

s
X(1).

We have thus established the result for rationalst = r/s ∈ [0, 1]. Since the
rationals lie densely among the reals, it follows by continuity that

X(t) = tX(1) for all t ∈ [0, 1].
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The extension to the negative interval [-1,0] is immediate, since

X(0) + X(0) = X(0) =⇒ X(0) = 0,

and so
X(t) + X(−t) = X(0) =⇒ X(−t) = −X(t).

Returning to the given homomorphism,

T (t) = eX(t) = etX for all t ∈ J ′.

We can extend the range by taking powers:

T (nt) = T (t)n = (etX)n = entX for all n ∈ N, t ∈ J ′.

Hence
T (t) = etX for all t ∈ R.

Finally, the uniqueness ofX follows on taking logarithms for sufficiently
smallt. J

Summary: The exponential map sets up a 1–1 correspondence—more pre-
cisely, a homeomorphism—between a neighbourhoodU of 0 in M(n, R)
and a neighbourhoodV of I in GL(n, R). The inverse logarithmic func-
tion projects this ‘polar region’V back intoM(n, R)—which we can iden-
tify with the tangent-space toGL(n, R) at I. The picture is reminiscent of
Mercator’s projection of the globe onto the pages of an atlas, or Riemann’s
projection of the sphere onto a plane.
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Exercises

In Exercises 01–15 calculateeX for the given matrixX:

1.

(
1 0
0 2

)
2.

(
0 1
0 0

)
3.

(
1 2
0 1

)
4.

(
1 0
1 1

)
5.

(
0 1
1 0

)

6.

(
1 1
1 1

)
7.

(
1 −1
1 1

)
8.

(
1 1
0 0

)
9.

(
1 1
2 2

)
10.

(
1 1
1 −1

)

11.

(
a −b
b a

)
12.

(
0 b
b 0

)
13.

(
a b
b a

)
14.

(
a −b
b −a

)
15.

(
a b
c −a

)

In Exercises 16–25 determine whether or not the given matrix is of the formeX

for someX ∈M(2, R).

16.

(
1 0
0 0

)
17.

(
1 0
0 −1

)
18.

(
2 0
0 3

)
19.

(
1 1
0 1

)
20.

(
−1 0
0 −1

)

21.

(
0 1
0 0

)
22.

(
1 2
2 1

)
23.

(
2 1
1 2

)
24.

(
2 −1
1 2

)
25.

(
1 −2
2 −1

)



Chapter 3

[

The Lie Algebra of a Linear Group I]The Lie Algebra of a Linear Group I: The
Underlying Space

SupposeG ⊂ GL(n, R) is a linear group. The rays inM(n, R) corre-
sponding to 1-parameter subgroups trapped insideG fill a vector subspace
LG. This correspondence between closed subgroups ofGL(n, R) and cer-
tain subspaces ofM(n, R) is the foundation of Lie theory.

Definition 3.1 SupposeG ⊂ GL(n, R) is a linear group. Then we set

LG = {X ∈M(n, R) : etX ∈ G for all t ∈ R}.

Remark:In the case of the classical groupsGL(n, R), SO(n, R), etc, considered
in Chapter 1, it is customary to denote the corresponding space by the same letters
in lower case, eg

o(n) = LO(n),

sl(n, R) = LSL(n, R),

sp(n) = LSp(n).

Proposition 3.1 If G ⊂ GL(n, R) is a linear group thenLG is a vector subspace
of M(n, R).

Proof I We have to show that

1. X ∈ LG, a ∈ R =⇒ aX ∈ LG,

3–1
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2. X, Y ∈ LG =⇒ X + Y ∈ LG.

The first result follows at once from the definition ofLG. The second is a
consequence of the following result.

Lemma 3.1 SupposeT (t) ∈ G for 0 < t ≤ d; and suppose

T (t) = I + tX + o(t)

for someX ∈M(n, R), ie

(T (t)− I)/t→ X ast→ 0.

Then
X ∈ LG.

Proof of LemmaB We must show that

etX ∈ G for all t.

The argument can be divided into 5 steps.

1. Recall the formula for the scalar exponential as a limit:

(1 +
x

m
)m → ex asm→∞.

This is most simply proved by taking the logarithm of each side. On the left

log
(
(1 +

x

m
)m
)

= m log(1 +
x

m
)

= m(
x

m
+ o(

1

m
))

= x + o(1).

In other words

log
(
(1 +

x

m
)m
)
→ x asm→∞.

The result follows on taking the exponentials of both sides.

2. It is evident from this proof that we can replace1 + x/m by any function
a(m) satisfying

a(m) = 1 +
x

m
+ o(

1

m
);

for any such function
a(m)m → ex.
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3. Both this last result and its proof carry over to the matrix case. If

A = I +
X

m
+ o(

1

m
),

with X ∈M(n, R), then
A(m)m → eX

4. Applying this with

A(m) = T (
t

m
)

we deduce that
T (

t

m
)m → etX .

5. SinceT (t/m) ∈ G for sufficiently largem, and sinceG is a group,

T (
t

m
)m ∈ G.

Hence, since G is closed,
etX ∈ G.

C

Remark:In geometric language this result shows thatLG can be regarded asthe
tangent-space toG at T = I.

Proof of Proposition 1 (completion). SupposeX, Y ∈ LG. Then

etXetY ∈ G for all t.

But

etXetY = (I + tX)(I + tY ) + o(t)

= I + t(X + Y ) + o(t).

Hence by the Lemma
X + Y ∈ LG.

J

Examples:

1. The General Linear Group: SinceetX ∈ GL(n, R) for all X ∈M(n, R),
by Proposition 2.1,

gl(n, R) = M(n, R).
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2. The Special Linear Group: sl(n, R) consists of alltrace-free matrices, ie

sl(n, R) = {X ∈M(n, R) : tr X = 0}.

By definition

X ∈ sl(n, R) =⇒ etX ∈ SL(n, R) for all t

=⇒ det(etX) = 1 for all t.

To the first order int,
etX = I + tX + o(t).

Hence

det(etX) = det(I + tX) + o(t)

= 1 + t tr X + o(t);

for on expanding the determinant the off-diagonal terms intX will only
appear in second or higher order terms. Hence

X ∈ sl(n, R) =⇒ tr X = 0.

Conversely,

tr X = 0 =⇒ det etX = et tr X = 1

=⇒ etX ∈ SL(n, R).

Remarks:

(a) A linear groupG is said to bealgebraic if it can be defined by poly-
nomial conditionsFk(T ) on the matrix entriesTij, say

G = {T ∈ GL(n, R) : Fk(T ) = 0, k = 1, . . . , N}.

Not every linear group is algebraic; but all the ones we meet will be.

The technique above—working to the first order int—is the recom-
mended way of determining the Lie algebraLG of an ‘unknown’ lin-
ear groupG. From above,

X ∈ LG =⇒ etX ∈ G

=⇒ Fk(I + tX + · · · ) = 0

=⇒ Fk(I + tX) = O(t2)
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Thus
LG ⊂ {X : Fk(I + X) = O(t2)}.

In theory it only gives us a necesssary condition forX to lie in LG;
and it is easy to think of artificial cases where the condition is not in
fact sufficient. For example the equation

tr(I − T )′(I − T ) = 0

defines the trivial group{I}; but it is satisfied byetX to the first order
in t for all X.

In practice the condition is usually sufficient. However it must be
verified—having determinedLG (as we hope) in this way, we must
then show thateX does in fact lie inG. (Since the condition onX is
linear this will automatically ensure thatetX ∈ G for all t ∈ R.)

(b) An alternative way of describing the technique is to say that since each
defining condition is satisfied byetX identically int, the differential of
this condition must vanish att = 0, eg

sl(n, R) ≡ {X :
d

dt
det etX = 0 at t = 0}.

(c) To summarise: Given a linear groupG,

i. Find all X for which I + tX satisfies the equations forG to the
first order int; and then

ii. Verify that eX ∈ G for theseX.

3. The Orthogonal Group: o(n) consists of allskew-symmetric matrices, ie

o(n) = {X : X ′ + X = 0}.

For
(I + tX)′(I + tX) = I + t(X ′ + X) + o(t).

Hence
X ∈ o(n) =⇒ X ′ + X = 0.

Conversely,

X ′ + X = 0 =⇒ X ′ = −X

=⇒ (eX)′ = eX′
= e−X = (eX)−1

=⇒ eX ∈ O(n).
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4. The Special Orthogonal Group:

so(n) = o(n).

This follows from the trivial

Lemma 3.2 If G is an intersection of linear groups, say

G = ∩Gi,

then
LG = ∩LGi.

Applying this to
SO(n) = O(n) ∩ SL(n, R)

we deduce that
so(n) = o(n) ∩ sl(n, R).

But
X ′ + X = 0 =⇒ tr X = 0,

ie
o(n) ⊂ sl(n, R).

Hence
so(n) = o(n) ∩ sl(n, R) = o(n).

The reasonwhy SO(n) andO(n) have the same Lie algebra is that they
coincide in the neighbourhood ofI. In effect,O(n) has an extra ‘piece’
far from I, wheredet T = −1. Since Lie theory only deals with what
happens in the neighbourhood of I, it cannot distinguish between groups
that coincide there.

Technically, as we shall see in Chapter 4, 2 linear groups having the same
connected component ofI (like SO(n) andO(n)) will have the same Lie
algebra.

5. The Complex General Linear Group:

gl(n, C) = M(n, C).
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For from Example 1.5,

X ∈M(n, C) =⇒ XJ = JX

=⇒ XmJ = JXm

=⇒ etXJ = JetX

=⇒ etX ∈ GL(n, R)

=⇒ X ∈ gl(n, R);

while conversely

etX ∈ GL(n, C) for all t =⇒ etXJ = JetX

=⇒ XJ = JX

=⇒ X ∈M(n, C),

on equating coefficients oft.

6. The Complex Special Linear Group:

sl(n, C) = {X ∈M(n, C) : tr X = 0}.

Note thattr X here denotes the trace ofX as a complex matrix. The result
follows exactly as in Example 2.

7. The Unitary Group: u(n) consists of allskew-hermitian matrices, ie

u(n) = {X ∈M(n, C) : X∗ + X = 0}.

For
(I + tX)∗(I + tX) = I + t(X∗ + X) + o(t).

Hence
X ∈ u(n) =⇒ X∗ + X = 0.

Conversely,

X∗ + X = 0 =⇒ X∗ = −X

=⇒ (etX)∗ = etX∗
= e−tX = (etX)−1

=⇒ etX ∈ U(n) for all t

=⇒ X ∈ u(n).

8. The Special Unitary Group:

su(n) = {X ∈M(n, C) : X∗ + X = 0, tr X = 0}.
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This follows at once from the Lemma above:

SU(n) = U(n) ∩ SL(n, C) =⇒ su(n) = u(n) ∩ sl(n, C).

Notice thatsu(n) is not the same asu(n); a skew-hermitian matrix is not
necessarily trace-free.

9. The Symplectic Group:

sp(n) = {X ∈M(2n, C) : X∗ + X = 0, XJ = JX}.

For
Sp(n) = Sp(n, C) ∩U(2n),

where
Sp(n, C) = {T ∈ GL(n, C) : XJ = JX}.

Hence
sp(n) = sp(n, C) ∩ u(2n),

by the Lemma above. The result follows, since

sp(n, C) = {X ∈M(2n, C) : XJ = JX}

just as in Example 5.

Definition 3.2 The dimension of a linear groupG is the dimension of the real
vector spaceLG:

dim G = dimR LG.

Examples:

1. dimGL(2, R) = 4.

2. dimSL(2, R) = 3. For the general matrix insl(2, R) is of the form(
a b
c −a

)

giving a vector space of dimension 3.

3. dimO(n) = 3. For the general matrix ino(3) is of the form 0 −a b
a 0 −c
−b c 0
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4. dimSO(3) = 3. Forso(3) = o(3).

5. dimU(2) = 4. For the general matrix inu(2) is of the form(
ia −b + ic

b + ic id

)

6. dimSU(2) = 3. For the general matrix insu(2) is of the form(
ia −b + ic

b + ic −ia

)

7. dimSp(1) = 3. For the generalcomplex matrix in sp(1, C) is(
z −w
w̄ z̄

)

If this is also inu(2) thenz must be pure imaginary, say(
ia −b− ic

b− ic ia

)

In Chapter 2 we defined thelogarithmic zonein GL(n, R): an open neigh-
bourhood ofI mapped homeomorphically onto an open set inM(n, R). Our next
result shows thatevery linear group has a logarithmic zone.

Proposition 3.2 SupposeG is a linear group. Then there exists an open neigh-
bourhoodW 3 0 in LG which is mapped homeomorphically byeX onto an open
neighbourhoodeW 3 I in G.

Proof I This result is rather remarkable. It asserts that there exists aδ > 0 such
that

‖X‖ ≤ δ, eX ∈ G =⇒ X ∈ LG.

Suppose this is not so. Then we can find a sequenceXi ∈M(n, R) such that

Xi → 0, eXi ∈ G, Xi /∈ LG.

Let us resolve eachXi into components along and perpendicular toLG (where
perpendicularity is taken with respect to the inner product associated to the quadratic
form ‖X‖2):

Xi = Yi + Zi (Yi ∈ LG, Zi ⊥ LG).
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Notice that‖Yi‖, ‖Zi‖ ≤ ‖Xi‖.
Consider the set of matrices

Zi

‖Zi‖
on the unit ball inM(n, R). Since this ball is compact, we can find a convergent
subsequence. Taking this subsequence in place of the original sequence, we may
assume that

Zi

‖Zi‖
→ Z

SinceZi ⊥ LG it follows thatZ ⊥ LG.
Now consider the sequence

Ti = e−YieXi

=

(
I − Yi +

Y 2
i

2!
− · · ·

)(
I + (Yi + Z + i) +

(Yi + Zi)
2

2!
+ · · ·

)
= I + Zi + O(‖Xi‖‖Zi‖),

since each remaining term will containZi and will be of degree≥ 2 in Yi, Zi. Let
‖Zi‖ = ti. Then

Zi = ti(Z + Ei),

whereEi → 0. Thus
Ti = I + tiZ + o(ti).

From the Lemma to Proposition 1 above, this implies that

Z ∈ LG.

But Z ⊥ LG. So our original hypothesis is untenable; wecanfind aδ > 0 such
that if ‖X‖ ≤ δ then

eX ∈ G⇐⇒ X ∈ LG.

J

Corollary 3.1 If G is a linear group then

LG = 0⇐⇒ G is discrete.

Proposition 3.3 The connected component ofI in a linear groupG is a normal
open subgroupG0, generated by the exponentialseX(X ∈ LG):

G0 = {eX1eX2 . . . eXr : X1, X2, . . . , Xr ∈ LG}.
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Proof I The set of all such matrices is clearly closed under multiplication and
inversion, and so forms a subgroupG0.

The path
t 7→ etX1 . . . etXr (0 ≤ t ≤ 1)

connectsI to
eX1 . . . eXr 3 G0.

HenceG0 is connected.
By Proposition 2,eLG is a neighbourhood of0 ∈ G. HencegeLG is a neigh-

bourhood ofg for eachg ∈ G. But

geLG ⊂ G0 if g ∈ G0.

HenceG0 is open. Recall that this impliesG0 is also closed. (For each coset ofG0

is open. Hence any union of cosets is open. Hence the complement ofG0, which
is the union of all cosets apart fromG0 itself, is open, ieG0 is closed.)

SinceG0 is also connected, it must be the connected component ofI in G.
Finally, if g ∈ G thengG0g

−1 is also connected. Hence

gG0g
−1 ⊂ G0,

ie G0 is normal inG. J

Remarks:

1. Note that by this Proposition, ifG is a linear group then

G connected=⇒ G arcwise connected.

2. This Proposition is usually applied in reverse, ie we first determine (by some
other means) the connected componentG0 of I in G. The Proposition then
shows that each element ofG0 is expressible as a product of exponentials
of elements ofLG.

The following result—which really belongs to homotopy theory—is often
useful in determiningG0.

Lemma 3.3 Suppose the compact linear groupG acts transitively on the compact
spaceX; and supposex ∈ X. LetS = S(x) denote the stabiliser subgroup ofx,
ie

s = {T ∈ G : Tx = x}.

Then
S andX connected=⇒ G connected.



THE LIE ALGEBRA I: THE UNDERLYING SPACE 3–12

Remark:Those familiar with homotopy will recognise in this the 0-dimensional
part of the infinite exact homotopy sequence

0→ π0(S)→ π0(G)→ π0(X)→ π1(S)→ . . . ,

whereπi denotes theith homotopy group) of the fibre space(G, X, S) with total
spaceG, base spaceX, fibreS and projection

g 7→ gx : G→ X.

Although we shall assume no knowledge of homotopy theory, it is interesting to
note that the 1-dimensional part of this sequence will play a similar role in Chapter
7, in showing that

S andX simply connected=⇒ G simply connected.

Proof of LemmaB Supposeg ∈ G0. ThengS is connected; and sogS ⊂ G0.

Hence
G0 = G0S.

SinceG0 is closed (and so compact), so is

gG0x ⊂ X.

On the other hand sinceG0 is open,G−G0 is closed, and so therefore is

(G−G0)x = X −G0x.

ThusG0x is both open and closed; and so

G0x = X,

sinceX is connected. But sinceG0 = G0S this implies that

G0 = G,

ie G is connected. C

Examples:

1. SO(n) is connected for alln. For consider the action

(T, v)→ Tv

of SO(n) on the(n− 1)-sphere

Sn−1 = {v ∈ Rn : |v| = 1}.
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This action is transitive; and the stabiliser subgroup of

en = (0, 0, . . . , 1)

can be identified withSO(n− 1). Applying the Lemma,

SO(n− 1) andSn−1 connected=⇒ SO(n) connected.

Thus by induction, starting fromSO(1) andS1, we deduce thatSO(n) is
connected for alln.

2. SO(n) is the connected component ofI in O(n). For

T ∈ O(n) =⇒ T ′T = I =⇒ (det T )2 = 1 =⇒ det T = ±1.

Thus no path inO(n) can enter or leaveSO(n), since this would entail a
sudden jump indet T from +1 to−1, or vice versa.

3. U(n) is connected for alln. For consider the action ofU(n) on

S2n−1 = {v ∈ Cn : |v| = 1}.

The stabiliser subgroup of

en = (0, 0, . . . , 1)

can be identified withU(n − 1); and so we deduce by induction, as in
Example 1, thatU(n) is connected for alln.

4. SU(n) is connected for alln. Again this follows from the action ofSU(n)
onS2n−1.

5. Sp(n) is connected for alln. This follows in the same way from the action
of Sp(n) on

S4n−1 = {v ∈ Hn : |v| = 1}.

6. SL(n, R) is connected for alln. For supposeT ∈ SL(n, R). ThenT ′T is a
positive-definite matrix, and so has a positive-definite square-root,Q say:

T ′T = Q2.

(To constructQ, diagonalise the quadratic formv′Tv and take the square-
root of each diagonal element.) Now set

O = TQ−1.
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Then
O′O = I,

ie O ∈ O(n). In fact, sincedet T = 1 anddet Q > 0,

O ∈ SO(n).

Thus
T = OQ,

whereO ∈ SO(n) andQ ∈ P , the space of positive-definite matrices. Thus

SL(n, R) = SO(n)P.

Now P is connected; in fact it is convex:

A, B ∈ P =⇒ tA + (1− t)B ∈ P for all t ∈ [0, 1].

SinceSO(n) is also connected, so too is

SL(n, R) = SO(n)P.

Summary: To each linear groupG ⊂ GL(n, R) there corresponds a vector
subspaceLG ⊂ M(n, R). Two linear groupsG andH correspond to the
same subspace if and only if they have the same connected component of
the identity: LG = LH ⇐⇒ G0 = H0. In other words, there is a 1–1
correspondence betweenconnectedlinear groupsG and the subspacesLG.

The exponential map and the inverse logarithmic map define a homeo-
morphism (butnot a homomorphism) between a neighbourhoodU of I in
G and a neighbourhoodV of 0 in LG. With a little artistic licence we may
say that the logarithmic projection turns subgroups into subspaces.
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Exercises

In Exercises 01–10 determine the dimension of the given group

1. GL(n, R) 2. SL(n, R) 3. O(n) 4. SO(n) 5. GL(n, C)

6. SL(n, C) 7. U(n) 8. SU(n) 9. Sp(n) 10. O(1, 3)

In Exercises 11–15 determine the connected component ofI, and the number
of components, in each of the following groups.

11. GL(n, R) 12. GL(n, C) 13. SL(n, C) 14. O(1, 1) 15. O(1, 3)



Chapter 4

[

The Lie Algebra of a Linear Group II]The Lie Algebra of a Linear Group II: The
Lie Product

The subspaceLG corresponding to a linear groupG is closed under the Lie
product [X, Y ] = XY − Y X, and thus consitutes a Lie algebra. Alge-
braically, the Lie product reflects the non-commutativity ofG—an abelian
group has trivial Lie algebra. Geometrically, the Lie product measures the
curvature ofG.

Definition 4.1 For X, Y ∈M(n, R) we set

[X,Y ] = XY − Y X.

The matrix[X, Y ] is called the Lie product ofX andY .

Proposition 4.1 If G is a linear group then

X, Y ∈ LG =⇒ [X, Y ] ∈ LG.

Proof I Our argument is very similar to that used in the proof of Proposition 3.1
to show that

X, Y ∈ LG =⇒ X + Y ∈ LG.

Suppose
X, Y ∈ LG.

ThenetX , etY ∈ G for all t ∈ R; and so

etXetY e−tXe−tY ∈ G.

4–1
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But

etXetY e−tXe−tY

= (I + tX +
t2X2

2
)(I + tY +

t2Y 2

2
)(I − tX +

t2X2

2
)(I − tY +

t2Y 2

2
) + o(t2)

= I + t2[X, Y ] + o(t2)

= I + s[X,Y ] + o(s),

with s = t2. Hence by the Lemma to Proposition 3.1,

[X, Y ] ∈ LG.

J

Proposition 4.2 The Lie product[X, Y ] defines a skew-symmetric bilinear map
LG× LG→ LG, ie

1. [aX, Y ] = a[X, Y ]

2. [X1 + X2, Y ] = [X1, Y ] + [X2, Y ]

3. [X, Y1 + Y2] = [X,Y1] + [X, Y2]

4. [Y,X] = −[X, Y ]

In addition it satisfies Jacobi’s identity

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0

Proof I All is clear except for (J), and that is a matter for straightforward verifi-
cation:

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]]

= X(Y Z − ZY )− (Y Z − ZY )X + Y (ZX −XZ)

−(ZX −XZ)Y + Z(XY − Y X)− (XY − Y X)Z

= 0,

the 12 terms cancelling in pairs. J

Definition 4.2 A Lie algebraL overk (wherek = R or C) is a finite-dimensional
vector spaceL overk, together with a skew-symmetric bilinear mapL×L → L,
which we denote by[X, Y ], satisfying Jacobi’s identity (J).

If G is a linear group then the real Lie algebra defined onLG by the Lie
product is called the Lie algebra ofG.
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Remarks:

1. HenceforthLG (and similarlygl(n, R), etc) will denote the Lie algebra of
G, ie the spaceLG together with the Lie product on this space.

2. Note that the Lie algebra of a linear group is alwaysreal, even ifG is com-
plex, ieG ⊂ GL(n,C). The point of introducing complex Lie algebras
will only become apparent in Chapter7, when we consider complex repre-
sentations of linear groups.

3. It follows at once from the skew-symmetry of the Lie product that

[X, X] = 0 ∀X ∈ L.

4. In defining the Lie product in a Lie algebraLwith basise1, . . . , em it is only
necessary to give the m(m-1)/2 products

[ei, ej] (i < j)

since these determine the general product[X,Y ] by skew-symmetry and
linearity.

5. With the same notation, we can express each Lie product[ei, ej] of basis
elements as a linear combination of these elements:

[ei, ej] =
∑
k

ck
ijek.

Them3 scalars
ck
ij (1 ≤ i, j, k ≤ m)

are called thestructure constantsof the Lie algebra. In theory we could
define a Lie algebra by giving its structure constants; in practice this is
rarely a sensible approach.

Examples:

1. The spaceso(3) consists of all skew-symmetric3×3 matrices. As basis we
might choose

U =

 0 0 0
0 0 −1
0 1 0

 , V =

 0 0 1
0 0 0
−1 0 0

 , W =

 0 −1 0
1 0 0
0 0 0
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It is readily verified that

[U, V ] = UV−V U = W, [U,W ] = UW−WU = −V, [V, W ] = V W−WV = U.

Thus we can write

so(3) = 〈U, V,W : [U, V ] = W, [V, W ] = U, [W, U ] = V 〉.

2. The spacesu(2) consists of all skew-hermitian2×2 complex matrices with
trace 0. As basis we might choose

A =

(
i 0
0 −i

)
, B =

(
0 1
−1 0

)
, C =

(
0 i
i 0

)

It is readily verified that

[A, B] = 2C, [A, C] = −2B, [B, C] = 2A.

Thus

su(2) = 〈A, B, C : [A, B] = 2C, [B, C] = 2A, [C, A] = 2B〉.

Notice that the Lie algebrasso(3) andsu(2) are isomorphic,

so(3) = su(2),

under the correspondence

2U ←→ A, 2V ←→ B, 2W ←→ C.

Intuitively, we can see how this isomorphism arises. The covering homo-
morphismΘ : SU(2) → SO(3) establishes alocal isomorphismbetween
SU(2) andSO(3). If one remains close toI these 2 groups look exactly the
same. But Lie theory is alocal theory—the Lie algebraLG depends only
on the structure ofG near toI. (In particular, it depends only on the con-
nected component ofI in G, whenceso(3) = o(3).) Thuscovering groups
have the same Lie algebra. We shall return—more rigorously—to this very
important point in Chapter 8.

But we note now that the groupsSO(3) andSU(2) are certainly not iso-
morphic, since one has trivial, and the other non-trivial, centre:

ZSO(3) = {I,−I}, ZSU(2) = {I}.
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3. The spacesl(2, R) consists of all real2× 2 matrices with trace 0. As basis
we might choose

H =

(
1 0
0 −1

)
, E =

(
0 1
0 0

)
, F =

(
0 0
1 0

)

It is readily verified that

[H, E] = 2E, [H, F ] = −2F, [E, F ] = H.

Thus

sl(2, R) = 〈H, E, F : [H, E] = 2E, [H, F ] = −2F, [E, F ] = H〉.

This Lie algebra is not isomorphic toso(3) = su(2). For the subspace
〈U, V 〉 is closed under the Lie product. (It corresponds, as we shall see in
Chapter 6, to the subgroup of lower triangular matrices.) But it is readily
verified that no 2-dimensional subspace ofso(3) is closed under the Lie
product.

4. As an exercise, let us determine all the Lie algebras of dimension≤ 3. This
will allow us to introduce informally some concepts which we shall define
formally later.

(a) The Lie algebraLG is said to beabelianif the Lie product is trivial:

[X, Y ] = 0 for all X,Y ∈ L.

We shall look at abelian Lie algebras in the next Chapter. Evidently
there is just 1 such algebra in each dimension.

(b) Thederived algebraL′ of a Lie algebraL is the subspace spanned by
all Lie products:

L′ = {[X, Y ] : X, Y ∈ L}.

This is anideal in L:

X ∈ L, Y ∈ L′ =⇒ [X, Y ] ∈ L′.

EvidentlyL′ = 0 if and only ifL is abelian.

(c) Thecentreof the Lie algebraL,

ZL = {Z ∈ L : [X, Z] = 0 for all X ∈ L},

is also an ideal inL. EvidentlyL is abelian if and only ifZL = L.
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(d) SupposeX ∈ L. We denote byad X : L → L the linear map defined
by

ad X : Y 7→ [X, Y ].

Jacobi’s identity can be re-stated in the form

ad[X, Y ] = ad X ad Y − ad Y ad X.

To see this, apply both sides toZ. On the left we have

ad[X, Y ](Z) = [[X, Y ], Z] = −[Z, [X, Y ]].

On the right we have

ad X ad Y (Z)−ad Y ad X(Z) = [X, [Y, Z]]−[Y, [X,Z]] = [X, [Y, Z]]+[Y, [Z,X]].

The two are equal by Jacobi’s identity.

Dimension 1 Since[X, X] = 0, if dimL = 1 thenL is abelian.

Dimension 2 EitherL is abelian, ordimL′ = 1, since

[aX + bY, cX + dY ] = (ad− bc)[X, Y ].

SupposedimL′ = 1, sayL′ = 〈X〉. Then we can find aY such that
[X, Y ] = X. Thus

L = 〈X,Y : [X, Y ] = X〉.

So there are just 2 Lie algebras of dimension 2.

Dimension 3 We havedimL′ = 0, 1, 2 or 3.

If dimL′ = 0 thenL is abelian.

If dimL′ = 1, sayL′ = 〈X〉, then it is not hard to show that the centre
ZLmust also be of dimension 1; and

L = L1 ⊕ ZL,

whereL1 is a 2-dimensional Lie algebra. Thus there is just 1 Lie
algebra in this category:

L = 〈X,Y, Z : [X, Y ] = X, [X, Z] = [Y, Z] = 0〉.

If dimL′ = 2, sayL′ = 〈X,Y 〉, thenL′ must be abelian. For suppose
not. Then we can findX, Y ∈ L′ such that[X,Y ] = X. Suppose

[Y, Z] = aX + bY, [Z,X] = cX + dY.
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Then Jacobi’s identity gives

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = bX − cX + cX + dY.

Thusb = d = 0. But thenL′ = 〈X〉, contrary to hypothesis.

ThusL′ = 〈X,Y 〉 is abelian. Take anyZ ∈ L \ L′. Sincead Z(L) ⊂
L′, ad Z defines a map

AZ : L′ → L′.

If we takeZ ′ = aX + bY + cZ in place ofZ then

AZ′ = cAZ .

Thus the mapAZ is defined up to a scalar multiple byL. Conversely,
it is readily verified that any linear mapAZ : L′ → L′ defines a Lie
algebra, since all 3 terms in Jacobi’s identity forX,Y, Z vanish.

There are 2 families of solutions, according as the eigenvalues ofAZ

are real, or complex conjugates. Note thatAZ is surjective, since
adZ(L) = L′. Hence the eigenvalues ofAZ are not both 0 (ieAZ

is not idempotent).

If the eigenvalues are complex conjugatesρeiθ then we can makeρ = 1
by taking 1

ρ
Z in place ofZ. This gives the family of Lie algebras

L(θ) = 〈X,Y, Z : [X,Y ] = 0, [Z,X] = cos θX−sin θY, [Z, Y ] = sin θX+cos θY 〉.

Similary if the eigenvalues are real we can take them as1, ρ. and we
obtain the family

L(ρ) = 〈X, Y, Z : [X, Y ] = 0, [Z,X] = X, [Z, Y ] = ρY 〉.

We come now to the case of greatest interest to us, where

L′ = L.

A Lie algebra with this property is said to besemisimple. (We shall
give a different definition of semisimplicity later, but we shall find in
the end that it is equivalent to the above.) Perhaps the most important
Theorem in this Part is thatevery representation of a semisimple Lie
algebra is semisimple. But that is a long way ahead.

Since
ad[X,Y ] = ad X ad Y − ad Y ad X,
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it follows that
tr ad[X, Y ] = 0.

Thus
X ∈ L′ =⇒ tr ad X = 0.

In particular ifL′ = L thentr ad X = 0 for all X ∈ L. Hence the
eigenvectors ofad X are0,±λ. On the other hand, the characteristic
equation is real. So the eigenvectors are either of the form0,±ρ or
0,±ρi with ρ real.
Before going further, let us dispose of one possibility: that the eigen-
values ofad X might always be0, 0, 0. Recall that this is the case if
and only ifad X is nilpotent. (This follows from the Cayley-Hamilton
Theorem, that a linear transformation—or square matrix—satisfies its
own characteristic equation.)
A Lie algebraL is said to benilpotentif ad X is nilpotent for allX ∈
L. As we shall see later (Engel’s Theorem) a nilpotent Lie algebraL
cannot haveL′ = L, ieL cannot be both nilpotent and semisimple.
This is very easy to establish in the present case, wheredimL = 3.
Note first that

L = 〈X, Y, Z〉 =⇒ L′ = 〈[Y, Z], [Z,X], [X, Y ]〉.

It follows that ifL′ = L then

[X,Y ] = 0⇐⇒ X, Y linearly dependent.

Now supposead X is nilpotent for someX 6= 0. Thenad X 6= 0,
since otherwise[X, Y ] = 0 for all Y ∈ L. Thus we can findY ∈ L
such that

Z = ad X(Y ) 6= 0 but ad X(Z) = [X, Z] = 0.

This implies, as we have seen, thatZ = ρX. Thus

ad Y (X) = [Y, X] = −[X, Y ] = ρX.

Soad Y has eigenvalue−ρ 6= 0, and is not nilpotent.
Thus there exists anX ∈ L with ad X not nilpotent, with the 2 possi-
bilites outlined above.

(a) For someX ∈ L, ad X has eigenvalues0,±ρ whereρ > 0.
Taking 1

ρ
X in place ofX, we may suppose thatρ = 1. Taking the

eigenvectors ofX as a basis forL, we get

[X, Y ] = Y, [X, Z] = −Z.
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Suppose
[Y, Z] = aX + bY + cZ.

Jacobi’s identity yields

[X, [Y, Z]]+[Y, [Z,X]]+[Z, [X, Y ]] = bY−cZ+[Y, Z]+[Z, Y ] = 0.

Thusb = c = 0, ie
[Y, Z] = aX.

Dividing Y by a, we get

[Y, Z] = X.

So we have just 1 Lie algebra,

L = 〈X, Y, Z : [X, Y ] = Y, [X, Z] = −Z, [Y, Z] = X〉.

In fact
L = sl(2, R)

under the correspondenceX 7→ 1
2
H, E 7→ Y, F 7→ Z.

(b) Alternatively,ad X has eigenvalues0,±ρi with someρ ≥ 0 for
everyX ∈ L. (For otherwise we fall into the first case.) Choose
one suchX. As before, on replacingX by 1

ρ
we may suppose that

ρ = 1, ie ad X has eigenvalues0,±i. Taking thei-eigenvector of
ad X to beZ + iY ,

[X, Z + iY ] = i(Z + iY ) = −Y + iZ.

Thus
[X, Z] = −Y, [X, Y ] = Z.

Suppose
[Y, Z] = aX + bY + cZ.

Jacobi’s identity yields

[X, [Y, Z]]+[Y, [Z,X]]+[Z, [X, Y ]] = bZ−cY +[Y, Y ]+[Z,Z] = 0.

Thusb = c = 0, ie
[Y, Z] = aX.

Dividing Y, Z by
√
|a|, we may suppose that

[Y, Z] = ±X.
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If [[Y, Z] = −X then

ad Y =

 0 0 −1
0 0 0
−1 0 0

 .

This has eigenvalues0,±1, and so falls into the first case. Hence

L = 〈X, Y, Z : [X, Y ] = Z, [Z,X] = Y, [Y, Z] = X〉.

In other words,
L = so(3).

It remains to show thatso(3) = su(2) andsl(2, R) are not isomor-
phic. We shall see later that this follows from the fact thatso(3) and
su(2) are compact, whilesl(2, R) is not; for we shall show that the
compactness of a groupG is reflected in its Lie algebraLG. But we
can reach the same result by a cruder argument. From our argument
above, it is sufficient to show thatad X has eigenvalues0,±ρi for
everyX ∈ so(3). But it is readily seen that

ad U =

 0 0 0
0 0 −1
0 1 0

 , ad V =

 0 0 1
0 0 0
−1 0 0

 , ad W =

 0 −1 0
1 0 0
0 0 0

 .

Thus, with respect to this basis,ad X is always represented by a skew-
symmetric matrix. The result follows since the eigenvalues of such a
matrix are either purely imaginary or 0.

Summary: To each linear groupG there corresponds a Lie algebraLG.
Most of the information aboutG is ‘encoded’ inLG; and sinceLG is far
easier to analyse—using standard techniques of linear algebra—it provides
a powerful tool in the study of linear groups.
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Exercises

In Exercises 01–10 determine the Lie algebra of the given group

1. GL(2, R) 2. SL(3, R) 3. O(2) 4. O(3) 5. SO(2)

6. SO(4) 7. GL(2, C) 8. SL(2, C) 9. U(2) 10. SU(3)

11. Sp(1) 12. Sp(2) 13. O(1, 1) 14. O(1, 3) 15. O(2, 2)



Chapter 5

Abelian Linear Groups

As a happy by-product, Lie theory gives us the structure of connected abelian
linear groups.

Definition 5.1 The Lie algebraL is said to be abelian if the Lie product is trivial,
ie

[X,Y ] = 0 for all X, Y ∈ L.

Proposition 5.1 If G is a linear group then

G abelian=⇒ LG abelian.

If in additionG is connected then

LG abelian⇐⇒ G abelian.

Proof I SupposeG is abelian; and suppose

X, Y ∈ LG.

ThenetX , etY commute for allt. If t is sufficiently small,tX andtY will lie in
the logarithmic zoneU , so that

tX = log etX , tY = log etY

by Proposition 2.6. In particulartX, tY are expressible as power-series inetX , etY

respectively. HencetX, tY commute; and soX, Y commute, ieLG is abelian.
Conversely, supposeG is connected andLG is abelian, ie

[X,Y ] = XY − Y X = 0 ∀X, Y ∈ LG.

TheneX , eY commute, by Proposition 2.2. and so therefore do any 2 products

eX1 . . . eXr , eY1 . . . eYs (X1, . . . , Xr, Y1, . . . , Ys ∈ LG).

HenceG = G0 is abelian, by Proposition 3.3. J

5–1
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Proposition 5.2 If G is a connected abelian linear group thenG is isomorphic to
a cylinder group, ie

G = Tr × Rs,

whereT is the torus
T = R/Z.

In particular, the only compact connected abelian linear groups are the toriTn.

Lemma 5.1 If G is a connected abelian linear group then the map

X 7→ eX : LG→ G

is a surjective homomorphism (of abelian groups) with discrete kernel.

Proof of LemmaB The exponential map is a homomorphism in this case, by

Proposition 2.2. It is surjective, by Proposition 3.3, since

eX1 . . . eXr = eX1+...+Xr (X1, . . . , Xr ∈ LG).

Its kernel is discrete, by Proposition 3.2; for the exponential map is one-one in the
logarithmic zone. C

Proof I By the Lemma,

G =
Rn

K
,

whereK is a discrete subgroup ofRn.
We shall show by induction onn that such a subgroup has aZ-basis consisting

of m ≤ n linearly independent vectors

v1, . . . , vm ∈ Rn,

ie K consists of all linear combinations

a1v1 + . . . + amvm (a1, . . . , am ∈ Z).

Let v1 be the closest point ofK to 0 (apart from 0 itself). We may suppose, on
choosing a new basis forRn, that

v1 = (1, 0, . . . , 0).

Now let
p : Rn → Rn−1
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be the projection onto the lastn− 1 coordinates, ie

p(x1, x2, . . . , xn) = (x2, . . . , xn).

Then the subgroup
pK ⊂ Rn−1

is discrete. For each point
(x2, . . . , xn) ∈ pK

arises from a point
v = (x1, x2, . . . , xn) ∈ K;

and we may suppose, on adding a suitable integral multiple ofv1 to v, that

−1

2
< x1 ≤

1

2
.

But thenv would clearly be closer to 0 thanv1 (contrary to hypothesis) ifx2, . . . , xn

were all very small.
Applying the inductive hypothesis we can find aZ-basis forpK consisting of

linearly independent vectors

u2, . . . , um ∈ Rn−1.

Choose
v2, . . . , vm ∈ Rn

such that
pvi = ui.

Then it is easy to see thatv1, v2, . . . , vm are linearly independent, and form aZ-
basis forK.

Again, on choosing a new basis forRn we may suppose that

v1 = (1, 0, . . . , 0), v2 = (0, 1, . . . , 0), . . . , vm = (0, . . . , 1, . . . , 0),

ie
K = {(a1, . . . , am, 0, . . . , 0) : ai ∈ Z}.

Then

G = Rn/K

= R/Z + . . . + R/Z + R + . . . + R
= Tm × Rn−m.

J
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Remark:We shall find this result extremely useful later, in studying the structure
of a general compact linear groupG. For if we take any elementg ∈ G then
the smallestclosed subgroupof G containingg is abelian; and so the connected
component ofI in this group must be a torus.

Summary: IfG is abelian then so isLG; and the exponential map in this
case is a homomorphism, mapping onto the connected componentG0 of G.
We deduce that every connected abelian linear group is of the formTm×Rn.



Chapter 6

The Lie Functor

To each linear groupG we have associated a Lie algebraLG. But that is
only half the story—to complete it we must show that each homomorphism
G → H of linear groups gives rise to a homomorphismLG → LH of the
associated Lie algebras.

Definition 6.1 A homomorphism

f : L →M

of Lie algebras overk is a linear map which preserves the Lie product, ie

1. f(aX) = a(fX)

2. f(X + Y ) = fX + fY

3. f [X, Y ] = [fX, fY ]

Proposition 6.1 Suppose
F : G→ H

is a continuous homomorphism of linear groups. Then there exists a unique ho-
momorphism

f = LF : LG→ LH

of the corresponding Lie algebras such that

efX = F (eX)

for all X ∈ LG.

6–1
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Proof I SupposeX ∈ LG. Then the composition

t 7→ etX 7→ F (etX) : R→ H

is a continuous homomorphism. Hence, by Proposition 2.5, there exists a unique
elementfX ∈ LH such that

et(fX) = F (etX) ∀t ∈ R.

We must show that the 3 conditions of Definition 1 are satisfied.

1. This follows at once from the definition of f.

2. We saw in the proof of Proposition 3.1 that

(etX/metY/m)m → et(X+Y ).

Applying the homomorphism F to each side,

(F (etX/m)F (etY/m))m → F (et(X+Y )),

ie

(etfX/metfY/m)m → etf(X+Y ).

But by the same Lemma,

(etfX/metfY/m)m → et(fX+fY ).

Hence
etf(X+Y ) = et(fX+fY ) ∀t;

and so, by Proposition 2.5,

f(X + Y ) = fX + fY.

3. We saw in the proof of Proposition 4.1 that

(etXetY e−tXe−tY )m2 → et2[X,Y ].

The result follows from this as in (2).

J

Proposition 6.2 The assignmentG→ LG is functorial, ie
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1. If
E : G→ H, F : H → K

are 2 continuous homomorphisms of linear groups then

L(FE) = (LF )(LE).

2. The identity onG induces the identity on LG,

L1G = 1LG.

Corollary 6.1 If the linear groupsG andH are isomorphic then so are their Lie
algebras:

G ∼= H =⇒ LG ∼= LH.

Remark:This is a most important result, since it allows us to extend Lie theory
from linear to linearisablegroups. Thus we can speak of the Lie algebra of a
topological groupG, providedG is isomorphic to some linear group—we need
not specify this linear group or the isomorphism, so long as we have established
that they exist. We shall return to this point later.

Proposition 6.3 Suppose
F : G→ H

is a continuous homomorphism of linear groups; and supposeG is connected.
ThenF is completely determined byf = LF . More precisely, if

F1, F2 : G→ H

are 2 such homomorphisms then

LF1 = LF2 =⇒ F1 = F2.

Proof I SupposeT ∈ G. By Proposition 3.4,

T = eX1 . . . eXr .

Hence

F (T ) = F (eX1 . . . eXr)

= F (eX1) . . . F (eXr)

= efX1 . . . efXr .
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ThusF (T ) is completely determined once f is known.J

Remark:This result shows that ifG is connected (and if it is not we can always
replace it by its connected componentG0) then there is at most one group homo-
morphism

F : G→ H

corresponding to a given Lie algebra homomorphism

f : LG→ LH.

One might say thatnothing is lost in passing from group homomorphism to Lie
algebra homomorphism.

Whether in factf can be ‘lifted’ to a group homomorphismF in this way is a
much more difficult question, which we shall consider in Chapter 7.

Proposition 6.4 Suppose
F : G→ H

is a continuous homomorphism of linear groups. Then

K = ker F

is a linear group; and
LK = ker(LF ).

Proof I SupposeG is a linear group, ie a closed subgroup ofGL(n, R). Since
K is closed inG, it is also closed inGL(n, R). ThusK ⊂ GL(n, R) is a linear
group.

Moreover

X ∈ LK =⇒ etX ∈ K ∀t ∈ R
=⇒ F (etX) = etfX = I ∀t ∈ R
=⇒ fX = 0

=⇒ X ∈ ker f.

J

Corollary 6.2 Suppose
F : G→ H

is a continuous homomorphism of linear groups. Then

LF injective⇐⇒ ker F discrete.

In particular
F injective=⇒ LF injective.
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Proposition 6.5 Suppose
F : G→ H

is a continuous homomorphism of linear groups; and supposeH is connected.
Then

LF surjective⇐⇒ Fsurjective.

Proof I Suppose first thatf = LF is surjective; and supposeT ∈ H. Then by
Proposition 3.4,

T = eY1 . . . eYr ,

whereY1, . . . , Yr ∈ LH. Sincef is surjective we can findX1, . . . , Xr ∈ LG such
that

Yi = f(Xi) (i = 1, . . . , r)

Then

T = efX1 . . . efXr

= F (eX1) . . . F (eXr)

= F (eX1 . . . eXr).

ThusT ∈ im F ; and soF is surjective.
Now suppose conversely thatF is surjective; and supposeY ∈ LH. We must

show that there exists anX ∈ LG such that

fX = Y.

This is much more difficult.
Sincef is linear, we can supposeY so small that the line-segment

[0, 1]Y = {tY : 0 ≤ t ≤ 1}

lies inside the logarithmic zone inLH. For the same reason it suffices to findX
such that

fX = tY

for some non-zerot.
Our proof falls into 2 parts.

1: An enumerability argument. Let

C = F−1(e[0,1]Y ) = {T ∈ G : FT = etY , 0 ≤ t ≤ 1}.
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We shall show thatI is not isolated inC. If it were then every point ofC
would be isolated. For supposeS, T ∈ C were close to one another; and
suppose

S = esY , T = etY ,

with s < t. Then
R = S−1T

would be close toI; and it is inC sinceF (R) = e(t−s)Y .

Thus ifI were isolated inC we could find disjoint open subsets ofM(n, R)
surrounding each element ofC. But C is non-enumerable, since it contains
at least one point corresponding to eacht ∈ I. Thus—always supposing
I isolated inC—we would have a non-enumerable family of disjoint open
sets inM(n, R) = RN (whereN = n2). But that leads to a contradiction.
For each subset will contain a rational point (ie a point with rational coordi-
nates); and the number of rational points is enumerable. We conclude that
I cannot be isolated inC.

2: A logarithmic argument. SinceI is not isolated, we can findT ∈ C arbitrarily
close toI. In particular we can chooseT so that

1. T lies in the logarithmic zone ofG, with say

X = log T ;

2. fX lies in the logarithmic zone ofLH.

But then
FT = F (eX) = eX ,

while on the other hand
FT = etY

for somet ∈ [0, 1]. Thus
efX = etY .

SincefX andtY both lie in the logarithmic zone, it follows that

fX = tY,

as required.

J

The Corollary to Proposition 4 and Proposition 5 together give
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Proposition 6.6 Suppose
F : G→ H

is a continuous homomorphism of linear groups; and supposeH is connected.
Then

LFbijective⇐⇒ ker(F )discrete andFsurjective.

SupposeG, H, K are 3 linear groups; and suppose we are given homomor-
phisms

α : G→ H, β : H → K.

Recall that the sequence
G→ H → K

is said to beexactif
im α = ker β.

Proposition 6.7 An exact sequence

G→ H → K

of linear groups yields a corresponding exact sequence

LG→ LH → LK

of Lie algebras.

Proof I This follows at once from Propositions 6.4 and 6.5 above.J Remark:

To summarise our last 3 results: ifH is connected, then

1. LF injective⇐⇒ ker F discrete;

2. LF surjective⇐⇒ im F open;

3. LF bijective⇐⇒ ker F discrete andFsurjective.

Examples:

1. As we noted above, the functorial property of the Lie operator allows the
theory to be extended from linear tolinearisablegroups.

Consider for example the real projective group

PGL(n, R) = GL(n + 1, R)/R×,



6–8

ie the group of projective transformations

P (T ) : PRn → PRn

of n-dimensional real projective spacePRn—that is, the space of 1-dimensional
subspaces (or rays) in the(n+1)-dimensional vector spaceRn+1. Each non-
singular linear map

T : Rn+1 → Rn+1

defines a projective transformation

P (T ) : PRn → PRn :

two linear maps defining the same projective transformation if and only if
each is a scalar multiple of the other, ie

P (T ) = P (T ′)⇐⇒ T ′ = aT.

As it stands,PGL(n, R) is not a linear group. However, we can ‘linearise’
it in the following way. SupposeT ∈ GL(n, R). Consider the linear map

X 7→ TXT−1 : M(n + 1, R)→M(n + 1, R).

It is evident that any scalar multipleaT will define the same linear map.
Conversely, supposeT, U ∈ GL(n + 1, R) define the same map, ie

TXT−1 = UXU−1 for all X ∈M(n + 1, R).

Let
V = T−1U.

Then
V XV −1 = X,

ie
V X = XV ∀X.

It follows that
V = aI,

ie
U = aT.

Thus we have defined an injective homomorphism

Θ : PGL(n, R)→ GL(N, R),
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whereN = (n + 1)2, identifying the projective group with a linear group
G ⊂ GL(N, R).

This identifiesPGL(n, R) with a subgroup ofGL(N, R). But that is not
quite sufficient for our purposes; we must show that the subgroup isclosed.

(The image of an injective homomorphism certainly need not be closed.
Consider for example the homomorphism

R→ T2 : t 7→ (a mod 1, b mod 1)

from the reals to the 2-dimensional torus. The image is a path going round
the torus like a billiard ball round a billiard table. There are 2 possibilities.

If the ratioa : b is rational, the path runs repeatedly over the same closed
subgroup of the torus. In particular, the homomorphism is not injective,

On the other hand, if the ratioa : b is irrational, then the path will never
return to the origin. The homomorphism is injective, and its image passes
arbitrarily close to every point of the torus. Thus the closure of the image is
the whole of the torus. However, it does not pass through every point of the
torus, since eg it will only cut the ‘circle’(0, y mod 1) enumerably often.
So the image group in this case is not closed.)

There are several ways of showing thatim Θ is closed. For example, we
shall see later that sinceSL(n+1, R) is semisimpleits image is necessarily
closed.

But perhaps the simplest approach is toidentify the subgroupim Θ. To this
end, observe that for eachX ∈ GL(n + 1, R), the map

αT : X 7→ T−1XT : M(n + 1, R)→M(n + a, R)

is anautomorphismof the algebraM(n+1, R), ie it preserves mutliplication
as well as addition and scalar multiplication. It also preserves the trace.

We shall show that every such automorphism is of this form, ie

im Θ = AutM(n + 1, R).

Since the property of being a trace-preserving automorphism ofM(n +
1, R) can be defined by algebraic equations (albeit an infinity of them) the
automorphism group is closed inGL(N, R), so if we can prove that it is in
fact im Θ we shall have achieved our objective.

Again, there are several ways of proving this. One approach, which might
appeal to the geometrically-minded but which we shall not pursue, starts
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by noting that we can represent subspaces of the projective spacePRn by
projections (idempotents) inM(n+1, R). An automorphism ofM(n+1, R)
then defines a transformation

PRn → PRn

which sends subspaces to subspaces of the same dimension, in such a way
that all incidence relations are preserved. Now it is a well-known proposi-
tion of projective geometry that such a transformation is necessarily projec-
tive, ie it can be defined by a linear transformationT ∈ GL(n + 1, R). But
one could say that this approach is somewhat masochistic, since we have
thrown away a good deal of information in passing from an automorphism
of M(n+1, R) to the corresponding tranformation of projective spacePRn.

The following proof may not be the simplest, but it has the advantage of
being based on ideas from the representation theory of finite groups, studied
in Part 1.

Let F be any finite or compact group having an absolutely simplen + 1-
dimensional representation; that is, one that remains simple under complex-
ification.

For example, we saw in Part 1 that the symmetric groupSn+2 has such a
representation—its natural representationθ in Rn+2 splitting into 2 abso-
lutely simple parts

θ = 1 + σ

whereσ is the representation in the(n + 1)-dimensional subspace

x1 + · · ·+ xn+2 = 0.

We can turn this on its head and say that we have a finite subgroupF of
GL(n + 1, R) whose natural representationν in Rn is simple.

Now suppose
α : M(n + 1, R)→M(n + 1, R)

is a trace-preserving automorphism of the algebraM(n + 1, R). (Actually
every automorphism ofM(n + 1, R) is trace-preserving. But it is easier for
our purposes to add this condition than to prove it.) We want to show thatα
is aninnerautomorphism, ie of the form

α = αT

for someT ∈ GL(n + 1, R).
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To this end, note that the composition

αν : F → GL(n + 1, R)

yields a second representation ofF in Rn+1.

The 2 representationsν, αν haves the same character (sinceα preserves
trace). Hence they are equivalent, ie there exists aT ∈ GL(n + 1, R) such
that

αν(g) = αT ν(g)

for all g ∈ F .

It follows that
α(X) = αT (X)

for all X ∈M(n + 1, R) in the matrix algebra generated by the matrices of
F , ie all X expressible as linear combinations of the elements ofF :

X = a1F1 + · · ·+ amFm.

But we saw in Part 1 that every matrixX ∈M(n + 1, R) is of this form, ie
the matrices in an absolutely simple representation span the matrix space.
(For a simple proof of this, consider the representationν∗×ν of the product-
groupF × G in the space of matricesM(n + 1, R). We know that this
representation is simple. Hence the matrices

ν(f1)
−1Iν(f2) = f−1

1 f2

span the representation spaceM(n + 1, R).) Thus

α(X) = αT (X)

for all X ∈M(n + 1, R), ie α = αT .

So we have identifiedPGL(n, R) with the group of trace-preserving auto-
morphisms ofM(n + 1, R). Since the property of being an automorphism,
and of preserving the trace, can be defined by polynomial equations (al-
beit an infinity of them), this automorphism group is aclosedsubgroup of
GL(N, R), as required.

HencePGL(n, R) is linearisable, and we can speak of its Lie algebra
pgl(n, R).

By definition,
pgl(n, R) = LG,
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whereG is the linear group above. However, we need not computeLG
explicitly; there is a much simpler way of determiningpgl(n, R).

Consider the homomorphism

T 7→ P (T ) : SL(n + 1, R)→ PGL(n, R).

If n is even thenP is in fact an isomorphism. For on the one hand

T ∈ ker P =⇒ T = aI

=⇒ an = 1

=⇒ a = 1

sincea ∈ R andn + 1 is odd; while on the other hand ifP = P (T ) is a
projective transformation we can suppose thatT ∈ SL(n + 1, R), since we
can always find a scalara such that

det aT = an det T = 1.

Thus ifn is even,
PGL(n, R) = SL(n + 1, R).

So it is evident in this case thatPGL(n, R) is linearisable—we don’t need
the long-winded argument above—and that

pgl(n, R) = (n + 1, R).

In fact this last result still holds ifn is odd. For in that case the homomor-
phism

Θ : SL(n + 1, R)→ PGL(n, R)

is not bijective. However, it has kernel±I; and its image is the subgroup of
PGL(n, R) of index 2, consisting of those projective transformationsP (T )
defined byT ∈ GL(n + 1, R) with det T > 0. We can summarise this in
the exact sequence

1→ C2 → SL(n + 1, R)→ PGL(n, R)→ C2 → 1.

But now Proposition 6.7 above tells us that the corresponding Lie algebra
homomorphism

LΘ : sl(n + 1, R)→ pgl(n, R)

is in fact an isomorphism.

So we find that in all cases

pgl(n, R) = sl(n + 1, R).
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2. Now consider the Euclidean groupE(2), ie the isometry group of the Eu-
clidean planeE2. As it stands,E(2) is not a linear group. However, on
choosing coordinates, we can identifyE2 with R2; andE(2) can then be
identified with the group of transformations

E : (x, y) 7→ (ax + cy + e, bx + dy + f)

where (
a c
b d

)
∈ O(2).

We can extend this transformationE to a projective transformation

P (T ) : PR2 → PR2,

namely that defined by the matrix

T =

 a c e
b d f
0 0 1


This defines an injective homomorphism

F : E(2)→ PGL(2, R),

allowing us to identifyE(2) with a closed subgroup of the 2-dimensional
projective group. Since we have already established that the projective
group can be linearised, it follows thatE(2) can be also.

Explicitly, we have identifiedE(2) with the groupG of 3 × 3 matrices
described above. By definition,

e(2) = LG.

To determineLG, we adopt our usual technique. Suppose

X =

 p u x
q v y
r w z

 ∈ LG.

Then

I + tX =

 1 + tp tu tx
tq 1 + tv ty
tr tw 1 + tz
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satisfies the conditions onG to the first order. Hence

p = r = v = w = z = 0, q + u = 0,

ie

X =

 0 q x
−q 0 y
0 0 0


Conversely, it is readily verified that ifX is of this form then

eX ∈ G.

The spaceLG has basis

L =

 0 −1 0
1 0 0
0 0 0

 M =

 0 0 1
0 0 0
0 0 0

 N =

 0 0 0
0 0 1
0 0 0


By computation,

[L, M ] = N, [L, N ] = −M, [M, N ] = 0.

Thus

e(2) = 〈L, M, N : [L, M ] = N, [L, N ] = −M, [M, N ] = 0〉.
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Representations

Since a representation is—from one point of view—just a particular kind of
homomorphism, Lie theory certainly applies. But there is one small prob-
lem: the Lie algebra of a linear group isreal, while we are interested almost
exclusively incomplexrepresentations. Overcoming this problem brings an
unexpected reward, by disclosing a surprising relation between apparently
unrelated groups. This allows us to extend the representation theory of com-
pact groups to a much wider class of linear groups.

Definition 7.1 A representation of a Lie algebraL overk (wherek = R or C) in
the vector spaceV overk is defined by a bilinear map

L × V → V,

which we denote by(X, v)→ Xv, satisfying

[X,Y ]v = X(Y v)− Y (Xv).

Remark:Notice that we only considerreal representations ofreal Lie algebras,
or complexrepresentations ofcomplexalgebras—we do not mix our scalars. This
might seem puzzling, since:

1. we are primarily interested (as always) incomplexrepresentations of linear
groups; but

2. the Lie algebra of a linear group is alwaysreal.

The explanation is found in the following Definition and Proposition.

Definition 7.2 SupposeL is a real Lie algebra. We denote byCL the complex
Lie algebra derived fromL by extension of the scalars (fromR to C).

7–1



7–2

Remark:SupposeL has structure constantsck
ij with respect to the basise1, ..., en,

ie
[ei, ej] =

∑
k

ck
ijek.

Then we can take the same basis and structure constants forCL.

Proposition 7.1 1. Each real representationα of the linear groupG in U
gives rise to a representationLα of the corresponding Lie algebraLG in
U , uniquely characterised by the fact that

α(eX) = eLαX ∀X ∈ LG.

2. Each complex representationα of G in V gives rise to a representationLα
of the complexified Lie algebraCLG in V , uniquely characterised by the
fact that

α(eX) = eLαX ∀X ∈ LG.

In either case,if G is connectedthenα is uniquely determined byLα, ie

α = β =⇒ Lα = Lβ.

Proof I The real and complex representations ofG are defined by homomor-
phisms

G→ GL(n, R), G→ GL(n, C).

These in turn give rise to Lie algebra homomorphisms

LG→ gl(n, R), LG→ gl(n, C).

The first of these defines the required representation ofLG by

(X, u)→ Xu.

The second needs a little more care.
Note first thatgl(n, C) = M(n, C) has a natural structure as a complex Lie

algebra. If we useM(n, C) to denote this algebra then

gl(n, C) = RM(n, C),

where the “realification”RL of a complex Lie algebraL is defined in the usual
forgetful way.

Recall the following simple (if confusing) result from linear algebra. IfU is a
real vector space andV a complex vector space then each real linear map

F : U → RV
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extends—uniquely—to a complex linear map

F : CU → V.

Applying this withU = LG andV = M(n, C), the real Lie algebra homo-
morphism

LG→ gl(n, C)

yields acomplexLie algebra homomorphism

CLG→M(n, C).

This defines the required representation ofCLG by

(X, v)→ Xv.

Finally, if G is connected then eachg ∈ G is expressible as a product

g = eX1 . . . eXr .

But from the equation defining the relation betweenα andLα the action ofeX on
U or V is defined by the action ofX. Hence the action ofLG or CLG completely
determines the action of eachg ∈ G. J

Remark:By “abuse of notation” we shall call a representation ofCL (whereL
is a real Lie algebra) a complex representation ofL. With this understanding
Proposition 1 can be summarised as follows:

Each representationα of L defines a corresponding representationLα of LG
in the same space. Moreover ifG is connected thenLα uniquely determinesα, ie

α = β =⇒ Lα = Lβ.

Corollary 7.1 SupposeL andL′ are 2 real Lie algebras. Then an isomorphism
between their complexifications

CL ←→ CL′

sets up a1− 1 correspondence between the complex representations ofL andL′.

Example:We shall show that, for eachn, the Lie algebras

sl(n, R) = 〈X ∈M(n, R) : tr X = 0〉
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and
su(n) = 〈X ∈M(n,C) : X∗ = X, tr X = 0〉

have the same complexification:

Csl(n, R) = Csu(n).

Certainly these 2 algebras have the same dimension:

dim sl(2, R) = dim su(n) = n2 − 1.

Moreover, we can regard bothsl(n, R) andsu(n) as real subalgebras of the
complexLie algebraM(n, C); and the injections

sl(n, R)→M(n, C), su(n)→M(n, C)

define complex Lie algebra homomorphisms

Φ : Csl(n, R)→M(n, C), Ψ : Csu(n)→M(n, C).

It is not obvious a priori thatΦ andΨ are injections. However, that will follow if
we can establish that

• im Φ = im Ψ;

• dimC im Φ = n2 − 1.

Indeed, this will also prove the desired result

Csl(n, R) = im Φ = Csu(n).

But im Φ is just the complex linear hull ofsl(n, R) in M(n, C), ie the subspace
formed by the linear combinations, with complex coefficients, of the elements of
sl(n, R); and similarlyim B is the complex hull ofsu(n).

But it is easy to see that these hulls are both equal to the complex subspace

V = {X ∈M(n, C) : tr X = 0}.

Forsl(n, R) this is a consequence of the elementary proposition that the com-
plex solutions of a real linear equation are just the linear combinations, with com-
plex coefficients, of real solutions.

Forsu(n), the result follows on noting that any elementX ∈ V can be written
as

X = Y + iZ,
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with

Y =
X + X∗

2
, Z =

X −X∗

2i

both insu(n).
In conclusion, since

dimC V = n2 − 1

we have established that
Csl(n, R) = Csu(n).

As a concrete illustration, consider the casen = 2. We have seen that

sl(n, R) = {X ∈M(2, R) : tr X = 0} = 〈H, E, F 〉,

with

H =

(
1 0
0 −1

)
E =

(
0 0
1 0

)
F =

(
0 1
0 1

)
while

su(n) = {X ∈M(2, C) : X∗ = X, tr X = 0} = 〈A, B, C〉,

with

A =

(
i 0
0 −1

)
B =

(
0 −1
1 0

)
C =

(
0 i
i 0

)
The isomorphism between the complexifications is defined by

A←→ iH, B ←→ (E − F ), C ←→ i(E + F ).

All the basic notions of group representation theory have Lie algebra ana-
logues. These are summarised in

Definition 7.3 1. The representationα of L in V is said to be simple if there
are no non-trivial stable subspaces, ie ifU is a subspace ofV such that

X ∈ L, u ∈ U =⇒ Xu ∈ U

thenU = 0 or V .

2. The sumα + β of 2 representationsα andβ of L in U andV is the repre-
sentation in the direct sumU ⊕ V defined by

X(u + v) = Xu + Xv.
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3. The productαβ of α andβ is the representation in the tensor productU⊗V
defined by

X(u⊗ v) = Xu⊗ v + u⊗Xv.

4. The dualα∗ of α is the representation inV ∗ defined by

(X, p)→ −X ′p.

5. A representation is said to be semisimple if it is expressible as a sum of
simple representations.

Proposition 7.2 Supposeα, β are representations of the connected linear group
G. Then

1. α simple⇐⇒ Lα simple

2. L(α + β) = Lα + Lβ

3. L(αβ) = (Lα)(Lβ)

4. L(α∗) = (Lα)∗

5. α semisimple⇐⇒ Lα semisimple
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Simply Connected Linear Groups

To each homomorphismF : G → H of linear groups the Lie functor as-
sociates a homomorphismf = LF : LG → LH of the corresponding Lie
algebras. But which Lie algebra homomorphisms arise in this way? Which
can belifted to group homomorphisms? This question is of a rather different
nature to those we have been considering. For while Lie theory is alocal the-
ory, this is aglobalquestion. Indeed, every Lie algebra homomorphism can
be lifted locally. The question is: do these local bits fit together? That de-
pends, as we shall see, on thefundamental group(or first homotopy group)
π1(G) of the linear groupG. If this homotopy group is trivial—that is,G
is simply-connectedthen every Lie algebra homomorphismf : LG → LH
canbe lifted.

Proposition 8.1 SupposeG andH are linear groups; and supposeG is simply
connected. Then every Lie algebra homomorphism

f : LG→ LH

can be lifted to a unique group homomorphism

F : G→ H

such that
LF = f.

Remark:Recall that a topological spaceX is said to besimply connectedif it is
arcwise connected and if in addition every loop inX can be shrunk to a point, ie
every continuous map

u : S1 → X

8–1
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from the circumferenceS1 of the 2-ballB2 (the circle with its interior) can be
extended to a continuous map

u : B2 → X

from the whole ball.
This is equivalent to saying that the first homotopy group (or fundamental

group) ofX is trivial:
π1(X) = {e}.

Proof I SinceG is connected, eachT ∈ G is expressible in the form

T = eXr . . . eX1 ,

by Proposition 3.4. IfF exists,F (T ) must be given by

F (T ) = F (eXr) . . . F (eX1)

= efXr . . . efX1

In particular, the existence ofF requires that

eXr . . . eX1 = I =⇒ efXr . . . efX1 = I.

Conversely, if this condition is satisfied, thenF (T ) is defined unambiguously by
(*); and the mapF : G→ H defined in this way is clearly a homomorphism with
LF = f .

It is sufficient therefore to show that condition (**) is always satisfied. This
we do in 2 stages.

1. First we show that condition (**) is always satisfiedlocally, ie for suffi-
ciently smallX1, . . . , Xr. This does not require thatG be simply-connected,
or even connected. We may say thatf always lifts to alocal homomor-
phism, defined on a neighbourhood ofI ∈ G.

2. Then we show that ifG is simply-connected, every local homomorphism
can be extended to the whole ofG.

These 2 stages are covered in the 2 lemmas below. But first we see how re-
lations on linear groups, like those in (**) above, can be represented by closed
paths, orloops.

Let us call a path onG of the form

I = [0, 1]→ G : t 7→ etXg
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anexponential pathjoining g to eXg. Then the relation

eXr . . . eX1 = I

defines anexponential loopstarting at any pointg ∈ G, with vertices

g0 = g, g1 = eX1g, g2 = eX2eX1g, . . . , gr = eXr . . . eX1g = g,

each successive pairgi−1, gi of vertices being joined by the exponential path

etXigi−1 (0 ≤ t ≤ 1).

(If we chose a different starting-point, we would get a “congruent” loop, ie a
transformPg of the first loopP by a group elementg. In effect, we are only
concerned with paths or loops “up to congruence”.)

Each exponential path
etXg

in G defines an exponential path inH, once we have settled on a starting pointh:

etXg 7→ etfXh.

More generally, each path inG made up of exponential segments—let us call it
a “piecewise-exponential” path—maps onto a piecewise-exponential path inH,
starting from any given point.

In this context, condition (**) becomes: Every loop inG maps into a loop in
H. Or: if a path inG closes on itself, then so does its image inH.

Similarly, the local version reads: Every sufficiently small loop inG maps into
a loop inH. It is sufficient in this case to consider exponentialtriangles, made of
3 exponential paths. For the loop

PrPr−1 . . . P0

can be split into the triangles

P0PrPr−1, P0Pr−1Pr−2, . . . , P0P2P1.

In algebraic terms, given a relation

eXr . . . eX1 = I,

we set
eYi = eXieXi−1 . . . eX1 1 ≤ i ≤ r,

with
eYr = eY0 = I;
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the given relation then splits into the triangular relations

eYi = eXieYi−1 ,

ie
e−YieXieYi−1 = I.

If each of these relations is preserved byF , then the product of their images inH
gives the required relation:

efXr . . . efX0 = (e−fYreXreY [r−1) . . . (e−fY1eX1eY0) = I.

Lemma 8.1 SupposeG andH are linear groups; and suppose

f : LG→ LH

is a Lie algebra homomorphism. Then the map

eX 7→ efX

is a local homomorphism, ie there is a constantC > 0 such that if|X|, |Y |, |Z| <
C then

eXeY = eZ =⇒ efXefY = efZ .

Proof of LemmaB This falls into 2 parts:

1. 1. If the triangle is small of size (or side)d then the ‘discrepancy’ in its
image, ie the extent to which it fails to close, is of orderd3.

2. 2. A reasonably small triangle, eg one lying within the logarithmic zone, can
be divided inton2 triangles, each of(1/n)th the size. Each of these maps
into a ’near-triangle’ with discrepancy of order1/n3. These sum to give a
total discrepancy of ordern2/n3 = 1/n. Sincen can be taken arbitrarily
large the discrepancy must in fact be 0.

1. If
|X|, |Y |, |Z| < d

then
eXeY = eZ =⇒ Z = log(eXeY ).

But

eXeY = (I + X + X2/2)(I + Y + Y 2/2) + O(d3)

= I + X + Y + XY + X2/2 + Y 2/2 + O(d3).
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Hence

Z = log(eXeY )

= X + Y + XY + X2/2 + Y 2/2− (X + Y )2/2 + O(d3)

= X + Y + [X, Y ]/2 + O(d3).

Since by hypothesisf preserves the Lie product it follows that

fZ = fX + fY + [fX, fY ]/2 + O(d3).

Hence (working backwards)

efXefY = efZ + O(d3).

2. We have not yet said exactly what we mean by the discrepancyD(R) of a
relationR on G. It is convenient to defineD(R) to be the sup-norm of the
gap inH:

D(R) = |F (R)|0,

where

|T |0 = sup
x 6=0

|Tx|
|x|

.

This has the advantage, for our present purpose, that

|P−1TP |0 = |T |0.

This means that if we take a different vertex on a loop as starting-point, or
equivalently, take a conjugate form

eXieXi−1 . . . eX1eXr . . . eXr+1 = I

of the given relation, the discrepancy remains the same.

It is clear that any triangle within the logarithmic zone can be shrunk to a
point within that zone. In fact, such a deformation can be brought about by a
sequence of ‘elementary deformations’, each consisting either of replacing
the path round 2 sides of a small exponential triangle by the 3rd side, or
conversely replacing 1 side by the other 2.

More precisely, if we start with a triangle of side< d then this can be
divided inton2 exponential triangles of side< d/n; and so the original
triangle can be shrunk to a point by at mostn2 elementary deformations,
each involving an exponential triangle of side< d/n.
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Actually, we really need the converse constuction. Starting from the trivial
relationI = I, we can re-construct the original triangle by a sequence of
elementary deformations, each involving a small triangle of side< d/n.

The discrepancy caused by each of these will be of order1/n3 by (1). This
perhaps calls for clarification. We can assume that each of these deforma-
tions involves the last edge of the loop, since the deformation is unaltered if
we change our base-vertex. Suppose then the relation

R = eXr . . . eX1 = I

is “deformed” into
eY eZeXr−1 . . . eX1 ,

where
eY eZ = eXr .

The new relation can be written

TR = (eY eZe−Xr)(eXr . . . eX1) = I.

The corresponding gap inH is

F (TR)− I = F (R)(F (T )− I) + (F (R)− I);

and so
D(TR) ≤ |F (R)|0D(T ) + D(R).

This shows (by induction) both thatF (R) is bounded, and that the descrep-
ancy changes at each deformation by an amount of order1/n3.

In sum therefore then2 deformations will cause a change in the discrepancy
of order 1/n, ie an arbitrarily small change. Since the discrepancy was
initially 0 (with the triangle shrunk to a point), it must be 0 finally, ie

eXeY = eZ =⇒ efXefY = efZ .

C

Corollary 8.1 There is an open neighbourhoodU of I in G such that every expo-
nential loop inU maps into a loop inH.

Lemma 8.2 SupposeG andH are linear groups; and supposeG is simply con-
nected. Then every local homomorphism

U → H,

whereU is a neighbourhood ofI in G, has a unique extension to the whole ofG.
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Proof of LemmaB Any exponential path

etXg

can be split into arbitrarily small sub-paths, with vertices

g, eX/mg, e2X/mg, . . . , eXg.

It follows that we can always suppose the edges of the various loops we consider
small enough to come within the ambit of Lemma 1.

Any loop can be shrunk to a point, by hypothesis. We can suppose this shrink-
age occurs as a sequence of small shrinks,

Pr . . . P0 7→ P ′
r . . . P ′

0

say. These steps can in turn be split into a number of sub-steps, each involving a
small rectangular deformation, of the form

Pr . . . Pi+1PiP
′
i . . . P ′

0P0 → Pr . . . Pi+1P
′
i+1P

′
i . . . P ′

0P0

Since by the Corollary to Lemma 1 each such deformation leaves the discrepancy
unchanged, and since the discrepancy finally vanishes, it must vanish initially, ie

eX1 . . . eXr = I =⇒ efX1 . . . efXr = I.

C J

Proposition 8.2 Suppose the linear groupG is simply connected. Then every
representationα of LG can be lifted uniquely to a representationα′ of G such
that

α = Lα′.

Proof I If α is real then by Proposition 1 the Lie algebra homomorphism

α : LG→ gl(n, R)

can be lifted (uniquely) to a group homomorphism

α′ : G→ GL(n, R).

On the other hand, supposeα is complex, ie a complex Lie algebra homomor-
phism

α : CLG→M(n, C).

SinceLG < CLG, this restricts to a real Lie algebra homomorphism

α : LG→ gl(n, C);

and the result again follows by Proposition 1.J
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Corollary 8.2 1. SupposeL is a complex Lie algebra. If there exists a simply
connected compact Lie groupG such that

L = CLG

then every representation ofL is semisimple.

2. SupposeG is a linear group. If there exists a simply connected compact
linear groupH with the same complexification,

CLG = CLH,

then every representation ofG is semisimple.

Proof I

1. Every representation ofL arises from a representation ofG, by Proposition
2, which we know from Part B is semisimple.

2. Every representation ofG arises from a representation ofL = CLG, which
by (1) is semisimple.

J

Example: Every representation of the groupSL(2, R) is semisimple, since its Lie
algebrasl(2, R) has the same complexification as the Lie algebrasu(2) of the
simply connected compact linear groupSU(2).



Chapter 9

The Representations ofsl(2, R)

As we know,SU(2) andSO(3) share the same Lie algebra; and this algebra
has the same complexification, and so the same representation theory, as that
of SL(2, R). So in studying the Lie theory of any one of these groups we are
in effect studying all three; and we can choose whichever is most convenient
for our purpose. This turns out to be the algebrasl(2, R).

Proposition 9.1 The Lie algebra

sl(2, R) = 〈H, E, F : [H, E] = 2E, [H, F ] = −2F, [E, F ] = H〉

has just 1 simple representation (overC) of each dimension1, 2, 3, . . .. If we
denote the representation of dimension2j + 1 by Dj (for j = 0, 1/2, 1, 3/2, . . .)
then

Dj = 〈ej, ej−1, . . . , e−j〉,

with
Hek = 2kek,
Eek = (j − k)ek+1,
Fek = (j + k)ek−1.

for k = j, j − 1, . . . ,−j, settingej+1 = e−j−1 = 0.

Remark:Note that we have already proved the existence and uniqueness of the
Dj in Part II. For

1. The representations ofsl(2, R) andsu(2) are in 1–1 correspondence, since
these algebras have the same complexification;

2. The representations ofsu(2) andSU(2) are in 1–1 correspondence, since
the groupSU(2) is simply-connected;

9–1
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3. We already saw in Part II thatSU(2) possessed a unique representationDj

of dimension2j + 1 for each half integerj = 0, 1/2, 1, . . ..

However, we shall re-establish this result by purely algebraic means.

Proof I Supposeα is a simple representation ofsl(2, R) in the (finite-dimensional)
complex vector spaceV .

To fit in with our subsequent nomenclature, we shall term the eigen-values of
H (or rather, ofαH) the weightsof the representationα; and we shall call the
corresponding eigen-vectorsweight-vectors.We denote theweight-spaceformed
by the weight-vectors of weightω by

W (ω) = {v ∈ V : Hv = ωv}.

Supposeω is a weight ofα; say

He = ωe.

(Note thatα has at least 1 weight, since a linear transformation overC always
possesses at least 1 eigen-vector.) Since

[H, E] = 2E,

we have

(HE − EH)e = 2Ee

=⇒ HEe− ωEe = 2Ee

=⇒ H(Ee) = (ω + 2)Ee.

Thus eitherEe = 0; or elseEe is also a weight-vector, but of weightω + 2. In
any case,

e ∈ W (ω) =⇒ Ee ∈ W (ω + 2).

Similarly,

(HF − FH)e = [H, F ]e = −2Fe

=⇒ H(Fe) = (ω − 2)Fe.

Thus eitherFe = 0; or elseFe is also a weight-vector, but of weightω − 2. In
any case,

e ∈ W (ω) =⇒ Fe ∈ W (ω − 2).

This is sometimes expressed by saying thatE is a “raising operator”, which raises
the weight by 2; whileF is a “lowering operator”, which lowers the weight by 2.
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A finite-dimensional representation can only possess a finite number of weights,
since weight-vectors corresponding to distinct weights are necessarily linearly in-
dependent. Letµ be the maximal weight, and lete be a corresponding weight-
vector. Then

Ee = 0,

sinceµ + 2 is not a weight.
Repeated action one by F will take us 2 rungs at a time down the “weight-

ladder”, giving us weight vectors

e, Fe, F 2e, . . .

of weights
µ, µ− 2, µ− 4, . . .

until finally the vectors must vanish (since there are only a finite number of
weights); say

F 2je 6= 0, F 2j+1e = 0,

for some half-integerj. Set

vµ = e, vµ−2 = Fe, . . . , vµ−4j = F 2je;

and let
vω = 0 if ω > µ or ω < µ− 4j.

Then

Hvω = ωvω,

Fvω = vω−2

for ω = µ, µ− 2, . . .
SinceF takes us 2 rungs down the weight-ladder, whileE takes us 2 rungs

up,EF andFE both leave us at the same level:

v ∈ W (ω) =⇒ EFv, FEv ∈ W (ω).

We shall show that these 2 new weight-vectors are in fact the same, up to scalar
multiples, as the one we started from, ie

EFvω = a(ω)vω, FEvω = b(ω)vω.

Notice that each of these results implies the other, since

(EF − FE)vω = [E, F ]vω

= Hvω

= ωvω.
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So eg the second result follows from the first, with

b(ω) = a(ω)− ω.

At the top of the ladder,
FEvµ = 0.

Thus the result holds there, with

b(µ) = 0, ie a(µ) = µ.

On the other hand, at the bottom of the ladder,

EFvµ−4j = 0.

So the result holds there too, with

a(µ− 4j) = 0.

We establish the general result by induction, working down the ladder. Sup-
pose it proved for

vµ, vµ−2, . . . , vω+2.

Then

FEvω = FEFvω+2

= Fa(ω + 2)vω+2

= a(ω + 2)vω

Thus the result also holds forvω, with

b(ω) = a(ω + 2),

ie a(ω) = a(ω + 2) + ω.

This establishes the result, and also givesa(ω) by recursion:

a(µ) = µ,

a(µ− 2) = a(µ) + µ− 2

a(µ− 4) = a(µ− 2) + µ− 4,

. . .

a(ω) = a(ω + 2) + ω.

Hence

a(ω) = m + (m− 2) + . . . + ω

= (m− ω + 2)(m + ω)/4,
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while

b(ω) = a(ω)− ω

= (m− ω)(m + ω + 2)/4.

At the bottom of the ladder,

a(µ− 4j) = 0 ie (2j + 1)(µ− 2j) = 0.

Hence
µ = 2j.

Thus the weights run from+2j down to−2j; and

a(ω) = (j − ω/2 + 1)(j + ω/2), b(ω) = (j − ω/2)(j + ω/2 + 1).

In particular,

Evω = EFeω+2

= a(ω + 2)eω+2

= (j − ω/2)(j + ω/2 + 1)eω+2.

The space
U = 〈v2j, v2j−2, . . . , v−2j〉

spanned by the weight-vectors is stable underH, E andF . and is therefore the
whole ofV , since the representation was supposed simple. On the other handU is
simple; for any subspace stable undersl(2, R) must contain a weight-vector. This
must be a scalar multiple of one of thevω; and all the others can then be recovered
by the action ofE andF .

This establishes the result; it only remains to “prettify” the description ofDj,
by

• Indexing the basis weight-vectors byκ = ω/2 in place ofω;

• Renormalising these vectors (now christenedeκ) so that

Feκ = (j + κ)eκ−1.

It then follows that

(j + κ + 1)Eeκ = EFeκ+1

= a(κ + 1)eκ+1

= (j − κ)(j + κ + 1)eκ+1

ie Eeκ = (j − κ)eκ+1,

as stated.
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J

Remark:Note in particular that all the weights of all the representations ofsl(2, R)
areintegral. The Lie algebra

su(2) = 〈H, U, V : [H, U ] = V, [H, V ] = −U, [U, V ] = H〉

has just 1 simple representation (overC) of each dimension1, 2, 3, . . . If we denote
the representation of dimension2j + 1 by Dj (for j = 0, 1, 1, 3, . . .) then

Dj = 〈ej, ej−1, . . . , e−j〉,

with

Heκ = 2κeκ,

Ueκ = (j − κ)eκ+1 + (j + κ)eκ−1,

V eκ = i(j − κ)eκ+1 − i(j + κ)eκ−1.

Proposition 9.2 Every representation ofsl(2, R) is semisimple.

Proof I The representations ofsl(2, R) are in 1–1 correspondence with the rep-
resentations ofsu(2), since these 2 Lie algebras have the same complexification.

Moreover, the representations ofsu(2) are in 1-1 correspondence with the
representations of the groupSU(2), sinceSU(2) is simply-connected.

But the representations ofSU(2) are all semisimple, since this group is com-
pact. So therefore are the representations ofsu(2), and hence ofsl(2, R). J

Proposition 9.3 For all half-integersj, k,

DjDk = Dj+k + Dj+k−1 + . . . + D|j−k|

Remark:We have already proved this result—or rather the corresponding result
for SU(2)—using character theory. But it is instructive to give an algebraic proof.

Proof I We know thatDjDk is semisimple, and so a sum ofDj ’s.

Lemma 9.1 Supposeα, α′ are representations ofsl(2, R) in V, V ′; and suppose
e, e′ are weight-vectors inV, V ′ of weightsω, ω′ respectively. Then the tensor
producte⊗ e′ is a weight-vector ofαα′, with weightω + ω′.
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Proof of LemmaB By the definition of the action of a Lie algebra on a tensor

product,

H(e⊗ e′) = (He)⊗ e′ + e⊗ (He′)

= (ω + ω′)(e⊗ e′)

C

Corollary 9.1 If Ω is the set of weights of the representationα, andΩ′ that ofα′,
then the set of weights of the product representationαα′ is the sum-set

Ω + Ω′ = {ω + ω′ : ω ∈ Ω, ω′ ∈ Ω′}.

Remark:When we speak of “sets” of weights, it is understood that each weight
appears with a certain multiplicity.
Proof of Proposition 3 (resumed). Let us denote the weight-ladder joining+2j to
−2j by

L(j) = {2j, 2j − 2, . . . ,−2j}.
By the Corollary above, the weights ofDjDk form the sum-set

L(j) + L(k).

We must express this set as a union of ladders. (Nb sum-sets must not be confused
with unions.)

A given set of weights (with multiplicities) can be expressed in at most 1 way
as a union of ladders, as may be seen by successively removing ladders of maximal
length.

To express the sum-set above as such a union, note that

L(k) = {2k,−2k} ∩ L(k − 1).

We may assume thatk ≤ j. Then

L(j) + {2k,−2k} = L(j + k) ∩ L(j − k).

Hence

L(j) + L(k) = L(j) + ({2k,−2k} ∩ L(k − 1))

= (L(j) + 2k,−2k) ∩ (L(j) + L(k − 1))

= L(j + k) ∩ L(j − k) ∩ (L(j) + L(k − 1)).

It follows by induction onk that

L(j) + L(k) = L(j + k) ∩ L(j + k − 1) ∩ . . . ∩ L(j − k).

But this is the weight-set of

Dj+k + Dj+k−1 + . . . + Dj−k.

The result follows. J



Chapter 10

The Representations ofsu(3)

The representation theory ofsl(2, R) (andsu(2)) outlined above provides both
a model, and a starting-point, for the representation theory of the much larger
class of groups considered below. (We cannot at the moment define this class
precisely—but it includes the whole of the “classical repertoire” catalogued in
Chapter 1.)

As an illustration of the techniques involved, we take a quick look at the rep-
resentations ofsl(3, R). (This informal account will be properly “proofed” later.)
Recall that sincesu(3) has the same complexification assl(3, R), we are at the
same time studying the representations of this algebra.

The only innovation in passing fromsl(2, R) to sl(3, R) is that we must now
consider weights with respect, not just to a single elementH, but to a whole
commuting family.

In general, suppose
H = {H1, H2, . . . , Hr}

is a family of commuting operators:

[Hi, Hj] = HiHj −HjHi = 0 ∀i, j.

Then we say that a vectore is aweight-vector(always with respect to the given
family H) if

Hie = ωie for i = 1, . . . , r.

Theweightof e is ther-tuple

ω = (ω1, . . . , ωr)

We denote the space formed by the weight-vectors of weightω (together with the
vector 0) by

W (ω1, . . . , ωr) = {v ∈ V : Hiv = ωiv for i = 1, . . . , r}.

10–1
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Note that a commuting family always possesses at least 1 weight-vector. For
certainlyH1 possesses an eigen-vector, with eigen-valueω1, say. But then the
eigen-space

U = {v ∈ V : H1v = ω1v}

is non-trivial; and it is moreover stable underH2, . . . , Hr, since

v ∈ U =⇒ H1Hiv = HiH1v = ω1Hiv

=⇒ Hiv ∈ U.

We may therefore suppose, by induction onr, thatH2, . . . , Hr, acting onU , pos-
sess a common eigen-vector; and this will then be a common eigen-vector of
H1, . . . , Hr, ie a weight-vector of the familyH.

Example: Let us take an informal look at the representation theory ofsl(3, R).
Although this algebra is 8-dimensional, it is convenient to work with the following
9-member spanning set rather than a basis, so that we can preserve the symmetry
between the 3 matrix coordinates:

H =

 0 0 0
0 1 0
0 0 −1

 J =

 −1 0 0
0 0 0
0 0 1

 K =

 1 0 0
0 −1 0
0 0 0



A =

 0 0 0
0 0 1
0 0 0

 B =

 0 0 0
0 0 0
1 0 0

 C =

 0 1 0
0 0 0
0 0 0



D =

 0 0 0
0 0 0
0 1 0

 E =

 0 0 1
0 0 0
0 0 0

 F =

 0 0 0
1 0 0
0 0 0


Notice that

H + J + K = 0;

this being the only linear relation between the 9 elements.
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The Lie products are readily computed:

[H, A] = 2A [H, B] = −B [H, C] = −C
[J, A] = −A [J, B] = 2B [J, C] = −C
[K, A] = −A [K, B] = −B [K, C] = 2C

[H, D] = −2D [H, E] = E [H, F ] = F
[J, D] = D [J, E] = −2E [J, F ] = F
[K, D] = D [K, E] = E [K, F ] = −2F

[A, D] = H [B, D] = 0 [C, D] = 0
[A, E] = 0 [B, E] = J [C, E] = 0
[A, F ] = 0 [B, F ] = 0 [C, F ] = K

[B, C] = D [C, A] = E [A, B] = F
[E, F ] = −A [F, D] = −B [G, E] = −C.

The 3 elements(H, J,K) form a commuting family (since they are diagonal).All
weights and weight-vectors will be understood to refer to this family.

Notice that if(x, y, z) is such a weight then

H + J + K = 0 =⇒ x + y + z = 0.

Thus the weights all lie in the plane section

{(x, y, z) ∈ R3 : x + y + z = 0}

of 3-dimensional space.
We shall make considerable use of the natural isomorphism between the fol-

lowing 3 sub-algebras andsl(2, R):

L1 = 〈H, A,D〉, L2 = 〈J, B, E〉, L3 = 〈K,C, F 〉 ←→ sl(2, R).

In particular, suppose(x, y, z) is a weight of(H, J,K). Thenx is a weight of
L1 = 〈H, A,D〉. But we saw above that all the weights ofsl(2, R) are integral.
It follows that x is an integer. And so, similarly, arey andz. Thus all weights
(x, y, z) areinteger triples.

Now supposeα is a simple representation ofsl(3, R) in V ; and supposee is a
weight-vector of weight(x, y, z). Then

(HA− AH)e = [H, A]e = 2Ae

ie
H(Ae) = (x + 2)Ae.
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Similarly

J(Ae) = (y − 1)Ae,

K(Ae) = (z − 1)Ae.

Thus

e ∈ W (x, y, z) =⇒ Ae ∈ W (x + 2, y − 1, z − 1),

e ∈ W (x, y, z) =⇒ Be ∈ W (x− 1, y + 2, z − 1)

=⇒ Ce ∈ W (x− 1, y − 1, z + 2)

=⇒ De ∈ W (x− 2, y + 1, z + 1)

=⇒ Ee ∈ W (x + 1, y − 2, z + 1)

=⇒ Fe ∈ W (x + 1, y + 1, z − 2).

Our argument is merely a more complicated version of that forsl(2, R). Let us
define amaximalweight to be one maximisingx. Then if e is a corresponding
weight-vector we must have

Ae = 0, Ee = 0, Fe = 0.

Our aim is to construct a stable subspace by acting one with the operatorsA, B, C,D, E, F .
In fact the subspace spanned by the weight-vectors

W (j, k) = BjCke

is stable undersl(3, R), ie for each operatorX ∈ A, B, C,D, E, F

XW (j, k) = xW (j′, k′)

for some scalarx, and appropriatej′, k′.
This may readily be shown by induction onj + k. As an illustration, take

X = A, and supposej > 0. Then

AW (j, k) = ABW (j − 1, k)

= BAW (j − 1, k) + [A, B]W (j − 1, k),

and the inductive hypothesis may be applied to each term.
We conclude that there is at most 1 simple representation with a given maximal

weight.
A rather different point of view throws an interesting light on theweight-

diagram, ie the set of weights, of a representation. Consider the restriction of
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the representation toL1. From the representation theory ofsl(2, R), the weights
divide intoL1-ladders

(x, y, z), (x− 2, y + 1, z + 1), . . . , (−x, y + x, z + x).

Sincex + y + z = 0, this ladder in fact joins

(x, y, z) to (−x,−z,−y),

and is sent into itself by the reflection

R : (x, y, z) 7→ (−x,−z,−y).

in the line
x = 0, y + z = 0.

It follows that the whole weight-diagram is sent into itself byR. Similarly (taking
L2 andL3 in place ofL1), the diagram is symmetric under the reflections

S : (x, y, z) 7→ (−z,−y,−x), T : (x, y, z) 7→ (−y,−x,−z);

and so under the groupW formed by the identity 1,R, S, T and the compositions

ST : (x, y, z) 7→ (z, x, y) andTS : (x, y, z) 7→ (y, z, x).

We note that, starting from any non-zero weightω, just 1 of the 6 transforms
gω (with g ∈ W ) of a given non-zero weightω lies in the “chamber”

{(x, y, z) : x + y + z = 0, x > 0, y < 0, z < 0}.

Our argument shows that, starting from any integer tripleω in this chamber, we
can construct a weight-diagram havingω as maximal weight, by taking the 6
transforms ofω, and filling in all the ladders that arise.

In this way it may be seen that there is indeed a simple representation of
sl(3, R) having a given integer triple(x, y, z), with x > 0, y < 0, z < 0, as
maximal weight.

In conclusion, we note thatevery representation ofsl(3, R) is semisimple. For
the restrictions toL1, L2 andL3 are semisimple, from the representation theory of
sl(2, R). Moreover, from that theory we see thatH, J andK are each diagonalis-
able.

But a commuting family of matrices, each of which is diagonalisable, are si-
multaneously diagonalisable. (That follows by much the same argument—restricting
to the eigenspaces of one of the operators—used earlier to show that such a fam-
ily possesses at least 1 weight-vector.) Thus every representation ofsl(3, R) is
spanned by its weight-vectors. The semisimplicity of the representation follows
easily from this; for we can successively add simple parts, choosing at each stage
the simple representation corresponding to a maximal remaining weight—until
finally the sum must embrace the whole representation.



Chapter 11

The Adjoint Representation

Definition 11.1 The adjoint representationad of the Lie algebraL is the repre-
sentation inL itself defined by

ad X(Y ) = [X, Y ].

Remark:We should verify that this does indeed define a representation ofL. It is
clearly bilinear; so it reduces to verifying that

ad[X,Y ] = ad X ad Y − ad Y ad X,

ie
[[X, Y ], Z] = [X, [Y, Z]]− [Y, [X, Z]].

for all Z ∈ L. But this is just a re-arrangement of Jacobi’s identity.

11–1



Chapter 12

Compactness and the Killing Form

As we know, every representation of a compact group carries an invariant
positive-definite quadratic form. When we find that the adjoint representa-
tion of a Lie algebra also carries an invariant form, it is natural to ask—at
least in the case of a compact linear group—whether these are in fact the
same. If that is so, then we should be able to determine the compactness of
a linear group from its Lie algebra.

Definition 12.1 Supposeα is a representation of the Lie algebraL in the vector
spaceV . Then the trace form ofα is the quadratic form onL defined by

T (X) = tr
(
(αX)2

)
.

In particular, the Killing form ofL is the trace form of the adjoint representa-
tion, ie the quadratic form onL defined by

K(X) = tr
(
(ad X)2

)
.

Theorem 12.1 SupposeG is a connected linear group.

1. If G is compact, then the trace form of every representation ofLG is neg-
ative (ie negative-definite or negative-indefinite). In particular the Killing
form ofLG is negative:

G compact=⇒ K ≤ 0.

2. If the Killing form onLG is negative-definite, thenG is compact:

K < 0 =⇒ G compact.

12–1
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Proof I 1. SupposeG is compact; and supposeα is a representation ofG in
V . Then we can find a positive-definite formP (v) on V invariant underG—and
therefore also underLG. By change of coordinates we may suppose that

P (x1, x2, . . . , xn) = x2
1 + x2

2 + · · ·+ x2
n.

In other words,α(G) ⊂ O(n). But then

α′(LG) ⊂ o(n) = {X ∈M(n, R) : X ′ = −X},

whereα′ = Lα. Thus
X2 = −X ′X,

where “by abuse of notation” we writeX for α′X; and so

K(X) = tr(X2) = − tr(X ′X) ≤ 0.

2. It is much more difficult to establish the converse. SupposeK < 0.

Lemma 12.1 If the Killing formK of the Lie algebraL is non-singular, then the
Lie algebra homomorphism

ad : L → der(L)

is in fact an isomorphism.

Proof I Firstly, ad is injective. For

X ∈ ker(ad) =⇒ ad(X) = 0

=⇒ K(X) = 0;

and by hypothesisK(X) = 0 only if X = 0.
Secondly,ad is surjective, ie every derivation ofL is of the formad(D), for

someD ∈ L.
For supposed ∈ der(L), ie d : L → L is a linear map satisfying

d([X, Y ]) = [d(X), Y ] + [X, d(Y )].

Consider the map
X → tr ((ad X)d) .

SinceK is non-singular, we can findD ∈ L such that

tr ((ad X)d) = K(X, D) = tr ((ad X)(ad D)) .
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Settingd′ = d− ad(D),
tr ((ad X)d′) = 0

for all X ∈ L.
Now

ad(dY ) = d(ad Y )− (ad Y )d = [d, ad Y ]

for any derivationd of L, since

(ad(dY )) X = [dY,X]

= d ([Y,X])− [Y, dX]

= d ((ad Y )X)− (ad Y )(dX)

= [d, ad Y ](X).

Hence, substitutingd′ for d,

K(X, d′Y ) = tr ((ad X) ad(d′Y ))

= tr (ad X)[d′, ad Y ])

= tr ((ad X)d′(ad Y ))− tr ((ad X)(ad Y )d′)

= tr ((ad Y ad X − ad X ad Y )d′)

= − tr (ad[X, Y ]d′)

= 0.

We conclude thatd′Y = 0 for all Y ; and sod′ = 0, ie d = ad D. J

Corollary 12.1 If the linear groupG is connected, and its Killing formK < 0,
then the homomorphism

Ad : G→ Aut(LG)0

is a covering.

Proof I The Lie algebra homomorphism associated to this group homomorphism
is just

ad : LG→ L (Aut(LG)) = der(LG).

J

We may assume, after suitable choice of basis, that

K(x1, . . . , xn) = −x2
1 − · · · − x2

n.

Thus
Aut(LG) ⊂ O(n)

is compact. The result will therefore follow if we can show thatZ = ker(Ad) is
finite.

First we establish thatZ is finitely-generated.
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Lemma 12.2 Suppose
θ : G→ G1

is a covering of a compact groupG1 by a connected linear groupG. Then we can
find a compact neighbourhoodC of I in G such that

θ(C) = G1.

Proof I Set
E = {g = eX : X ∈ LG, ‖X‖ ≤ 1}.

SinceG is connected, it is generated by the exponentialseX ; thus

G = E ∪ E2 ∪ E3 ∪ . . .

Hence
G1 = θ(E) ∪ θ(E2) ∪ . . .

SinceG1 is compact,θ(Er) = G1 for somer. We can therefore setC = Er. J

Corollary 12.2 With the same assumptions,

G = CZ,

whereZ = ker θ.

Lemma 12.3 Suppose
θ : G→ G1

is a covering of a compact groupG1 by a connected linear groupG. Thenker θ
is finitely-generated.

Proof I From above,G = CZ, whereC is compact andZ = ker θ. ThenC2 is
compact, and so we can find a finite subset{z1, . . . , zr} ⊂ Z such that

C2 = Cz1 ∪ · · · ∪ Czr.

It follows that
Cr ⊂ C〈z1, . . . , zr〉

for all r. SinceG is connected, and the union
⋃

Cr is an open subgroup ofG,

G =
⋃

Cr = C〈z1, . . . , zr〉.

Consequently
Z = (C ∩ Z)〈z1, . . . , zr〉.

SinceC ∩Z is finite (being compact and discrete), we conclude thatZ is finitely-
generated. J
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Lemma 12.4 Suppose
θ : G→ G1

is a covering of a compact groupG1 by a connected linear groupG, with kernel
Z. Then any homomorphism

f : Z → R

can be extended to a homomorphism

f : G→ R.

Proof I With the notation above, letG = CZ, with C compact. Let

u : G→ R

be a continuous non-negative function with compact support containingC:

u(c) > 0 for all c ∈ C.

If we define the functionv : G→ R by

v(g) =
u(g)∑

z∈Z u(gz)

then ∑
z∈Z

v(gz) = 1

for eachg ∈ G.
Now set

t(g) =
∑
z

v(gz)f(z).

Note that

t(gz) =
∑
z′

v(gzz′)f(z′)

=
∑
z′

v(gz′)f(z′z−1)

=
∑
z′

v(gz′)f(z′)−
∑
z′

v(gz′)f(z)

= t(g)− f(z).

Let us define the functionT : G×G→ R by

T (g, h) = t(gh)− t(g).
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Then

T (gz, h) = t(ghz)− t(gz)

= t(gh)− f(z)− t(g) + f(z)

= t(gh)− t(g)

= T (g, h).

ThusT (g, h) depends only onθ(g) andh; so we have a functionS : G1×G→ R
such that

T (g, h) = S(θg, h).

We can now define the sought-for function by integratingS overG1:

F (g) =
∫

G1

S(g1, g)dg1.

To verify thatF has the required properties, we note in the first place that

T (g, z) = t(gz)− t(g)

= f(z).

Thus
S(g1, z) = f(z)

for all g1 ∈ G1, and so
F (z) = f(z).

Secondly,

T (g, hh′) = t(ghh′)− t(g)

= t(ghh′)− t(gh) + t(gh)− t(g)

= T (gh, h′) + T (g, h).

Hence
S(g1, hh′) = S (g1θ(h), h′) + S (g1, h) .

for all g1 ∈ G1, and so on integration

F (hh′) = F (h) + F (h′).

J

We have almost reached the end of our marathon! We want to show that
Z = ker(Ad) is finite. Suppose not. We know thatZ is finitely-generated. Thus
by the structure theory of finitely-generated abelian groups,

Z = Zr × F,
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whereF is finite. So ifZ is not finite, it has a factorZ; and the natural injection
Z→ R extends to a homomorphism

f : Z → R.

By our last lemma, this in turn extends to a homomorphism

F : G→ R.

SinceG is connected, the image of this homomorphism is a connected subgroup
of R containingZ, which must beR itself, ieF is surjective.

The corresponding Lie algebra homomorphism

LF : LG→ LR

is therefore also surjective; so its kernel is ann− 1-dimensional ideal ofLG. We
can use the non-singular Killing form to construct a complementary 1-dimensional
ideal〈J〉.

LG = ker(LF )
⊕
〈J〉.

But if X ∈ ker(LF ),

[J, X] ∈ ker(LF ) ∩ 〈J〉 = {0},

since both are ideals. On the other hand,[J, J ] = 0; so

[J, X] = 0

for all X ∈ LG; and soad(J) = 0, and in particular

K(J, X) = 0

for all X, contradicting the non-singularity ofK. J

Remark:In view of the length and complexity of the proof above, a brief resumé
may be in place.

• We start with the homomorhism

Ad : G→ Aut(LG)0.

• We want to show that this is a covering. In Lie algebra terms, we have to
establish that the homomorphism

ad : LG→ L(AutLG) = der(LG)

is an isomorphism. This is in fact true for any Lie algebraL with non-
singular Killing form.
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• Injectivity follows at once from the fact that

ker(ad) = ZL,

since the radical of the Killing form ofL containsZL:

X ∈ ZL =⇒ K(X, Y ) = 0 for all Y.

• Surjectivity is more difficult. We have to show that every derivation ofL is
of the formad(X) for someX ∈ L.

WhenL = LG, this is equivalent to showing that every automorphism of
LG in the connected component of the identity is of the formX 7→ gXg−1

for someg ∈ G. This in turn implies that every automorphism ofG in the
connected component of the identity is inner.

However, that is of little help in proving the result. Our proof was somewhat
formal and unmotivated. The result is perhaps best understood in the context
of the cohomology of Lie algebras and their modules (or representations), In
this context, the derivations ofL consititute the 1-cocycles of theL-module
L, while the derivations of the formad(X) form the 1-coboundaries:

Z1(L) = der(L), B1(L) = ad(L).

Thus the result reflects the fact thatH1(L) = 0 for a semisimple Lie algebra
L.

• Having established that

Ad : G→ G1 = Aut(G)0

is a covering, it remains to be shown that—ifK < 0—this covering is finite.

• The fact thatK < 0 implies thatG1 is compact. That is not sufficient
in itself—a compact group can have an infinite covering, as the covering
R→ T of the torus shows.

• Again, our proof thatker(Ad) is finite was somewhat formal and unmoti-
vated. And again, the result is probably best understood in the context of
cohomology—in this case the cohomology of groups.

For G is a central extension ofG1; and such extensions correspond to the
second cohomology groupH2(G1). Now if K is non-singular,H2(G1, R) =
0; from which it follows that every essential extension ofG1 is finite.

Proposition 12.1 SupposeG is a compact linear group. Then

LG = [LG,LG]⊕ ZLG.

Moreover, the Killing form vanishes onZLG, and is positive-definite on[LG,LG].
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