Chapter 1

Group Representations

Definition 1.1 A representatiorx of a groupG in a vector spacéd’ overk is
defined by a homomorphism

a:G— GL(V).
Thedegreeof the representation is the dimension of the vector space:

deg o = dimy, V.

Remarks:

1. Recall thalGL(V')—the general linear group dri—is the group of invert-
ible (or non-singular) linear mags V' — V.

2. We shall be concerned almost exclusively with representatiofisitef de-

gree that is, infinite-dimensionalector spaces; and these will almost al-

ways be vector spaces ov@ror C. Therefore, to avoid repetition, let us
agree to use the term ‘representation’ to meggresentation of finite de-
gree overR or C, unless the contrary is explicitly stated.

Furthermore, in this first Part we shall be concerned almost exclusively with

finitegroups; so let us also agree that the term ‘group’ will migate group
in this Part, unless the contrary is stated.

3. Suppos€ey, ..., e,} is a basis fol/. Then each linear map: V' — V' is
defined (with respect to this basis) byarx n-matrix T". Explicitly,

te; = Z Tije;;
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or in terms of coordinates,

T X
— T

Tn Tn

Thus a representation iri can be defined by a homomorphism
a: G — GL(n, k),

whereGL(n, k) denotes the group of non-singutax n-matrices ovek. In
other wordsg is defined by giving matriced(g) for eachg € G, satisfying
the conditions

A(gh) = A(g)A(h)

forall g, h € G; and also
Ale) = 1.

. There is another way of looking at group representations which is almost
always more fruitful than the rather abstract definition we started with.

Recall that a group is said axton the setX if we have a map
GxX—X:(g,2)— gz
satisfying

@) (gh)x) = g(hx),
(b) ex = .

Now supposeX = V' is a vector space. Then we can say thacts linearly
onV if in addition

(€) glu+v) = gu+ gv,
(d) g(pv) = p(gv).

Each representatiomof G in V' defines a linear action @ onV/, by

gv = a(g)v;

and every such action arises from a representation in this way.

Thus the notions ofepresentatiorandlinear actionare completely equiv-
alent. We can use whichever we find more convenient in a given case.
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5. There are two other ways of looking at group representations, completely
equivalent to the definition but expressing slightly different points of view.

Firstly, we may speak of the vector spake with the action ofG on it.

as aG-space. For those familiar with category theory, this would be the
categorical approach. Representation theory, from this point of view, is the
study of the category af-spaces and’-maps, where &-map

t:U—-V
from oneG-space to another is a linear map preserving the actidn, oé
satisfying
t(gu) = g(tu) (9 € G,ueU).

6. Secondly, and finally, mathematical physicists often speak—strikingly—of
the vector spac®& carryingthe representation.

Examples:

1. Recall that the dihedral group, is the symmetry group of a squafe3C' D

Figure 1.1: The natural representation/of

(Figure??). Let us take coordinatgsz, Oy as shown through the centie
of the square. Then

_ 2 .3
D4_{€7T7T » T ,C,d,l’,y},

wherer is the rotation abou®d throughr /2 (sendingA to B), whilec, d, x, y
are the reflections idlC, BD, Ox, Oy respectively.
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By definition a symmetry; € D, is an isometry of the plan&? sending
the square into itself. Evidently must send) into itself, and so gives rise
to a linear map
A(g) : R? —» R

The map

g~ Alg) € GL(2,R)
defines a 2-dimensional representatioaf D, over R. We may describe
this as thenatural 2-dimensional representation b¥;.

(Evidently the symmetry grou@ of any bounded subsétc E™ will have
a similar ‘natural’ representation iR™.)

The representatiopis given in matrix terms by

Y S U A U S A B a0

01/ 1 0 /) 0 -1 )’ “1 0/
(oY (0 (1o (-t
¢ 10) -1 0 7" 0o -1 )Y 0 1

Each group relation is represented in a corresponding matrix equation, eg

= (D)5 D)= (7 )

The representatiop is faithful, ie the homomorphism defining it is injec-
tive. Thus a relation holds i®, if and only if the corresponding matrix
equation is true. However, representations are not necessarily faithful, and
in general the implication is only one way.

Every finite-dimensional representation can be expressed in matrix form in
this way, after choosing a basis for the vector space carrying the representa-
tion. However, while such matrix representations are reassuringly concrete,
they are impractical except in the lowest dimensions. Better just to keep at
the back of one’s mind that a representatonild be expressed in this way.

. Supposé&- acts on the seX':

(9,2) — gx.

Let
C(X)=C(X,k)

denote the space of maps
f: X —k
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ThenG acts linearly orC'( X )—and so defines a representatipof G—by
g9f(x) = flg~").
(We need; ! rather thary on the right to satisfy the rule
g(hf) = (gh)f.
It is fortunate that the relation
(gh)~ =n""g""

enables us to correct the order reversal. We shall often have occasion to
take advantage of this, particularly when dealing—as here—with spaces of
functions.)

Now suppose thaX is finite; say
X =A{z1,...,z,}.

Then
degp =n = || X],

the number of elements iK. For the functions

| Tifz =y,
ey(7) = { 0 otherwise.

(ie the characteristic functions of the 1-point subsets) form a basis(f&m).
Also

g€xr = Cyn,
since
gey(x) = ey<gilx)
)1 ifgle =y
o ifglz Ay
)1 ifz=gy
o ifz #+ qy
Thus

g — P(g)
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whereP = P(g) is the matrix with entries

po_ 1if y = gz,
1 0 otherwise.

Notice thatP is apermutation matrixie there is just one 1 in each row and
column, all other entries being 0. We call a representation that arises from
the action of a group on a set in this wapermutational representation

As an illustration, consider the natural action$(3) on the set{a, b, c}.
This yields a 3-dimensional representatioaf S(3), under which

010

(abc) 001
1 00

010

@) — [ 100
0 01

(These two instances actually define the representation, Gihceand(ab)
generates(3).)

. A 1-dimensionalepresentatiom of a groupG overk = RorC is just a
homomorphism
a:G — kX,

wherek* denotes the multiplicative group on the &é{ {0}. For
GL(1,k) = k*,

since we can identify thé x 1-matrix [z| with its single entryz.

We call the 1-dimensional representation defined by the identity homomor-
phism
g—1

(for all g € ) thetrivial representatiorof GG, and denote it by 1.

In a 1-dimensional representation, each group element is represented by a
number. Since these numbers commute, the study of 1-dimensional repre-
sentations is much simpler than those of higher dimension.

In general, when investigating the representations of a gfgwpe start by
determining all its 1-dimensional representations.

Recall that two elementg h € G are said to beonjugateif

h = xgx™?
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for some third element € G. Supposey is a 1-dimensional representation
of G. Then

a(h) = a(x)a(g)a(z™)
= a(z)a(g)a(z)™
= a(g)a(z)a(z)™
= a(g),

since the numbera(x), a(g) commute. It follows that a 1-dimensional
representatiors constant on each conjugacy classof

Consider the groups. This has 3 classes (we shall usually abbreviate ‘con-
jugacy class’ taclass:

{1}, {(abe), (acb)}, {(be), (ca), (ab)}.

Let us write
s = (abc), t = (be).
Then (assuming = C)

=1 = a(s)’=1= a(s) = 1,worw?

=1 = a(s)’=1= a(t) = 1.
But
tst™! = 2.

It follows that

from which we deduce that
a(s) = 1.

It follows that S5 has just two 1-dimensional representations: the trivial
representation
1:g9g—1,

and theparity representation

' 1 ifgiseven
E'QH{ ~1 if gis odd

. The corresponding resultis true for all the symmetric graypdor n > 2);
S, has just two 1-dimensional representations, the trivial representation 1
and the parity representatien

To see this, let us recall two facts abaijt
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(a) The transpositions = (xy) generateS,,, ie each permutation € S,
is expressible (not uniquely) as a product of transpositions

g=Ti T

(b) The transpositions are all conjugate.

(This is a particular case of the general fact that two permutations in
S,, are conjugate if and only if they are of the saoyelic type ie they
have the same number of cycles of each length.)

It follows from (1) that a 1-dimensional representationSpfis completely
determined by its values on the transpositions. It follows from (2) that the
representation is constant on the transpositions. Finally, since each trans-
positionT satisfiesr> = 1 it follows that this constant value is1. Thus

there can only be two 1-dimensional representatiorts, pthe first takes the
value 1 on the transpositions, and so is 1 everywhere; the second takes the
value -1 on the transpositions, and takes the vakig” on the permutation

g=Ti T

Thus.S,, has just two 1-dimensional representations; the trivial representa-
tion 1 and the parity representatien

. Let’s look again at the dihedral group,, ie the symmetry group of the
squareABC' D. Letr denote the rotation througty2, taking A into B; and
let ¢ denote the reflection idAC'.

It is readily verified that- andc generateD,, ie each elemerg € D, is
expressible as word in » andc (egg = r%cr). This follows for example
from Lagrange’s Theorem. The subgroup generated &ydc contains at
least the 5 elementsr, 72, r3, ¢, and so must be the whole group. (We shall
sometimes denote the identity element in a group by 1, while at other times
we shall use: or 1.)

It is also easy to see thaiandc satisfy the relations

rt=1, =1, rc=cr’.

In fact these areéefining relationdor D,, ie every relation betweenandc
can be derived from these 3.
We can express this in the form

4

Dy=(r,c:r*=c*=1, rc=cr?).
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Now supposer is a 1-dimensional representation bf,. Then we must
have
alr)* = a(c)? =1, a(r)alc) = alc)a(r)?.

From the last relation
a(r)? = 1.

Thus there are just 4 possibilities

a(r) ==+1, a(c) = £1.

It is readily verified that all 4 of these satisfy the 3 defining relationssfor
andt. It follows that each defines a homomorphism

a: Dy — kX,
We conclude thab, has just 4 1-dimensional representations.

. We look now at some examples from chemistry and physics. It should be
emphasized, firstly that the theory is completely independent of these ex-
amples, which can safely be ignored; and secondly,wiesdre not on oath
when speaking of physicdt would be inappropriate to delve too deeply
here into the physical basis for the examples we give.

Figure 1.2: The methane molecule

First let us look at the methane molecuyl®l,. In its stable state the 4
hydrogen atoms are situated at the vertices of a regular tetrahedron, with
the single carbon atom at its centroid (Fig@f®.

The molecule evidently has symmetry grabip being invariant under per-
mutations of the 4 hydrogen atoms.

Now suppose the molecule is vibrating about this stable position. We sup-
pose that the carbon atom at the centroid remains fixed. (We shall return to
this point later.) Thus the configuration of the molecule at any moment is
defined by the displacement of the 4 hydrogen atoms, say

Xi = (Ti1, vi0, zi3) (1 =1,2,3,4).
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Since the centroid remains fixed,
dxy;=0 (j=1,2,3).

This reduces the original 12 degrees of freedom to 9.

Now let us assume further that th@gular momentum also remains 0, ie
the molecule is not slowly rotating. This imposes a further 3 conditions on
the z;;, leaving 6 degrees of freedom for the 12 ‘coordinates’ Mathe-
matically, the coordinates are constrained to lie in a 6-dimensional space.
In other words we can find 6 ‘generalized coordinatgs: . . , gs — chosen
sothaty; = ¢ = - - - = g¢ = 0 at the point of equilibrium — such that each

of thez;; is expressible in terms of thg:

Tij = le'j(QM e 7%)-

The motion of the molecule is governed by the Euler-Lagrange equations

4 (oK) _ oV

dt \dqr)  Oq
where K is the kinetic energy of the system, aihdits potential energy.
(These equations were developed for precisely this purpose, to express the

motion of a system whose configuration is defined by generalized coordi-
nates.)

The kinetic energy of the system is given in terms of the massf the
hydrogen atom by

1
K=gm). i
i\j
On substituting
. 833ij L i aﬂfij .
T = e 7
J 9, a1 o ds

we see that
K = K<cjla"'7q‘6)7
where K is a positive-definite quadratic form. Although the coefficients

of this quadratic form are actually functions@f . . . , g5, we may suppose
them constant since we are dealing with small vibrations.

The potential energy of the system, which we may take to have minimal
value O at the stable position, is given to second order by some positive-
definite quadratic fornd) in the ¢;:

V=0Q(q, ---,q)+. ...



424-1 1-11

While we could explicitly choose the coordinatgs and determine the ki-
netic energy, the potential energy for® evidently depends on the forces
holding the molecule together. Fortunately, we can say a great deal about the
vibrational modes of the molecule without knowing anything about these
forces.

Since these two forms are positive-definite, we can simultaneously diag-
onalize them, ie we can find new generalized coordinates ., zg such
that

K=z +-+7,

_ 2.2 22
V=wizi+ - +wsz-

The Euler-Lagrange equations now give
'z',-:—wfzi (’L:].,,G)

Thus the motion is made up of 6 independent harmonic oscillations, with
frequenciesuy, . . ., wq.

As usual when studying harmonic or wave motion, life is easier if we allow
complex solutions (of which the ‘real’ solutions will be the real part). Each
harmonic oscillation then has 1 degree of freedom:

o iwjt
z; = C;e™i".

The set of all solutions of these equations (ie all possible vibrations of the
system) thus forms a 6-dimensiorsalution-space’.

So far we have made no use of thesymmetry of theCH, molecule. But
now we see that this symmetry group acts on the solution spaeéhich
thus carries a representatignsay, ofS,. Explicitly, supposer € S, is

a permutation of the 4 H atoms. This permutation is ‘implemented’ by
a unique spatial isometril. (For example, the permutatiqi23)(4) is
effected by rotation through/3 of a revolution about the axis joining the C
atom to the 4th H atom.)

But now if we apply this isometryl to any vibrationv(¢) we obtain a new
vibrationIIv(t). In this way the permutation acts on the solution-space
V.

In generalthe symmetry groupr of the physical configuration will act on
the solution-spac#’.

The fundamental result in the representation theory of a finite g€éo(gs
we shall establish) is that every representagiai G splits into parts, each
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corresponding to a ‘simple’ representationtaf Each finite group has a fi-

nite number of such simple representations, which thus serve as the ‘atoms’
out of which every representation 6f is constructed. (There is a close
analogy with the Fundamental Theorem of Arithmetic, that every natural
number is uniquely expressible as a product of primes.)

The groupS, (as we shall find) has 5 simple representations, of dimensions
1,1, 2,3, 3. Our 6-dimensional representation must be the ‘sum’ of some of
these.

It is not hard to see that there is just one 1-dimensional mode (up to a scalar
multiple) corresponding to a ‘pulsing’ of the molecule in which the 4 H
atoms move in and out (in ‘sync’) along the axes joining them to the cen-
tral C atom. (Recall that, has just two 1-dimensional representations: the
trivial representation, under which each permutation leaves everything un-
changed, and the parity representation, in which even permutations leave
things unchanged, while odd permutations reverse them. In our case, the
4 atoms must move in the same way under the trivial representation, while
their motion is reversed under an odd permutation. The latter is impossible.
For by considering the odd permutatior2)(3)(4) we deduce that the first
atom is moving out while the second moves in; while under the action of
the even permutatiofi2)(34) the first and second atoms must move in and
out together.)

We conclude (not rigorously, it should be emphasized!) that
p=1l+a+p
wherel denotes the trivial representation$yf « is the unique 2-dimensional

representation, andis one of the two 3-dimensional representations.

Thus without any real work we've deduced quite a lot about the vibrations
of CH4

Each of these 3 modes has a distinct frequency. To see that, note that our
system — and in fact any similar non-relativistic system — hasa sym-
metrycorresponding to the additive grolp For if (z;(t) : 1 < j < 6)is

one solution theriz;(t + ¢)) is also a solution for any constant R.

The simple representations®fare just the 1-dimensional representations

t — eiwt

(We shall see that the simple representations @flaliangroup are always
1-dimensional.) In effect, Fourier analysis — the splitting of a function
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or motion into parts corresponding to different frequencies — is just the
representation theory @.

The actions of5; andR on the solution space commute, giving a represen-
tation of the product groug, x R.

As we shall see, the simple representations of a product group arise
from simple representations 6fandH: p = o x 7. In the present case we
must have

p=1xFE(w)+ax Ew)+ [ x E(ws),

wherew;, ws, w3 are the frequencies of the 3 modes.

If the symmetry is slightly broken, eg by placing the vibrating molecule in
a magnetic field, these ‘degenerate’ frequencies will split, so that 6 frequen-
cies will be seenw!, w), Wy, wh, Wi, wi', where egv), andwy are close tov.

This is the origin of ‘multiple lines’ in spectroscopy.

The concept obroken symmetryras become one of the corner-stones of
mathematical physics. In ‘grand unified theories’ distinct particles are seen
as identical (like our 4 H atoms) under some large symmetry group, whose
action is ‘broken’ in our actual universe.

. Vibrations of a circular drum. 7P]. Consider a circular elastic membrane.
The motion of the membrane is determined by the function

Azy,t) (@7 4yt <)

wherez is the height of the point of the drum at position y).
Itis not hard to establish that under small vibrations this function will satisfy

the wave equation
T 0%z N Pz\ 0%z
a2 ay?) ~ Par
whereT is the tension of the membrane amits mass per unit area. This
may be written

i P2\ 10
ox?  O0y2) 2o’
wherec = (T'/p)'/? is thespeedof the wave motion.

The configuration ha®(2) symmetry, wher®(2) is the group of 2-dimensional
isometries leaving the centr@ fixed, consisting of the rotations aboht
and the reflections in lines through
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Although this group is not finite, it isompact As we shall see, the repre-
sentation theory of compact groups is essentially identical to the finite the-
ory; the main difference being that a compact group has a countable infinity
of simple representations.

For example, the grouP(2) has the trivial representation 1, and an infinity
of representation®&(1), R(2), ..., each of dimension 2.

The circular drum has corresponding modé$0), M (1), M(2),..., each
with its characteristic frequency. As in our last example, after taking time
symmetry into account, the solution-space carries a representabidiine
product grougD(2) x R, which splits into

1 x E(wp) + R(1) X E(w1) + R(2) X E(ws) + -

. In the last example but one, we considered the 4 hydrogen atoms in the
methane molecule as particles, or solid balls. But now let us consider a
single hydrogen atom, consisting of an electron moving in the field of a
massive central proton.

According to classical non-relativistic quantum mechan®sthe state of
the electron (and so of the atom) is determined twase function)(x, y, z, t),
whose evolution is determined I8chibdinger’s equation

o

Here H is thehamiltonian operatorgiven by

T
HYp = =V + V()0

wherem is the mass of the electroi/(¢) is its potential energyh is
Planck’s constant, and

0% 0% 0%
2.1 _

Vi = Ox? + Oy? + 022"
Thus Schrodinger’s equation reads, in full,

oy R (P Py PP\ &
oy =~ (89&2 Dy? T )T 71/1-

ot 2m

The essential point is that this idiaear differential equation, whose solu-
tions therefore form a vector space, gwution-space
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We regard the central proton as fixed’at(A more accurate account might
takeO to be the centre of mass of the system.) The system is invariant under
the orthogonal grou®(3), consisting of all isometries — that is, distance-
preserving transformations — which leavdixed. Thus the solution space
carries a representation of the compact groyp).

This group is a product-group:
0O(3) =S0O(3) x Cs,

whereCy, = {I, J} (J denoting reflection ir0), while SO(3) is the sub-
group of orientation-preserving isometries. In fact, each such isometry is a
rotation about some axis, 80 (3) is group of rotations in 3 dimensions.

The rotation grouBSO(3) has simple representatiod$,, D, Do, ... of
dimensionsl, 3,5,.... To each of these correspondsmdeof the hy-
drogen atom, with a particular frequeneyand corresponding energy level
E = hw.

These energy levels are seen in the spectroscope, although the spectral lines
of hydrogen actually correspondddferencesetween energy levels, since
they arise from photons given off when the energy level changes.

This idea — considering the space of atomic wave functions as a repre-
sentation ofSO(3) gave the first explanation of the periodic table of the
elements, proposed many years before by Mendeleev on purely empirical
grounds P].

The discussion above ignores g@nof the electron. In fact representation
theory hints strongly at the existence of spin, since the ‘double-covering’
SU(2) of SO(3) adds the ‘spin representations’ j,, D/, ... of dimen-
sions2, 4, ... to the sequence above, as we shall see.

Finally, it is worth noting that quantum theory (as also electrodynamics) are
linear theories, where the Principle of Superposition rules. Thus the appli-
cation of representation theory is exact, and not an approximation restricted
to small vibrations, as in classical mechanical systems like the methane
molecule, or the drum.

. The classification of elementary particles.?].[ Consider an elementary
particle E, eg an electron, in relativistic quantum theory. The possible states
of £ again correspond to the points of a vector speEceMore precisely,
they correspond to the points of tpeojective space”(V') formed by the
rays or 1-dimensional subspaces,6f For the wave functiong andpy
correspond to the same statefof
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The state spack is now acted on by thBoincat groupE(1, 3) formed by
the isometries of Minkowski space-time. It follows tHatcarries a repre-
sentation off/(1, 3).

Each elementary particle corresponds to a simple representation of the
Poinca® group E(1,3). This group is not compact. It is however_ée
group and — as we shall see — a different approach to representation the-
ory, based omie algebrasallows much of the theory to be extended to this
case.

A last remark. One might suppose, from its reliance on linearity, that rep-
resentation theory would have nole to play in curved space-time. But

that is far from true. Even if the underlying topological space is curved, the
vector and tensdiieldson such a space preserve their linear structure. (So
one can, for example, superpose vector fields on a sphere.) Thus represen-
tation theory can still be applied; and in fact, the so-cafjadge theories
introduced in the search for a unified ‘theory of everything’ are of precisely
this kind.



Bibliography

[1] C. A. Coulson.Waves Oliver and Boyd, 1955.
[2] Richard FeynmanLecture Notes on Physics IIAddison-Wesley, 196.
[3] D.J. Simms.Lie Groups and Quantum MechanicSpringer, 1968.

[4] Hermann Weyl. The Theory of Groups and Quantum Mechanid3over,
1950.

4241 1-17



BIBLIOGRAPHY 424-1 1-18

Exercises

All representations are over, unless the contrary is stated.
In Exercises 01-11 determine all 1-dimensional representations of the given group.

1xCy 2 %k Oy 3x O, 4 s Dy 5%k D3
6 % D, 7 ¢ (Qg 8wk Ay 9wk A, 10+ Z
1lseex Dy = (r,s: 82 =1,rsr = s)

Suppose= is a group; and suppogeh € G. The elemenig, h| = ghg~'h~!is

called thecommutatorof ¢ andh. The subgroufs’ = [G, G| is generated by all
commutators irGy is called the commutator subgroup,derived groupof G.

12+« Show thatG’ lies in the kernel of any 1-dimensional representatiai G,
ie p(g) acts trivially if g € G.

13 s« Show thatG” is a normal subgroup af, and thatG /G’ is abelian. Show
moreover that ifK” is a normal subgroup af thenG/ K is abelian if and only if

G’ C K. [In other words G’ is the smallest normal subgroup such tGatz’ is
abelian.)

14 = Show that the 1-dimensional representationg-dform an abelian group
G* under multiplication. [Nb: this notatio&* is normally only used whefy is
abelian.]

155« Show that”* = C,,.
16 ==« Show that for any 2 groups, H

(GxH)"=G" x H".

17 ==« By using the Structure Theorem on Finite Abelian Groups (stating that
each such group is expressible as a product of cyclic groups) or otherwise, show
that

A=A

for any finite abelian groupl.

18« Suppose® : G — H is a homomorphism of groups. Then each representa-
tion « of H defines a representati@n of G.

19« Show that the 1-dimensional representation&'@nd ofG/G’ are in one-
one correspondence.

In Exercises 20—24 determine the derived gréUpf the given groug-.

205 C,, 21 ek D, 22 % 7, 23 sk D
24 s Qg 2556 S, 26 0 Ay 27 ook A,



Chapter 2

Equivalent Representations

Every mathematical theory starts from some notion of equivalence—an agree-
ment not to distinguish between objects that ‘look the same’ in some sense.

Definition 2.1 Supposey, 3 are two representations aF in the vector spaces
U,V overk. We say thatv and § are equivalentand we writenn = 3, if U and V'
are isomorphia=-spaces.

In other words, we can find a linear map
t:U—-V
which preserves the action 6f, ie

t(gu) = g(tu) forallg e G,ueU.

Remarks:
1. Supposer andg are given in matrix form:
a:g Alg), B:gr Blg)

If o = 3, thenU andV are isomorphic, and so in particuldiim o« = dim g3,
ie the matricesA(g) and B(g) are of the same size.

Suppose the linear map: U — V is given by the matrixP. Then the
conditiont(gu) = g(tu) gives

B(g) = PA(g)P~"

for eachy € G. This is the condition in matrix terms for two representations
to be equivalent.

424—1 2-1
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2. Recall that twar x n matricesS,T" are said to baimilar if there exists a
non-singular (invertible) matri® such that

T=PSP "

A necessary condition for this is thdt B have the same eigenvalues. For
the characteristic equations of two similar matrices are identical:

det (PSP™' = AI) = det Pdet(S — AI)det P~
= det(S — ).

3. In general this condition is necessary but not sufficient. For example, the

matrices
1 0 1 1
01/’ 01

have the same eigenvalues 1,1, but are not similar. (No matrix is similar to
the identity matrix/ except! itself.)

However, there is one important case, or particular relevance to us, where
the converse is true. Let us recall a result from linear algebra.

Ann x n complex matrixA is diagonalisable if and only if it satisfies a
separable polynomial equation, ie one without repeated roots.

It is easy to see that il is diagonalisable then it satisfies a separable equa-

tion. For if
A

Az

then A satisfies the separable equation

m(z) = (x — A\)(x — Ag)--- =0.

The converse is less obvious. Suppdsgatisfies the polynomial equation
px)=(x—XM) - (x—=X)=0

with A, ..., A, distinct. Consider the expression bfp(x) as a sum of
partial fractions:

1 aq + 4 ay
p(z) -\ r—\
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Multiplying across,

1= alQl(‘r) +oee 4t arQr(x)a

where

Qua) = Tt - 3) = 22
JFi
Substitutingr = A,

I = alQl(A) +-+ arQr(A)'
Applying each side to the vectore V/,

v = G1Q1<A)U+"'+CLTQT(A>U
= Ul+"'+vr7

say. The vector; is an eigenvector afl with eigenvalue\;, since

(A—X\)v; = a;p(A)v = 0.

Thus every vector is expressible as a sum of eigenvectors. In other words
the eigenvectors aofl span the space.

But that is precisely the condition fot to be diagonalisable. For we can
find a basis fol consisting of eigenvectors, and with respect to this basis
A will be diagonal.

. Itis important to note that while each matriXg) is diagonalisablsepa-
rately, we cannot in general diagonalise all tA¢g) simultaneously That
would imply that theA(g) commutedwhich is certainly not the case in
general.

. However, we can show thdt A;, A, ... is a set of commuting matrices
then they can be diagonalised simultaneously if and only if they can be
diagonalised separately.

To see this, supposeis an eigenvalue ofi;. Let
E=A{v: A=}
be the corresponding eigenspace. Tligis stable under all thd;, since

veE KN — A1<Aﬂ)) = AiAlv = )\Aﬂ) - AZ”U e k.
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Thus we have reduced the problem to the simultaneous diagonalisation of
the restrictions ofd,, As, ... to the eigenspaces df;. A simple inductive
argument on the degree of the yields the result.

In our case, this means that we can diagonalise some (or all) of our repre-
sentation matrices

A(gl)a A(92)7 s
if and only it these matrices commute.
This is perhaps best seen as a result on the representations of abelian groups,
which we shall meet later.
6. Tosummarise, two representationg’ are certainlynotequivalentifA(g), B(g)
have different eigenvalues for somec G.

Suppose to the contrary thdtg), B(g) have the same eigenvalues for all
g € G. Then as we have seen

A(g) ~ B(g)
forall g, ie
B(g) = P(9)A(g)P(g9)™"
for some invertible matrix(g).

Remarkably, we shall see that if this is so for@k G, then in facto and
(3 are equivalent. In other words, if such a matkxg) exists for allg then
we can find a matri¥° independent of such that

B(g) = PA(g)P™"
forallg € G.
7. Supposed ~ B, ie
B = PAP "

We can interpret this as meaning thatand B represent the same linear
transformation, under the change of basis define@ by

Thus we can think of two equivalent representations as being, if effect, the
samerepresentation looked at from two points of view, that is, taking two
different bases for the representation-space.

Example:Let us look again at the natural 2-dimensional real representatidn
the symmetry grou@, of the squareABC'D. Recall that when we took coordi-
nates with respect to axése, Oy bisectingD A, AB, p took the matrix form

(0 -1 (01
5 1 0 ¢ 10)
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wheres is the rotation through a right-angle (sendiddo B), andc is the reflec-
tionin AC.

Now suppose we choose instead the axds O B. Then we obtain the equiv-
alent representation

(0 1 (1o
7l 1 0 ) “Tlo -1 )

We observe that has the same eigenvaluesl, in both cases.

Since we have identified equivalent representations, it makes sense to ask for
all the representations of a given grodpof dimensiond, say. What we have to
do in such a case is to give a listéflimensional representations, prove that every
d-dimensional representation is equivalent to one of them, and show also that no
two of the representations are equivalent.

It isn’t at all obvious that the number of such representations is finite, even
after we have identified equivalent representations. We shall see later that this is
so: a finite groupG has only a finite number of representations of each dimension.

Example:Let us find all the 2-dimensional representations dvexf
S3 = (s,t:5° =t>=1,st = ts?),

that is, all 2-dimensional representatiansto equivalence
Supposey is a representation of(3) in the 2-dimensional vector spa¢é
Consider the eigenvectors @f There are 2 possibilities:

1. s has an eigenvecterwith eigenvalue\ # 1. Sinces® = 1, it follows that
A =1,ie\ =woruw?

Now let f = te. Then
sf = ste = ts*e = N’te = \*f.

Thusf is also an eigenvector af although now with eigenvector.

Sincee and f are eigenvectors corresponding to different eigenvalues, they
must be linearly independent, and therefore span (and in fact form a basis
for) V:

Vi={ef)

Sincese = \e, sf = A\2f, we see that is represented with respect to this

basis by the matrix
_ A0
S O AQ .
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On the other handg = f, tf = t?¢ = ¢, and so

01
t»—><1 O).

The 2 cases = w, w? give the representations

) . w 0 R 0 1Y

a8 0 w? )’ 10)°
w2 0 0 1

b 5'_)<0 w)’ tH<1o>’

In fact these 2 representations are equivalent,

a:/67

since one is got from the other by the swapping the basis elemerfts-

f,e.

. The alternative possibility is that both eigenvalues afre equal tal. In
that case, sinceis diagonalisable, it follows that

i ()

with respect to some basis. But then it follows that this remains the case
with respect to every basis:is always represented by the matfix

In particular,s is always diagonal. So if we diagonalise-as we know we
can—then we will simultaneously diagonalisendc¢, and so too all the

elements ofD,.
. 10 . A0
0 1)’ 0 p )’

Then it is evident that

Suppose

s— 1, t— A

and
s— 1, t—p

will define two 1-dimensional representations$f But we know these
representations; there are just 2 of them. In combination, these will give 4
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2-dimensional representations ®f. However, two of these will be equiv-
alent. The 1-dimensional representations 1 amive the 2-dimensional

representation
. 10 PR 1 0
s 01) 0 -1 )"

(Later we shall denote this representationiby ¢, and call it thesumof 1
ande.)

On the other hand,and 1 in the opposite order give the representation

(10 S
5 0 1) 0 1)

This is equivalent to the previous case, one being taken into the other by the
change of coordinates:, y) — (y, z). (In other wordse + 1 = 1 + ¢.)

We see from this that we obtain jus2-dimensional representations &f
in this way (in the notation above they will Bet 1, 1 + € ande + ¢).

Adding the single 2-dimensional representation from the first case, we con-
clude thatS; has just 4 2-dimensional representations.

It is easy to see that no 2 of these 4 representations are equivalent, by consid-
ering the eigenvalues afandc in the 4 cases.
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Exercises

All representations are over, unless the contrary is stated.

In Exercises 01-15 determine all 2-dimensional representations (up to equiva-
lence) of the given group.

1 Cy 2 %k Cy 3 C, 4 wx D, 50 Dy
6+ Dy 7 w6 D, 8 kxS 9 sk Sy 10 sber S,
171 s Ay 12 s A, 13506k Qg 14+ Z 15 sk Do

16 =« Show that a real matrixt € Mat(n,R) is diagonalisable oveR if and
only if its minimal polynomial has distinct roots, all of which are real.

17 s+ Show that a rational matrid € Mat(n, Q) is diagonalisable ovep if and
only if its minimal polynomial has distinct roots, all of which are rational.

18k If 2 real matricesd, B € Mat(n, R) are similar ove(C, are they necessar-
ily similar overR, ie can we find a matri¥ € GL(n,R) such thatB = PAP~'?

19 se If 2 rational matricesd, B € Mat(n,Q) are similar overC, are they
necessarily similar ove)?

20 seeex If 2 integral matricesd, B € Mat(n,Z) are similar overC, are they
necessarily similar ovef, ie can we find an integral matriX € GL(n, Z) with
integral inverse, such thdé = PAP~1?

The matrixA € Mat(n, k) is said to besemisimpléf its minimal polynomial has
distinct roots. It is said to beilpotentif A” = 0 for somer > 0.

21 s+ Show that a matrixd € Mat(n, k) cannot be both semisimple and nilpo-
tent, unlessd = 0.

22+« Show that a polynomial(x) has distinct roots if and only if
ged (p(z),p'(v)) = 1.

23 =« Show that every matrixd € Mat(n,C) is uniquely expressible in the
form
A=S+N,

whereS is semisimple)V is nilpotent, and
SN = NS.

(We callS and N the semisimple and nilpotent parts 4f)

24 s« Show thatS and NV are expressible as polynomials.n
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25 #ec Suppose the matriB € Mat(n, C) commutes with all matrices that
commute withA, ie
AX = XA= BX = XB.

Show thatB is expressible as a polynomial it



Chapter 3

Simple Representations

Definition 3.1 The representation of GG in the vector spac& overk is said to
be simpleif no proper subspace dof is stable under.

In other wordsy is simple if it has the following property: i/ is a subspace
of V' such that
geGuelU = guecl

then eithel/ =0orU = V.

Proposition 3.1 1. A 1-dimensional representation overs necessarily sim-
ple.

2. If ais a simple representation 6f overk then

dima < ||G||.

Proof » (1) is evident since a 1-dimensional space has no proper subspaces, stable
or otherwise.
For (2), suppose is a simple representation 6fin V. Take anyv # 0in V/,
and consider the set of datansformsgv of V. Let U be the subspace spanned by
these:
U={(gv:g€qG).

Eachg € G permutes the transforms of since
g(hv) = (gh)v.

It follows thatg senddU into itself. ThusU is stable undeé'. Sincea is simple,
by hypothesis,
V="U.

424—-1 3-1
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But sinceU is spanned by thgG|| transforms of,

<

dimV =dimU < |G|

Remark:This result can be greatly improved, as we shall sek.#4fC—the case
of greatest interest to us—then we shall prove that

dima < ||G|2

for any simple representatian
We may as well announce now the full result. Supp@sis a finite group.
Then we shall show (in due course) that

1.

The number of simple representationg-obverC is equal to the number
of conjugacy classes ifi;

The dimensions of the simple representations. . , o, of G overC satisfy
the relation
dim® oy + - - - 4+ dim® o, = ||G]|.

The dimension each simple representasipdivides the order of the group:

dimo; | |G|

Of course we cannot use these results in any proof; and in fact we will not
even use them in examples. But at least they provide a useful check on our work.

Examples:

1. The first stage in studying the representation theory of a gfbigto de-

termine the simple representations‘af

Let us agree henceforth to adopt the convention that if the scalar/iedd
not explicitly mentioned, then we may take it that C.

We normally start our search for simple representations by listing the 1-
dimensional representations. In this case we know fhatas just 2 1-
dimensional representations, the trivial representation 1, and the parity rep-
resentatiors.

Now suppose that: is a simple representation ¢k of dimension> 1.
Recall that
Sy = (s,t:8 =t*=1,/;st = ts?),

wheres = (abc), /;t = (ab).
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Let e be an eigenvector of Thus

se = Ae,
where
S=1=N=1= =1, w, orw?
Let
f=te.
Then

sf = ste = ts’e = N’te = \2f.
Thusf is also an eigenvector af but with eigenvalue\?.
Now consider the subspace

U={ef)
spanned by and f. ThenU is stable undes andt, and so undef§s;. For
se=MXe, sf =\2f, te=f, tf =t’e=e.
It follows, sincea is simple, that
V="U.

So we have shown, in particular, that the simple representatiofg cdn
only have dimension 1 or 2.

Let us consider the 3 possible values for

(@) A = w. Inthis case the representation takes the matrix form
(v 0 PR 01
s 0 w? )’ 10/
(b) A = w?. In this case the representation takes the matrix form
. w2 0 PR 01
s 0 w )’ 10)

But this is the same representation as the fishce the coordinate
swap(z,y) — (y, z) takes one into the other.
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(¢) A =1. Inthis case
se=e, sf=f=sv=vwforalveV.

In other wordss acts as the identity oi. It follows thats is repre-
sented by the matrix with respect tanybasis ofl/.

(More generally, isy € G is represented by a scalar multiplé of
the identity with respect to one basis, then it is represented lyith
respect to every basis; because

P(pl)P~ = pI,

if you like.)
So in this case we can turn tpleavings to ‘look after itself’. Lete
be an eigenvector @f Then the 1-dimensional space

U = (e)
is stable undefs, since
se =e, /;te = *e.

Sincea is simple, it follows that” = U, ie V' is 1-dimensional, con-
trary to hypothesis.

We conclude thats; has just 3 simple representations
1, eanda,
of dimensions 1, 1 and 2, given by

1: se—=1,/it—1

€: s 1, /it— -1
) (v 0 R 01
@ s 0 w? )’ 10/

. Now let us determine the simple representations (&Yyeaf the quaternion
group

Qs = (s,t:5'=1,5% =12, st = t5%),
wheres = i, /;t = j. (It is best to forget at this point that one of the
elements of()s is called—1, and anothet, since otherwise we shall fall
into endless confusion.)
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We know thatQ)s has four 1-dimensional representations, given by

s+— *£1, t — £1.

Supposer is a simple representation @k in V, of dimension> 1. Lete
be an eigenvector of

se = e,
where
st=1= \ =41, +i.
Let
te = f.
Then

sf = ste = ts’e = Nte = \*f.

So as in the previous examplgjs also an eigenvector of but with eigen-
value)3.

Again, as in that example, the subspace
U={e[)
is stable unde€)s, since
se=MNe, sf =Xf, te=f, tf =t?e = s’e = M.

SoV = U, and{e, f} is a basis forl”. With respect to this basis our
representation takes the form

. A0 . 0 M2
s 0 A ) 10 )
where\ = +1, +i.
If A = 1 this representation is not simple, since the 1-dimensional subspace

(1, 1))

is stable undef)s. (This is the same argument as before. Every vector is an
eigenvector ofs, so we can find a simultaneous eigenvector by taking any
eigenvector of.)

The same argument holds if = —1, sinces is represented by-I with
respect to one basis, and so also with respect to any basis. Again, the sub-

space
(1, 1))
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is stable undef)s, contradicting our assumption that the representation is

simple, and of dimensior 1.

We are left with the cases = +i. In fact these are equivalent. For if
A = —i, thenf is ans-eigenvector with eigenvalug® = i. So takingf in
place ofe we may assume that= i.

We conclude tha®)s has just 5 simple representations, of dimensions 1,1,1,1,2,

given by
1: s—1/it—1
p:o s 1, /it— =1
v: s —1/it—1
p:  s——1 /it —1
Q: s»—><i O.) tr—><0_1>.
0 —i )’ 1 0

We end by considering a very important cagkelian(or commutative) groups.

Proposition 3.2 A simple representation of a finite abelian group o@eis nec-
essarily 1-dimensional.

Proof » Suppose: € A. Let A\ be an eigenvalue af, and let
E\) ={veV:av= v}

be the corresponding eigenspace.
ThenE()) is stable undetA. For
be Ajue E(\) = a(bv) = (ab)v = (ba)v = b(av) = b(Av) = A(bv)
= bv e E(\).
ThusE()\) is stable undel, and so undeA. But sinceV is simple, by hypothesis,

it follows that
E\) =V

In other words: acts as a scalar multiple of the identity:
a= M.

It follows thateverysubspace o¥ is stable undes. Since that is true for each
a € A, we conclude that every subspacéofs stable underl. Therefore, since
a is simple,V has no proper subspaces. But that is only trubif V' = 1. <
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Example:Consider the group
Dy ={l,a,b,c:a*=0*=c*=1, bc=cb=a, ca =ac="b, ab= ca = c}.

This has just four 1-dimensional representations, as shown in the following table.

1 «a b c
111 1 1 1
w1l 1 -1 -1
vil -1 1 -1
pll =1 —1 1




Chapter 4

The Arithmetic of Representations

4.1 Addition

Representations can be added and multiplied, like numbers; and the usual
laws of arithmetic hold. There is even a conjugacy operation, analogous to
complex conjugation.

Definition 4.1 Supposey, 5 are representations af in the vector space§, V'
overk. Thena + (3 is the representation @ in U @ V defined by the action

g(u®v) = gu® gv.

Remarks:

1. Recall that/ @ V is the cartesian product &f andV, where however we
write u & v rather than(u, v). The structure of a vector space is defined on
this set in the natural way.

2. Note thatx + (5 is only defined whemy, 5 are representations of tlsame
groupG over thesamescalar fieldk.

3. Supposey, 7 are given in matrix form

a:g— Alg), B:g+— B(g)

Thena +  is the representation
Alg) 0
I ( 0 Blg) )

424—1 4-1
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Example:Let us look again at the 2-dimensional representatigns,, v3 of Ss
overC defined in Chapter 2

s w O2 T 10 s w 02 . 1 0 7
0 w 0 1 0 w 0 —1
1S w 02 e -1 0 .
0 w 0 -1

We see now that
Y1=14+1 vwv=1+¢€ v3=€+¢,

where 1 is the trivial 1-dimensional representatiolsgfande is the 1-dimensional
parity representation
s— 1, tw— —1.

(We can safely writd + 1 = 2, ¢ + € = 2¢.)

Proposition 4.1 1. dim(a + ) = dim«a + dim (3;
2. 0+a=a+0

. a+(B+7)=(a+p5)+1.

Proof » These are all immmediate. For example, the second part follows from the
natural isomorphism

V@UHU@VIUEBUHU@U.

4.2 Multiplication

Definition 4.2 Supposey, 5 are representations aff in the vector space§,
overk. Thenag is the representation @ in U @ V' defined by the action

g(ur @ v+ +u, ®v,) = gur ® guy + - - - gup @ guy.

Remarks:
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1. Thetensor product/ @ V' of 2 vector space§ andV may be unfamiliar.
Each element o/ @ V' is expressible as a finite sum

U QUL+ + U D V.

If U has basidey,...,e,} andV has basi{ fi, ..., f.} then themn ele-
ments
'LLZ'®’UJ' (Z:L,m,jzl,,n)

form a basis fol/ @ V. In particular
dim(U ® V) = dim U dim V.

(Itis a common mistake to suppose that every elemebt@f1’ is express-
ible in the formu ® v. That is not so; the general element requires a finite
sum.)

Formally, the tensor product is defined as the set of formal sums
U QU+ -+ U @ Uy,

where 2 sums define the same element if one can be derived from the other
by applying the rules

(u1+us) RURU QUAU RV, U (v1+02) QURUI+UuURVs, (pu)@v = uR(pv).
The structure of a vector space is defined on this set in the natural way.

2. Aswitha+ (3, af is only defined whew, 5 are representations of the same
groupG over the same scalar fiekd

3. It is importantnot to write o x (§ for a3, as we shall attach a different
meaning tax x [ later.

4. Suppose, § are given in matrix form
a:g— Alg), B:g9+ Blg).
Thenaf is the representation
af 1 g — A(g) ® B(g).

But what do we mean by the tensor prodicty T of 2 square matrices
S, T? 1f S = s;; is anm x m-matrix, andIl" = t;,; is ann x n-matrix, then
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S ® T is themn x mn-matrix whose rows and columns are indexed by the
pairs(i, k) wherel < i <m,1 < k < n, with matrix entries

To write out this matrixS ® 7" we must order the index-pairs. Let us settle
for the ‘lexicographic order’

(1,1),(1,2), ..., (L,n), (2, 1),....(2,n), ..., (m,1),..., (m,n).

(In fact the orderingloes not mattefor our purposes. For if we choose a
different ordering of the rows, then we shall have to make the same change
in the ordering of the columns; and this double change simply corresponds
to a change of basis in the underlying vector space, leading to a similar
matrix toS @ T'.)

Example:Consider the 2-dimensional representatoof S; overC

.HwO t|—>01
-5 0 w? )’ 10

We shall determine the 4-dimensional representation- a«. (The notationm?
causes no problems.) We have

o (5 2)e(s) = (V)e(ts)

Itis simply (!) a matter of working out these 2 tensor products. In fact

w-w w0 0-w 0-0
w 0 ® w 0 B w-0 w-w? 0-0 0-w?
0 w? 0 w? - 0w 0:-0 w?w w?0
0-0 0-w? wW?-0 w?- w?
w2 00 0
o100
o 0O 01 0 |’
0 0 0 w
while
00 01
01 01 0010
<1o>®<10>_ 0100]
1 0 0 0
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We can simplify this by the change of coordinatesy, z,t) — (v, z,t,x). This
will give the equivalent representation (which we may still denotexBy.

10 0 0 0100
0B s 01 0 O PR 1 000
00 w 0 |’ 0001
00 0 w 0010

But now we see that this splits into 2 2-dimensional representations, the second of
which is« itself:

=pF+a,
wheref is the representation

10 01
e (08) e (Vo)

The representatiofi can be split further. That is evident if we note that since
s is represented by, we can diagonalisewithout affectings. Sincet has eigen-
valuest1, this must yield the representation

10 1 0
ﬁ:s»—><0 1), tr—>(0 _1>

Concretely, the change of coordinatesy) — (x + y, = — y) brings this about.)
Thus

B=1+e,

and so
a>=14¢+a.

(We hasten to add that this kind of matrix manipulation is not an essential part
of representation theory! We shall rapidly develop techniques which will enable
us to dispense with matrices altogether.)

Proposition 4.2 1. dim(af) = dim adim f3;
2. fa = apf;
3. a(By) = (aB);

4. a(f+7) = af + ay;

5 la = a.
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All these results, again, are immediate consequences of ‘canonical isomor-
phisms’ which it would be tedious to explicate.

We have seen that the representationS ovverk can be added and multiplied.
They almost form a ring—only subtraction is missing. In fact if we introduce
‘virtual representationsy— 3 (wherea, 3 are representations) then we will indeed
obtain a ring

R(G) = R(G, k),

therepresentation-ringf G overk. (By convention ifk is omitted then we assume
thatk = C.)
We shall see later that

at+f=a+y= B=1.
It follows that nothing is lost in passing from representation&t6:); if « = 3
in R(G) thena = Fin ‘real life’.
4.3 Conjugacy

Definition 4.3 Supposer = is a representation of; in the vector spac&” over
k. Thena* is the representation af in the dual vector spac&™ defined by the
action

(gr)(v) =m(g ) (ge G, meV*, veV)

Remarks:

1. Recall that the dual vector spaké is the space of linear functionals

m:V — k.
To any basidey, ..., e, } of V there corresponds a dual baséis, . .., 7, }
of V*, where
1 ifi=y
mj(e:) = { 0 otherwise

2. Suppose is given in matrix form
a:g— Ag).

Thena* is the representation

g~ (Al9)™),
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whereT” denotes the transpose Bf Notice the mysterious way in which
the inverse and transpose, each of which is ‘contravariant’, ie

(RS)™ ' =s"'T7' (RS) =S5R,
combine to give the required property

((RS)) = (RMY(S7Y).

Example:Considera*, wherea is the 2-dimensional representationfoverC
considered above. By the rule abowé,is given by

o s w? 0 PR 01
' 0 w )’ 10/
It is easy to see that swapping the coordinatesy) — (v, x), gives

a =«

Many of the representations we shall meet will share this property of self-conjugacy.

Proposition 4.3 1. dim(a*) = dim «;
2. (") =q;
3. (o +8) =a* + p*.
4. (af)* = a*p".
5. 1" =1.

Summary: We have defined the representation R6g) of a groupG, and
shown that it carries a conjugacy operation- «*.



Chapter 5

Semisimple Representations

Definition 5.1 The represenation of GG is said to besemisimpléf it is express-
ible as a sum of simple representations:

oa=01+ -+ 0.

Example:Consider the permutation representatiaf Ss in £3. (It doesn’t matter
for the following argument it = R or C.)
Recall that

g(w1, 79, 73) = (%*11,%*127%*13)-

We have seen thaf has 2 proper stable subspaces:
U=A{(z,z,z):x €k}, W={(x1,29,23): 71+ 22+ 23 =0}

U has dimension 1, with basf$1, 1, 1) }; W has dimension 2, with bas{$1, —1,0), (—1,0,1)}.
Evidently
unv =0.

Recall that a suny + V' of vector subspaces is direct,
U+V=UaV,
if (and only if) U NV = 0. So it follows here, by considering dimensions, that
K =U@W.
The representation dii is the trivial representation 1. Thus
p=1+a,

whereq is the representation ¢f; in V.

424—-1 5-1
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We can see that is simple as follows. Suppodé C W is stable undefs,
whereV # 0. Take any element # 0 in V: say

v=(2,9,2) (x+y+2z2=0).
The coefficients:, y, z cannot all be equal. Suppose# y. Then
(12)v = (y,2,2) € V;

and so
U_(12)U: (a:—y,y—x,O) = (x_y)(la_LO) € V

Hence
(1,-1,0) e V.

It follows that
(=1,0,1) = (132)(1,-1,0) € V

also. But these 2 elements generate W; hence
V=W

So we have shown thdt’ is a simpleS;-space, whence the corresponding repre-
sentationy is simple.
We conclude that the representation

p=1l+a

is a sum of simple representations, and so is semisimple.
It is easy to see thdf andWW are the only subspaces bt stable underss,
apart from 0 and the whole space. So it is evident that the splitfimg V' is
unique. In general this is not so; in fact we shall show later that there is a unique
split into simple subspaces if and only if the representations corresponding to
these subspaces are distinct. (So in this case the split is unique bécguse
However the simple representations that appeaunique. This fact, which we
shall prove in the next chapter, is the foundation stone of representation theory.
Most of the time we do not need to look behind a representation at the un-
derlying representation-space. But sometimes we do; and the following results
should help to clarify the structure of semisimple representation-spaces.

Proposition 5.1 Supposé’ is a sum (not necessarily direct) of simple subspaces:
V=5S+---+85.

ThenV is semisimple.
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Proof » Sinces, is simple,
Sl N SQ = OOfSQ.

In the former case
S+ 8, = 51@5'2;

in the latter cas&, C S; and so
S1+ S5y = 5.
Repeating the argument wify + .S, in place ofS;, andSs in place ofS,,
(S1 + S2) NSy =0 or Ss,
sincesS; is simple. In the former case
Si4 Sy 4+ S5 = (S1 + S2) P Ss;
in the latter cas&; C S, + S; and so
S1+ Sy + S5 =51 + Ss.
Combining this with the previous step
Si4 8,485 =51EP S S;0rS: P Ss orS1 & Ss or S
Continuing in this style, at théh step, sinces; is simple,
Si4-+Si=(1+-+S)PSiorS+---+ S
We conclude, finally, that
V=58+-+8=5 5.,

where{S,,,...,S;.} isasubsetofsS;,...,S,}. <

Remark:The subse{sS;,, ..., S;.} depends in general on tloeder in which we
takeSi, ..., S,. In particular, since;, = S, we can always specify that aoye
of Sy,..., S, appears in the direct sum.

Proposition 5.2 The following 2 properties of th@-spacel” are equivalent:

1. V is semisimple;
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2. each stable subspac¢é C V has at least one complementary stable sub-
spacelV, ie
V=UEpWw.

Proof » Suppose first that’” is semisimple, say

V=5 -PS.
Let us follow the proof of the preceding proposition, but starting vithather
thansS;. Thus our first step is to note that singgis simple,
U+Sl = U@Sl OI’U.

Continuing as before, we conclude that

V=UPSsS,Pp  -PS..

from which the result follows, with

W=5,@ DS
Now suppose that condition (2) holds. Sincas finite-dimensional, we can
find a stable subspacg of minimal dimension. Evidently; is simple; and by

our hypothesis
V = Sl @ Wl.

Now let us find a stable subspageof 1/, of minimal dimension. As before,
this subspace is simple; and
SlﬂSQC51mW:0,
so that
Si4 Sy =51 6P Se.
Applying the hypothesis again to this space, we can find a stable complement

Wy
V=25,
Continuing in this way, sinc& is finite-dimensional we must conclude with
an expression fov" as a direct sum of simple subspaces:

V=5 @S

Hencel’ is semisimple. «

Remark: This Proposition gives an alternative definition of semisimplicity:

is semisimple if every stable subspd¢eC V posseses a complementary sta-
ble subspacél’. This alternative definition allows us to extend the concept of
semisimplicity to infinite-dimensional representations.



424-1 5-5

Exercises

In Exercises 01-15 calculat€ for the given matrixX :

1. Show that angommutingset of diagonalisable matrices can be simultane-
ously diagonalised. Hence show that any representation of a finite abelian

group
2. Show that for alh the natural representatignof S,, in £ is semisimple.

3. If T' € GL(n, k) then the map
7 — GL(n, k) :m—T™

defines a representatiorof the infinite abelian groug .
Show that ift = C thenr is semisimple if and only if" is semisimple.

4. Prove the same result whén= R.

5. Supposé: = GF(2) = {0, 1}, the finite field with 2 elements. Show that
the representation @f, = {e, g} given by

(11
g 0 1

IS not semisimple.



Chapter 6

Every Representation of a Finite
Group is Semisimple

Theorem 6.1 (Maschke’s Theorem) Supposes a representation of the finite
groupG overk, wherek = R or C. Thena is semisimple.

Proof » Supposey is a representation ovri. We take the alternative definition of
semisimplicity: every stable subspacec V' must have a stable compleméiit

Our idea is to construct an invariant positive-definite fafron V. (By ‘form’
we mean herquadratic formif £ = R, or hermitian formif £ = C.) Then we can
take W to be theorthogonal complememtf U with respect to this form:

W=U"={veV:P(uv)=0foralluc U}.

We can construct such a form by takiagy positive-definite form@, and
averagingit over the group:

P(u,v) = Z Q(gu, gv).

geG

HGH

(It's not really necessary to divide by the order of the group; we do it because the
idea of ‘averaging over the group’ occurs in other contexts.)
It is easy to see that the resulting form is invariant:

P(gu,gv) = > Q(hgu, hgv)
IIGII =

= Q(hu, hv)
HGII f%;v‘
= P(u>v)

424—-1 6-1
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sincehg runs over the group dsdoes so.
Itis a straightforward matter to verify that# is invariant and’ is stable then
so isU*. Writing (u, v) for P(u,v),
geGuwelUt = (ww)=0YuecU
— <gu,gw> = <u,w> =0VuelU
= (u,gw) = (g(¢g”'u),w) =0Vu e U
— gqwe U™t
<
Examples:

1. Consider the representation 6f in R3. There is an obvious invariant
quadratic form—as is often the case—namely

x% + x% + x%
But as an exercise in averaging, let us take the positive-definite form

Q(z1, 19, 73) = 207 — 27129 + 375 + 3.

Then

Q(elwr, w2 13)) = Qlar,a,w3) = 20 — 2wy + 323 +

Q ((23)(I1,$2,5L‘3)> = Q(l’l,l‘&xg) = 21'% — 21»11‘3 + 3l'§ +ZE§

Q ((13>(I1,I’2,ZL’3>> = Q(SEg,JZQ’aj‘I) = 21‘2 — 2$3ZI}'2 + 31,3 + ‘T%

3

QD)1 22,23)) = Q(wa,0,5) = 203 — 2y + 307 + 3

Q ((123)($1,$2,l‘3>) = Q(l’g,{L‘th) = 21% — 2x371 + 31.% +ZE%

Q ((132)(1‘17 T2, .Z'g)) - Q(x2,$37x1) = 23;% _ 23;21.3 + 31’3 + Z‘%

Adding, and dividing by 6,

P([L’l, T, $3) = ({L’% + l’g + {L’%) — § (ZL’QIg + 173 + l’lflfz)

2
7 1
g(l’%‘i‘l’g"—l’g)—g(l’1+$2+1’3)2.

The corresponding inner product is given by

1
(1, 22, 23), (Y1, Y2, ¥3)) = 2(w1y1+x2y2+x3y3)—§(xzyg+x3y2+x3y1+x1y3+x1yz+xzy1)
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To see how this is used, let
U={(x,z,z) : z € R}.

Evidently U is stable. Its orthogonal complement with respect to the form
above is

Ut = {(z1, 29, 23) : ((1,1,1), (x1, 22, 23)) = 0}
4
= {<x1ax27x3) : g(xl + 29 +$3) — 0}
= {(w1,79,23) : 71 + 22 + 23 = 0},

which is just the complement we found before. This is not surprising since—
as we observed earliert-andU+ are the only proper stable subspaces of
R3.

. For an example using hermitian forms, consider the simple representation
of D, overC defined by

- 0 R 0 1
8 0 —i )’ 10 )
Again, there is an obvious invariant hermitian form, namely

2] + o3| = Tix) + Taws.
But this will not give us much exercise.
The general hermitian form o@i? is
aTz + byy + ¢ty + cyx  (a,b € R, c € C)

Let us take
Q(z,y) = 2Tz + gy — iTy + iyz.

Note that
Dy = {e,s,5%, 8% t,ts 1% ts°}.

For these 8 elements are certainly distinct, eg

S =ts?=ts=1= s="t.



424-1 64

Now
Q(e(z,y) = Qz,y) = 2Tz +yy — iy + iyz,
Q(s(x,y)) = Qlix,—iy) = 2Tx + yy + izy — iyz,
Q(s*(x,y)) = Q-=z,—y) =25z + iy — izy + iyz,
Q (S3<£C, y)) = Q(—iz,iy) = 2zx + gy + iTy — iyz,
Q(t(z,y)) = Qy,x) =Tz + 2y +iTy — iy,
Q(ts(x,y)) = Qiy, —ix) = Tx + 2y — iTy + iy,
Q(ts(x,y)) = Q(—y,—x) =Tz + 2y + izy — iyw,
Q (tsg(x, y)) = Q(—iy,iz) = Tz + 2yy — iTy + iyz.
Averaging,

%29 € D4Q(g(z,y))

3, _
= 5(5695 + 7y)

3

8

&
I

It is no coincidence that we have ended up with a scalar multip)e|&f+
ly|?. For it is easy to see thatsimpleG-space carries aniqueinvariant
hermitian form, up to a scalar multiple. Suppd3e&) were 2 such forms.
Let A be an eigenvalue @ with respect taP, ie a solution of

det(A—AB) =0
whereA, B are the matrices aP, (). Then the corresponding eigenspace
E ={v: Av = \Bv}
would be stable undet.

The alternative proof of Maschke’s Theory below may be preferred by the

algebraically-minded. It has the advantage of extending to scalar fields other than
R andC. Against that, it lacks the intuitive appeal of the earlier proof.

Alternative proofs Recall that a projectiop : V' — V' is a linear map satisfying
the relation

p =D

(ie p isidempotent

If pis a projection then so is— p:

(I-pP=1-2p+p*=1-2p+p=1—p
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The projectiongp, 1 — p) define a splitting o} into a direct sum

V =imp@Pim(1l — p).

Note that
v EImMp <= pv = v.

Note also that
im(1 — p) = kerp,
since
v=_1-pw=pv=(p—pHw=0,

while
pv=0=v=(1-p).

Thus the splitting can equally well be written
V =imp @ ker p.
Conversely, every splitting
V=UPw
arises from a projectiop in this way: if
v=ut+w (uwelUweW)

then we set
pU = U.

(Although the projectiorp is often referred to as ‘the projection ontd it
depends o as well ad/. In general there are an infinity of projections obtp
corresponding to the infinity of complements. When there is a positive-definite
form onV—quadratic or hermitian, according As= R or C—then one of these
projections is distinguished: namely the ‘orthogonal projection’ corresponding to
the splitting

V=UPU"
But we are not assuming the existence of such a form at the moment.)

Now supposd’ is a stable subspace bf. Choose any complementary sub-
spacel:

V=UEpWw.

In generall’ will not be stable undef;. Our task is to find a stable complemen-
tary subspacél/:
V=UEPW=UpW,.
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Let p be the projection ont& with complement?. We know that! is stable
underG, ie
geG, uelU = guel.

Thus
g - G,U = pvu :>ng :gu :>pgpv :gpv.
Since this holds for all € V,
bgp = gp

for all g € G. Conversely, if this is so theli = im p is stable.
By the same argumenity’ = im(1 — p) will be stable if and only if

(1-p)g(l —p)=g(l—p)

forall g € G. This reduces to
pgp = pg-.
Both U andWW are stable if and only if

gp = pg-

For in that case
pgp = p(gp) = p(pg) = p°g = pg = gp.
Now
gp = pg <= g 'pg = p.
In other wordsp defines a splitting into stable subspaces if and only if it is invari-
ant undeiG;.

In general, we can construct an invariant element by averagingiavieet us

therefore set 1

P=—=> 9 'pg
G

geG
This will certainly be invariant undet:

1

G i

= HlGH X(:}(hg)‘lp(hg)‘l

1
- = hflphfl
1G]] %

= P

g 'Pg = g 'h™'phg

sincehg runs overG ash does so.
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What is less obvious is thdt is a projection and in fact a projection onto.
To see that, note that

u€elU = gu €U = p(gu) = gu.
Hence by addition

u € U= Pu=u.

Conversely,
veV = pgv e U= gpgv € U.
So by addition
veV = Pvel.
These 2 results imply thdt? = P, and thatP projects ontd/. <
Remarks:

1. We can show directly thd? is a projection, as follows:

1

P = ||G||2;g*1pgh*1ph
9,

1 1
= jap Xy e

g;h

1 —1
= eEX P

g;h

1
= — hlph
1G]l Eh:
= P.
Two projections, g project onto the same (first) subspace if
ap =p, P4 = q.

So to prove thaf” projects onto the same subspdcasp, we must show
that Pp = p andpP = P. These follow in much the same way:

1
Pp = — N gt
D HGHZg:g pgp
_ L > g gp
1G4
= p,
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1 -1
pP = —=) P9 DpY
IIGIIZg:

- L > g 'pg
1G]l 4
- P

2. Both proofs of Maschke’s Theorem rely on the same idea: obtaining an
invariant element (in the first proof, an invariant form; in the second, and
invariant projection) by averaging over transforms of a non-invariant ele-
ment.

In general, if is aG-space (in other words, we have a representatiar of
in V') then the invariant elements form a subspace

Ve={veV:gv=1vgeG}.

The averaging operation defines a projectiofvainto V-
1 Zg
Vb= 7= V.
IG5

Clearly V¢ is a stable subspace bf. Thus ifV is simple, eithel/’¢ = 0
or V¢ = V. In the first case, all averages vanish. In the second case, the
representation i’ is trivial, and so” must be 1-dimensional.

3. It is worth noting that our alternative proof works in any scalar field
provided||G|| # 0 in k. Thus it even works over the finite fie@F (p"),
unlessp | |G|

Of course we are not considering suctodular representationé&as rep-
resentations over finite fields are known); but our argument shows that
semisimplicity still holds unless the characteristicf the scalar field di-
vides the order of the group.
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Uniqueness and the Intertwining
Number

Definition 7.1 Supposey, J are representations @ overk in the vector spaces
U,V respectively. Thantertwining numbet (o, (3) is defined to be the dimension
of the space ofr-mapst : U — V,

I(a, f) = dim hom® (U, V).

Remarks:
1. AG-mapt : U — V is a linear map which preserves the actiorf:of
t(gu) = g(tu) (g € G,u € G).
These(G-maps evidently form a vector space over

2. The intertwining number will remain somewhat abstract until we give a
formula for it (in terms of characters) in Chapter . But intuitivélyy, 3)
measures how much the representations have in common.

3. The intertwining number of finite-dimensional representations is certainly
finite, as the following result shows.

Proposition 7.1 We have

I(a, ) < dimadim 3.
Proof » The spaceom(U, V) of all linear mapst : U — V has dimension
dim U dim V/, since we can represent each such map by.ann-matrix, where

m=dimU,n=dimV.

424—1 7-1
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The result follows, since
hom®(U, V') € hom(U, V).
|

Proposition 7.2 Supposey, ( are simplerepresentations ovet. Then

0 if a # 3,
““75):{ >1 ifa=4.

Proof » Supposey, 3 are representations i, V, respectively; and suppose
t:U—-V
is aG-map. Then the subspaces
kert={ueU:tu=0}andimt={v eV :Ju e U, tu=v}
are both stable undé¥. Thus

u€ekert = tu=20
— t(gu) = g(tu) =0
— gu € kert,

while

vEeEImt — v=tu
= t(gu) = g(tu) = gv
= gv € imt.

But sinceU andV" are both simple, by hypothesis, it follows that
kert =00rU, imt=0orV.
Nowkert = U =t =0,andimt =0 =t = 0. So ift # 0,
kert =0, imt=1V.

But in this case is anisomorphisnof G-spaces, and so = j3.

On the other hand, i = ( then (by the definition of equivalent representa-
tions) there exists &-isomorphist : U — V,and sol(a, 3) > 1. «

Whenk = C we can be more precise.
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Proposition 7.3 If « is a simple representation ovérthen

I, ) = 1.

Proof » Supposé/ carries the representatioan We have to show that
dim hom®(V, V) = 1.

Since the identity map : V' — V is certainly aG-map, we have to show that
everyG-mapt : V — Vis a scalar multipleo1 of the identity.
Let A\ be an eigenvector af Then the corresponding eigenspace

E=E\) ={veV: :tv=)\v}
is stable undeé. For
g€ G, veE = t(gv) =g(tv) =A\gv = gv € E.
Sincea is simple, this implies thakl = V/, ie
t=Al.

<
Proposition 7.4 Supposey, 3,y are representations ovér. Then

L Ha+ 8,7) = (e, ) + 1(8,7);

2. e, B +7) = e, B) + (e, 7);

3. I(apB,7) = I(a, ).

Proof » Supposey, 3, are representations i, V, W respectively. The first 2
results are immediate, arising from the more-or-less self-evident isomorphisms

hom(UEV,W) = hom(U, W)EDhom(V, W)
hom(U,VE W) = hom(U,V)EP hom(U, W).

Take the first. This expresses the fact that a linear map
t: U@ V—-W
can be defined by giving 2 linear maps

th:U—->W, ty: V—=W.
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In fact ¢, is the restriction oft to U C U@V, andt, the restriction oft to
VcU@V;and
t(“ © U) = t1u D tyv.

In much the same way, the second result expresses the fact that a linear map
t:U—-V @ %4
can be defined by giving 2 linear maps
thv:U—-V, ty: U—W.

In fact
tl = 7T1t, tz = 7th,

wherer,, T, are the projections df @ V ontoV, W respectively; and

tu = ti1u P tyu.

The third result, although following from a similar ‘natural equivalence
hom(U Q) V, W) = hom(U, V* R W),
where
V* =hom(V, k),
is rather more difficult to establish.
We can divide the task in two. First, there is a natural equivalence
hom(U, hom(V, W)) = hom(U Q) V, W).

For this, note that there is a 1-1 correspondence betivesrmaps) : URQ V —
W andbilinear maps
B:UxV —>W.

(This is sometimes taken as the definitionlo§®) V.) So we have to show how
such a bilinear ma@(u, v) gives rise to a linear map

t:U — hom(V,W).

But that is evident:
t(u)(v) = B(u,v).

It is a straightforward matter to verify that every such linear maypises in this
way from a unique bilinear map.
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It remains to show that
hom(V, W) = V* ® W.
For this, note first that both sides are ‘additive functordiinie

hom(V, Wi €D Wa) = hom(V, Wy) €D hom(V, W),
VWi @Ws) = (V' QW) PV @ Wa).

This allows us to reduce the problem, by express$ings a sum of 1-dimensional
subspaces, to the case whétéis 1-dimensional. In that case, we may take
W = k; so the result to be proved is

hom(V, k) = V* Q) k.

But there is a natural isomorphism

URk=U
for every vector spacE. So our result reduces to the tautology = V™.

It's a straightforward (if tedious) matter to verify that these isomorphisms are
all compatible with the actions of the grogp In particular thez-invariant ele-
ments on each side correspond:

hom“(UE@V, W) = hom® (U, W) hom®(V, W),
hom® (U, V W) hom® (U, V') @ hom® (U, W),
hom® (U@ V, W) = hom®(U,V* R W).

1%

The 3 results follow on taking the dimensions of each side

Theorem 7.1 The expression for a semisimple representatiaas a sum of sim-
ple parts
a=01+-+o0,

is unique up to order.

Proof » Supposer is a simple representation 6f overk. We can use the inter-
twining number to compute the number of times,say, thatr occurs amongst
theo;. For

I(o,a) = I(o,01)+ -+ I(0,0,)

= ml(o,0),
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since only those summands for whieh= o will contribute to the sum. Thus

It follows thato will occur the same numben times in every expression for
as a sum of simple parts. Hence two such expressions can only differ in the order
of their summands. «

Although the expression

a=0y+- - +0,
for the representation is unique, the corresponding splitting

V=Uu,P---PU,

of the representation-space is not in general unique. It's perfectly possible for 2
different expressions fdr’ as a direct sum of simplé-subspaces to give rise to
the sameexpression for: say

VZUI@“'EBUH V=W1@“'@Wr

whereU; andW; both carry the representation.

For example, consider the trivial representatios 1 + 1 of a groupG in the
2-dimensional spact = k2. Every subspace df is stable undeti; so if we
chooseany 2 different 1-dimensional subspadésiV’ C V, we will have

V=U@w.

However, the splitting ol into isotypic components unique, as we shall
see.

Definition 7.2 The representation, and the underlying representation-spdce
are said to basotypicof typeos, whereo is a simple representation, if

oa=e0=0+--+o0.
In other wordsg is the only simple representation appearingin

Proposition 7.5 Supposé’ is a G-space.
1. If V is isotypic of typer then so is everg:-subspacé/ C V.

2. IfU,W C V are isotypic of typer then so idJ + V.
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Proof » These results follow easily from the Uniqueness Theorem. Butit is useful
to give an independent proof, since we can use this to construct an alternative
proof of the Uniqueness Theorem.

Lemma 7.1 Suppose

V - U1 + ct + Ur
is an expression for thé&'-spacel” as a sum of simple spaces; and suppose the
subspacé/ C V is also simple. The® is isomorphic (as & -space) to one of

the summands:
U=U;

for some.

Proof of Lemma- We know that

V:Uil@"‘@Uit

for some subsefU;,,...,U;,} € {Ui,...,U.}. Thus we may assume that the

sum is direct:
V=U&p - -PU.
For eachi, consider the composition

U—-V —=U,

where the second map is the projectiori/obnto its component/;. Sincel and
U; are both simple, this map is either an isomorphism, or else O.
But it cannot be O for all. For suppose € U, u # 0. We can expressg as a
sum
u=u & - Bu, (u; €U).

Not all thewu; vanish. Nowu — u; under the compositioty — V' — U;. Thus
one (at least) of these compositions4d%). HenceU = U, for somei. <«
Turning to the first part of the Proposition,if C V, whereV is o-isotypic,
then each simple summand©@fmust be of typer, by the Lemma. It follows that
U is alsoo-isotypic.
For the second part, if andIV are bothr-isotypic, then/ + W is a sum (not
necessarily direct) of simple subspacésof typeo:

U+W =X+ +X,.

But then

U‘f'W:Xil@"'@Xi“
where{X;,,..., X;,} are some of theXy,..., X,. In particularU + W is o-
isotypic. <«
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Corollary 7.1 Supposer is a simple representation @f over k, Then eaclG-
spacel overk possesses a maximalisotypic subspack,, which contains every
othero-isotypic subspace.

Definition 7.3 This subspac#’, is called thes-component of’.

Proposition 7.6 Every semimsimplé&/-spaceV is the direct sum of its isotypic

components:
V= Val@---@vm‘.

Proof » If we take an expression far as a direct sum of simple subspaces, and
combine those that are isomorphic, we will obtain an expressiol fas a direct
sum of isotypic spaces of different types, each of which will be contained in the
corresponding isotypic component. It follows that

V=V, 4 +V,.

We have to show that this sum is direct.
It is sufficient to show that

(VCH +oee +V0’i—1)mvo'i =0

fori=2,...,r.
Suppose not. Then we can find a simple subspace

UcV,, UCVy +---+V,,_,.

By the Lemma to the last Propositioti,must be of typer;, as a subspace of,,.
On the other hand, as a subspac&gf+- - -+ V,,_, it must be of one of the types
o1,...,0;_1, by the same Lemma.

This is a contradiction. Hence the sum is direct:

V=V,H - PV...
<
Corollary 7.2 If the G-spaceV carries a multiple-free representation
a=01+- -+ 0,

(where thes; are distinct) thenl/ has a unique expression as a direct sum of
simple subspaces.
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Remark:lIt is easy to see that multiplicitgoesgive rise to non-uniqueness. For
suppose
V=UU,

whereU is simple. For each € k consider the map
un—>u€B)\u:U—>U@U:V
The image of this map is a subspace
UXN) ={udIu:uecU}.

This subspace is isomorphic &g sincelU is simple.
It is readily verified that

U\ # Ulp) <= A = pu.

It follows that
V=UNDU)
for any \, u with A # p.
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The Character of a Representation

Amazingly, all the information about a representation of a grGugan be
encoded in a single function ar, thecharacterof the representation.

Definition 8.1 Supposey is a representation off overk. Thecharactery = x,
of v is the functiony : G — k defined by

x(g9) = tr(a(g)) -

Remarks:

1. Recall that theérace of ann x n-matrix A is the sum of the diagonal ele-

ments:

1<i<n

The trace has the following properties:

(@) tr(A+ B) =tr A+ tr B;

(b) tr(AA) = A tr A.

(c) tr AB = tr BA;

(d) tr A =trA;

(e) tr A* = tr A.
Here A’ denotes the transpose 4f and A* the conjugate transpose:
The third property is the only one that is not immediate:

i J
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Note that
tr ABC # tr BAC

in general. However the tra¢ginvariant undecyclic permutations, eg

tr ABC =tr BCA =trCAB.

In particular, if P is invertible (non-singular) then
tr PAP' =tr P'PA=1trA:

similar matrices have the same trace.

It follows from this that we can speak without ambiguity of the trace
of a linear transformation: V' — V; for the matrix7' representing with
respect to one basis will be changedtd P~! with respect to another basis,
whereP is the matrix of the change of basis.

Example:Consider the 2-dimensional representatioof D, overC given by

(i 0 (01
5 0 —i 10 )

Writing  for x,

In summary
x(e) = 2,x(s%) = =2,x(g9) = 0if g # e, s2.
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Proposition 8.1 1. Xa15(9) = xa(9) + x5(9)
2. Xap(9) = Xa(9)x5(9)
3. Xa(9) = Xalg™")
4. x1(g) =1

)
5. xa(e) = dim«

Proof » (1) follows from the matrix form

a < A(()g) B(()g) >
for a + 3.

(2) follows from the fact that ifd is anm x m-matrix andB is ann x n-matrix
then the diagonal elements of the tensor produet B are just the products

AiBj; (1<i<m,1<j5<n)

Thus
tr(A® B) =tr Atr B.

(3) If a takes the matrix form

g Alg)
then its dual is given (with respect to the dual basis) by
g— Alg) = Alg").

Hence
Xar(9) = tr A(g™") =tr A(g™") = Xalg™):
(4) and (5) are immediate. «
Remark:In effect the character definesiag-homomorphism

Y R(G, k) — C(G, k)

from the representation-ring(G) = R(G, k) to the ringC(G, k) of functions on
G (with values ink).

Theorem 8.1 Supposey, 5 are representations @ overk. Then
1 _
I(a,B) = el > Xalg)xs(9)-

geG
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Proof » It is sufficient to prove the result when= 1. For on the left-hand side

I{a, §) = I(1,a"B);

while on the right-hand side

ZGxa xs(9) = D Xar(9)x5(9)
= Y xa’B(g)
= > xxi(g)aB(g).

Thus the result fory, 5 follows from that forl, o* (5.
We have to show therefore that

I(1,c) Xalg
- @

geG

By definition, if « is a representation iir,
I(1,a) = dimhom®(k, V).

Now
hom(k, V) =V,

with the vectorw € V' corresponding to the map
A= kE—V.

Moreover, the action aoff is preserved under this identification; so we may write
hom® (k, V) = VY,

whereV ¢ denotes the space 6f-invariant elements of’:
={veV:gv=vVgeG}

Thus we have to prove that

dim V¢ = Z Xalg
HGII sec:

Consider the ‘averaging map’: V' — V defined by

TP

geG
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that is,

It is evident thattv € V& for all v € V, ie wv is invariant unders. For

Z ghv

heG

Zhv

heG

b
1G]
b
1G]]

= 7,

gmu =

sincegh runs overG ash does.
On the other hand, if € V¢ thengv = v for all g and so
=Dy
™ = qu = .
1G]l

geG

It follws that r is a projection ontd/©.
Lemma 8.1 Suppose : VV — V is a projection onto the subspa€ecC V. Then

trp =dimU.
Proof of Lemma- We know that

V =imp & ker p.

Letey,..., e, be abasis foimp = U, and lete,, 1, ..., e, be a basis foker p.
Then

o — e; 1<i<m,
PEi=1 9 m+ 1 <ilen.

It follows that the matrix of with respect to the basis, .. ., e, is

1
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with m 1’s down the diagonal and O’s elsewhere. Hence
trp=trP=m =dimU.

4
Applying this to the averaging map

trr = dim VE.

On the other hand, by the linearity of the trace,
t LY tralg)
T = ralg
IG5

= ﬁ Zg:xa(g>

Thus .
dlmVG: = Xoa(Q);
|Gl 29:

as we had to show. «

Proposition 8.2 If k = R,

Xor (9) = Xa(97") = Xal9).
If k = C,

Xor (9) = Xa(97") = Xal9).

Proof » First supposé = C. Let\,..., \, be the eigenvalues of(g). Then
Xolg) =tra(g) = A+ -+ A\
In fact, we can diagonalise(g), ie we can find a basis with respect to which

A 0
g+ Alg) =

Now
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and so
Xalg ) =trA(g ) =X+ + A0

But sinceG is a finite groupg™ = e for somen (eg forn = ||G||), and so
M=1l=|\=1=X\"1=X\

for each eigenvalug;. Hence

Xa(gil) = )\_1+ e +)\_n = Xa(g)'

The result fork = R follows from this. For ifA is a real matrix satisfying
A" = [ then we may regard as a complex matrix, and so deduce by the argument
above that
tr(A™h) =tr A

But sinceA is real, so igr A, and thereforeHence
tr(A™h) =tr A.
R |

Corollary 8.1 Supposey, ( are representations d@k overk. Then

e Zgea Xal(9)xs(9) k=R
Ter Zgea Xalg)xs(9) ifh=C

-

Definition 8.2 We define the inner product
(u,v)  (ulg),v(g) € C(G, k))

by o
(u,v) = e Zgea ul(g)u(g) ifk=C
| ﬁ Ygecu(gv(g) ifk=R

Proposition 8.3 1. The inner productu, v) is positive-definite.

2. I{, B) = (Xa X5)-

Proposition 8.4 Two representations are equivalent if and only if their characters
are equal:

a = <= xalg) = xs(g) forall g € G.
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Proof » If o = 5 then
B(g) = PA(g)P™"

for someP. Hence

xs(9) = tr B(g) = tr A(g) = Xa(9)-

On the other hand, supposg(g) = xgs(g) for all ¢ € G. Then for each
simple representation of G overk,

I o, = Xo‘ 71 Xa
(:) HGHQEZG 9)
- XU’ X
||G||QEZG oy
— Ie.9).

It follows thato occurs the same number of timesdrand 5. Since this is true
for all simple representations

a= 0.

<
Proposition 8.5 Characters areclass functionsie
9 ~ 9= Xa(9) = Xa(9)-

Remark: Recall that we writey’ ~ ¢ to mean thay/, g are conjugate,ie there

exists anr € G such that
g = wgrt.

Proof » If

g/ — SCgSCil

then (since a representatign— A(g) is a homomorphism)

Alg) = Al)AlgA@)
= A@)A(g)A(2)™!

It follows from the basic property of the trace that

Xa(g') = tr A(g') = tr A(g) = xa(9)-
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Proposition 8.6 Simple characters are orthogonal, iedf 5 are distinct simple
representations aff overk then

(Xa>X5) = 0.

Proof » This is just a restatement of the fact that

I(a,B) = 0.

<
Whenk = C we can be a little more precise.

Proposition 8.7 The simple characters @f overC form an orthonormal set, ie

(Xa» X3) = { 0 otherwise.

Proof » Again, this is simply a restatement of the result for the intertwining num-
ber. <

Theorem 8.2 The groupG has at mosk simple represenations ovér wheres
is the number of classes (.

Proof » The class functions oy form a vector space
X C C(G,k).

Lemma 8.2 dim X = s.

Proof of Lemma- Suppose the conjugacy classes@ye . ., C,. Letc;(g) denote
the characteristic functiorof C;, ie

. 1 ifged,
cilg) = { 0 otherwise

Then the functions
ci(g) (1<i<s)

form a basis for the class functions 6h <«

Lemma 8.3 Mutually orthogonal vectors (with respect to a positive-definite form)
are necessarily linearly independent.
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Proof of Lemma- Suppose, .. ., v, are mutually orthogonal:

<”UZ',U]'> :Olfl#j
Suppose
)\1U1+"'+)\TUT:0.

Taking the inner product af; with this relation,
)\1<UZ‘,1)1> —+ 4 )\T<UZ‘,UT> =0= /\z =0.

Since this is true for all, the vectors, . . ., v, must be linearly independent. <

Now consider the simple characters@fover k. They are mutually orthogo-
nal, by the last Proposition; and so they are linearly independent, by the Lemma.
But they belong to the spacE of class functions. Hence their number cannot
exceed the dimension of this space, which by Lemmasl is «

Remark: We shall see that wheh = C, the number of simple representations
is actuallyequal tothe number of classes. This is equivalent, by the reasoning
above, to the statement ththe characters span the space of class functions.

Our major aim now is to establish this result. We shall give 2 proofs, one
based on induced representations, and one of the representation theory of product
groups.

Example: Since characters are class functions, it is only necessary to compute
their values for 1 representative from each class. ditegacter tableof a group
G overk tabulates the values of the simple representations on the various classes.
By convention, if the scalar fielé@ is not specified it is understood that we are
speaking of representations ov@er

As an illustration, let us take the groufy. The 6 elements divide into 3
classes, corresponding to the 3 cylic types:

1% e
21 (be), (ac), (ab)

3 (abc), (acd)

It follows that S5 has at most 3 simple characters o{erSince we already know
3, namely the 2 1-dimensional representatibnsand the 2-dimensional repre-
sentationy, we have the full panoply.

We draw up the character table as follows:

class| [17] | [21] | [3]
size| 1 | 3 | 2

1 1 1 1
€ 1 | -1} 1
o 2 0 | -1
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Let us verify that the simple characters form an orthonormal set:

.mj):éu¢&+&1q+zymz1

[@@::éu44+34~4+zyn:0

I(1,a) = éﬂ-yz+3n.o+24-—n=o

Ie,e) = é(1.1-1+3-—1-—1+2-1-1)_1

I(e,a) = é(1-1-2+3-—1-0+2-1-—1):0
1

Ia,a) = 6(1-2-2+3-0-0+2~—1-—1):1

It is very easy to compute the character of a permutational representation, that
is, a representation arising from the action of the gréupn the finite setX.
Recall that this is the representation in the function-sgacE, k) given by

(9f)(x) = f(g~"2).

Proposition 8.8 Supposer is the permutational representation Gfarising from
the action ofG on the finite sefX’. Then

Xalpha(g) = |[{z : gz = x}||

ie x(g) is equal to the number of elementsofleft fixed byy.

Proof » Let ¢, (t) denote the characteristic function of the 1-point sufsét ie

1 ift =z,
Ca(t) = { 0 otherwise.

The|| X|| functionsc, (t) form a basis for the vector spa€& X, k); and the action
of g € G on this basis is given by

gCx = Cyz,

since
ger(t) =co(gt) =1l <= g 't =0 +=1t =g

It follows that with respect to this basis

g — Alg),
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whereA = A(g) is the matrix with entries

Axy:{l if x = gy,

0 otherwise.
In particular
. 1 if z = gx,
1 0 otherwise.
Hence
Xalpha(g) = tr A = ZAm = |[{z : gx = z}|.
|

Example:Consider the action of the groufjy on X = {a, b, ¢}, Let us denote the
resulting representation hy We only need to computg,(g) for 3 values ofg,
namely 1 representative of each class.
We know that
Xole) = dimp = || X]| = 3,

The transpositioribc) (for example) has just 1 fixed point, namelyHence
X,(be) = 1.

On the other hand, the 3-cyadlebc) has no fixed points, so
X,(abc) = 0.

Let us add this character to our table:

class| [13] | [21] | [3]
size | 1 3 | 2
1 1 1 1
€ 1 |-1]1
« 2 0 -1
p 3 1 0

We know thatp is some integral combination of the simple characters, say
p=r-1+s-e+t-a,

wherer, s,t € N. These ‘coefficientsr, s, t are unique, since the simple charac-
ters are linearly independent.
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It would be easy to determine them by observation. But let us compute them
from the character gf. Thus

1
r=I(lp) = (1-1:3+3-1-14+2.1.0)=1
1
s=1(ep)=(1-1:3+43 ~1-142:1:0)=0
1
t=1I(ap)=(1-2:3+3:0-14+2--1:0)=0

Thus
p=1+a.



Chapter 9

The Regular Representation

The group: acts on itself in 3 ways:
e By left multiplication: (g, x) — gx
e By right multiplication: (¢, z) — zg™!
e By inner automorphism(g, x) — gzg™*

The first action leads to thregular representation defined below. The second
action also leads to the regular representation, as we shall see. The third action
leads to theadjointrepresentation, which we shall consider later.

Definition 9.1 Theregular representatioreg of the groupG over k is the per-
mutational representation defined by the action

(9,2) — gz
of G on itself.

Proposition 9.1 The character of the regular representation is given by

1 ifg=e,
Xreg(9) = { 0 otherwise

Proof » We have to determine, for eaghe G, the number of elements € G
left fixed by g, ie satisfying
gr = .

But
qQr = — g = €.

Thus no elemenj # e leaves any element fixed; while= ¢ leaves every element
fixed. <«
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Proposition 9.2 The permutational representation defined by right multiplication

(g,2) — g™

is equivalent to the regular representation.

Proof » No elementy # e leaves any element fixed; while= e leaves every
element fixed:
xg’l =T < g=¢.

Thus this representation has the same character as the regular representation; and
so itis equal (that is, equivalent) to it. «

Alternative proofs In fact it is readily verified that the representation defined by
right multiplication is thedual reg* of the regular representation. But the regular
representation is self-dual, since its character is read.

Proposition 9.3 Supposer is a representation off overk. Then

I(a,reg) = dima.

Proof » Plugging the result for the character afg above into the formula for
the intertwining number,

I(a,reg) = ﬁz Xa (g™ ) xees(9)
1
- a7l

= dimc.

<
This result shows thavery simple representation occurs in the regular repre-
sentation sincel (o, reg) > 0. Whenk = C we can be more precise.

Proposition 9.4 Each simple representation of G over C occurs justdim o
times in the regular representatiaeg of G overC:

reg = Z(dim o)sigma,

where the sum extends over all simple representationisz overC.
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Proof » We know thatreg, as a semisimple representation, is expressible in the
form

reg=>» e,0 (e, €N).

Taking the intertwining number of a particular simple representatiaith each
side,

I(o,reg) = e,I(0,0) = e,

= dimo,
by the Proposition. «

Theorem 9.1 The dimensions of the simple representations. . , o, of G over
C satisfy the relation

dim® oy + - - - + dim® o, = ||G]|.

Proof » This follows at once on taking the dimensions on each side of the identity
reg = » (dimo)sigma.
|
Example:ConsiderS;. We have
195 = 120;
while S5 has 7 classes:
[1°], [21°], [2%1], [317], [32], [41], [5].

ThusS5 has at most 7 simple representations dver
Let us review the information on these representations that we already have:

1. S5 has just 2 1-dimensional representationande;
2. The natural 5-dimensional representatiasf S; splits into 2 parts:
p=1+aq,
wherecx is a simple 4-dimensional representationsef

3. If o is a simple representation 6f of odd dimension thers # o;
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4. More generally, itr is a simple representation 6f with o([21%]) # 0 then

€0 # o,
We can apply this last result ta. For
Xa([21%]) = x,([21°]) =1

= 3—-1

= 2.
Hence

ea # a.

Thus we have found 4 of the 7 (or fewer) simple representatiofis.df, ¢, a, ea.
Our dimensional equation reads

120 =124+ 12+ 42+ 42 + a®> + b* + &2,

wherea, b, ¢ € N, with a,b, ¢ # 1. (We are allowing for the fact thai; might
have< 7 simple representations.) In other words,

a4+ b? + & = 86.

It follows that
>+ b+ =6 (mod 8).

Now
n*=0,1, or4 (mod 8)

according as = 0 (mod 4), orn is odd, orn = 2 (mod 4). The only way to
get6is ast + 1+ 1. In other words, 2 ofi, b, c must be odd, and the other must
be= 2 (mod 4). (In particulara,b,c # 0. So S5 must in fact have 7 simple
representations.)

By (3) above, the 2 odd dimensions must be equal:asayb. Thus

2a° + ¢ = 86.
Evidentlya = 3 or 5. Checking, the only solution is
a=b=>5c=6.
We conclude that; has 7 simple representations, of dimensions

1,1,4,4,5,5,6.



Chapter 10

Induced Representations

Each representation of a group defines a representation of a subgroup, by
restriction; that much is obvious. More subtly, each representation of the
subgroup defines a representation of the full group, by a process aslled
duction This provides the most powerful tool we have for constructing
group representations.

Definition 10.1 Supposé is a subgroup of7; and suppose: is a representation
of G in V. Then we denote byy the representation off in the same spac¥
defined by restricting the group action fragto H. We callay therestrictionof
ato H.

Proposition 10.1 1. (a+ )y = ay + Ou

2. (aB)g = auPu

3. (a*)H = (CYH)*

4. 1p =1

5. dimay = dim«

6. Xau (h) = Xa(h)
Example:We can learn much about the representationS by considering their
restrictions to subgroupd C G. But induced representations give us the same
information—and more—much more easily, as we shall see; so the following
example is of more intellectual interest than practical value.

Let us see what we can discover about the simple charactefs (@iver C)
from the character table fd¥;. Let's assume we know—as we shall prove later

424—-1 10-1
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in this chapter—that the number of simple character§,0of equal to the num-
ber of classes, 5. Let's suppose too that we krfiwhas just 2 1-dimensional
representationd, ande. Let~ be one of the 3 other simple representations§ of
Let
vss = al +be +ca (a,b,c € N).

By the Proposition above, fi C g (whereh is a class in andg a class inG)
then

Xv(g) = XWH(B)-
So we know some of the values 9f:

Class [14] 21%]  [27] [31] [4]

size 1 6 3 8 6
1 1 1 1 1 1
€ 1 —1 1 1 -1
v la+b+2c a—b x a+b—c vy

We have found nothing abowt [2%]) andx([4]), since these 2 classes don't inter-
sectS;. However, if we call the values andy as shown, then the 2 equations

I(1,7) =0, I(e,v) =1
give

15a+3b—6c+3x+6y = 0
3a+15b —6¢c+ 3z +6y = 0O

Setting
s=a+b t=a-—0b,

for simplicity, these yield
xr=—-3s+2t, y=—t.

The table now reads

Class| [1%] [217] 22] (31]  [4]

size 1 6 3 8 6
1 1 1 1 1 1
€ 1 -1 1 1 -1
v |s+2c t —35+2c s—c —t

Sincewy is—by hypothesis—simple,

I(y,7) =1.
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Thus
24 = (5 + 2¢)® + 6t* + 3(—3s + 2¢)? + 8(s — ¢)* + 6t°.

On simplification this becomes

2 = 357 —dsc+ 22+ t?
= 2+ 2(s—c) + 12

Noting thats, ¢, c are all integral, and that, ¢ > 0, we see that there are just 3
solutions to this diophantine equation:

(a,b,c) =(1,0,1), (0,1,1), (0,0,1).

These must yield the 3 missing characters.

We have determined the character tableSgfwithout constructing—even
implicitly—the corresponding representations. This has an interesting parallel in
recent mathematical history. One of the great achievements of the last 25 years has
beenthe determination of all finite simple groupe groups possessing no proper
normal (or self-conjugate) subgroups. The last link in the chain was the deter-
mination of theexceptionalsimple groups, ie those not belonging to the known
infinite families (such as the family of alternating groupsfor n > 5). Finally,
all was known except for the largest exceptional group—the so-calledmoth
group. The character table of this group had been determined several years before
it was established that a group did indeed exist with this table.

As we remarked earlier, the technique aboveasrecommended for serious
character hunting. The method of choice must be induced representations, our
next topic.

SupposéeV is a vector space. Then we denote @y, ') the G-space of
mapsf : G — V, with the action oiG defined by

(9f)(@) = fg~'2)
(This extends our earlier definition 6f(G, k).)

Definition 10.2 Supposé is a subgroup of7; and suppose is a representation
of H in U. Then we define the induced representatiénof ' as follows. Let

V={FeC(G,U): F(gh)=h""F(g) forallge G ,he H}.

ThenV is a G-subspace of’ (G, U); and o“ is the representation of’ in this
subspace.
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Remark: ThatV is a G-subspace follows from the fact that we are actington
with G andH from opposite sides{ on the left,H on the right); and their actions
therefore commute:

(97)h = g(zh).
Thus if F € V then
(9F)(zh) = F(g 'zh)
= h'F(g'x)
hH((gF)(x)),

ieglk eV.
This definition is too cumbersome to be of much practical use. The following
result offers an alternative, and usually more convenient, starting point.

Lemma 10.1 Suppose = ¢1, ¢, ..., g, are representatives of the cosetsrofin
G, ie
G=gHUgpHU..Ug.H.

Then there exists aff-subspacé/’ C V' such that
(a) U’ is isomorphic tdJ as anH-space,
OV =qaU&pU&..®gU.

Moreover the induced representatiof¥ is uniquely characterised by the exis-
tence of such a subspace.

Remarks:

1. After the lemma, we may write

V= glU@ggU@@gTU

2. The action of7 on V' is implicit in this description of/. For suppose is
in theith summand, say
v = gil;

and supposey; is in thejth coset, say

99; = gjh.

Thengv is in the jth summand:

gv = ggiu = g;(hu).
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3. The difficulty of taking this result as the definition of lies in the awk-
wardness of showing that the resulting representation does not depend on
the choice of coset-representatives.

Proof » To eachu € U let us associate the functia = v/(g) € C(G,U) by

vy ) ogu ifgeH
“(9)_{0 otherwise

Then it is readily verified that
(@) v €V, ieu'(gh)=h""(g) foralhe H.
(b) If u— «' thenhu — hu'.

Thus the mapu — ' sets up anH-isomorphism betweed®/ and anH-
subspacé/’ C V.
Suppose&’ € V. From the definition ot/

F(gh) = h™'F(g).

It follows that the values of’ on any cosey; H are completely determined by its
value at one poing;. ThusF' is completely determined by itsvalues

uy = F(e),us = F(g2), ..., ur = F(gy).
Let us write
F — (uy,ug, ..., u,).

Then it is readily verified that
v~ (u,0,...,0);

and more generally
giu' — (0,..,u,..,0),
ie the functiong;u’ vanishes on all except thith cosety; H, and takes the value
atgz
It follows that
F = giuy 4 gouy + ... + gru,,
since the 2 functions take the same values at-theintsg;. Moreover the argu-

ment shows that this expression #6re V' as a sum of functions in the subspaces
U =qU, gU,.., g.U', respectively, is unique: so that

V=gUDanlU'D. Dal"
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Finally this uniquely characterises the representationsince the action of
G onV is completely determined by the action8fon U, as we saw in Remark
1 above. «

Example:Suppose is the representation ¢f; in U = C? given by

(abc)H<‘(‘; w01> (ab)|—><(1) é)

Let us consider the representationsafinduced byx (where we identifyS; with
the subgroup ob, leavingd fixed).

First we must choose representatives of$heosets inS;. The nicest way to
choose coset representativesbfn G is to find—if we can—a subgroup C G
transverseo H, ie such that

1. TNH=/{e}
2Tl H] =TG-

It is readily verified that these 2 conditions imply that each elemenrt G is
uniquelyexpressible in the form

g=th (teT,he H)

It follows that the elements df represent the cosegd? of H in G.
In the present case we could tdkeo be the subgroup generated by a 4-cycle:
say
{e, (abcd), (ac)(bd), (adcb)}.

Or we could take
T = Vi = {e, (ab)(cd), (ac)(bd), (ad)(bec) }

(the Viergruppe). Let’s make the latter choice; the fact thas normal (self-
conjugate) inG should simplify the calculations. We have

Sy = S3U (ab)(cd)S3 U (ac)(bd)Ss U (ad)(bc)Ss;
and son“ is the represention in the 8-dimensional vector space
V =UP(ab)(cd)U @ (ac)(bd)U E(ad)(be)U.
As basis for this space we may take

€1 =¢, es = [, es = (ab)(cd)e, ey = (ab)(cd)f,
es = (ac)(bd)e, eg = (ac)(bd)f, er = (ad)(cb)e, es = (ad)(be)f,
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wheree = (1,0), f = (0,1).
To simplify our calculations, recall that if, = € S,,, and

r = (a1ay...a.)(biby...bs) ...

in cyclic notation, then

gffg_l = (gabgaQa SR 7ga7”)(gb17ng’ T ’gbs) U

since, for example,
(9297 ")(g9ar) = gray = gas.

(This is how we show that 2 elements &f are conjugate if and only if they are
of the same type.) In our case, suppébse Ss3,t € V,. Then

hth™ €V,
sinceV, is normal. In other words,
ht = sh,

wheres € V.
Now let’s determine the matrix representifgh). By the result above, we
have

(ab) - (ab)(cd) = (ab)(cd) - (ab)
(ab) - (ac)(bd) = (bc)(ad) - (ab)

Thus
(ab)es = (ab) - (ac)(bd)f
= (ad)(be) - (ab) f
= (ad)(bc)e
In fact
(ab)e; = eq, (ab)ey = ey,
(ab)es = ey, (ab)ey = eg,
(ab)es = es, (ab)eg = e,
(ab)er = eg, (ab)es = es
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Hence

(ab) —

SO DO DO OO
O OO O OO
SO OO o oo
_ o O O o oo
SO = OO O oo
SO O OO OO

S OO O oo+ O
SO DO OO kOO

0 0 1 00

It is not hard to see thdtb) and (abed) generateS,. So the representation
ot will be completely determined—in principle, at least—if we establish the
matrix representingabcd). We see now that it was easier to detemine the matrix
representingab), becauséab) € Ss. But the general case is not difficult. Notice
that

(abed) = (ad)(be) - (ac)

It follows that (for example)

(abed) - (ac)(bd) = (ad)(be) - (ac) - (ac)(bd)

|
—
IN
U
S~—
—~
j=l
2}
N~—
~—
Q
O
~—
—
S
U
~—
—
IN
2}
N~—

Now (ac) = (abc)(ab); SO undery,

We see that, for example,

(abed)es = (abed) - (ac)(bd)e

= (ab)(cd) - (ac)e
= (ab)(cd)w™f

We leave it to the reader to complete this calculation of the matrix representing
(abed).
Clearly this is too time-consuming a hobby to pursue.

It is evident that
h~hinH=—h~HhIinG

In other words, each clagsin H lies in a unique clasgin G-

hCg.
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Or, to put it the other way round, each clgss G splitsinto classe$,, ..., A, in
H:

GgNH=hU---Ubh,.

Theorem 10.1 Supposé is a subgroup of+; and suppose is a representation

of H. Then
||G||
Xgc(g) = hlxs(

hCg

where the sum runs over thogeclasses: contained ing.

Proof » Let g, ..., g, be representatives of the cosetdbin G, so that3“ is the

representation in
V=gU@ - PgU.
Lemma 10.2 With the notation above

xse(g) = >, xs(h),

i:g; 'ggi=heH
where the sum extends over those coset-representatif@swhichg; 'gg; € H.

Proof » Let us extend the functiogs (which is of course defined o) to G' by
setting

xs(g) =0if g ¢ H,
then our formula can be written:

Xgc(9) =D xs(g: ' 99:),

with the sum now extending over all coset-representatives.
Supposey, ..., e,, is a basis fol/. Thenge; (1 <i<r,1<j<m)isa
basis forV/.
Suppose belongs to théth summand ol/, say

v = i
and supposey; belongs to theth coset, say

99; = g;h.

Then
gv = ggiu = g;(hu).
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So
g(g:U) C g;U.

Thus the basis elements ¢it/ cannot contribute tq e (g) unlessi = j, that is,
unlessgg; = g;h, ie
9; 99 =h e H.

Moreover if this is so then

g(giej) = gi(h/ej),
ie them x m matrix defining the action of on g;U with respect to the basis
gi€1, .-, giem 1S just B(h); so that its contribution tq sc (g) is

xs(h).

The result follows on adding the contributions from all those summands sent into
themselves by. «
Lemma 10.3 For eachg € G,
1
Xge(9) = m Z xs(h)

g'€G:g'"tgg'=heH
Proof » Suppose we take a different representative oftheoset, say

gz/' = gih.
This will make the same contribution to the sum, since

/

—1 _ _
9 99i = h""(g; " 99:)k;

and
Xs(h™ h'h) = xs(h).
Thus if we sum over all the elements Gf we shall get each coset-contribution
just||H] times. <«
To return to the proof of the Proposition, we compute how many times each
elementh € H occurs in the sum above.
Two elementg/, ¢” define the same conjugate ®in G, ie

1

g 99 =9" 99",
if and only if ¢”¢’~" andg commute, ie if and only

9"N(g) = ¢'Nl(yg),
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where

N(g) ={z € G : gz = xg}.
It follows that eachz-conjugateh of g in H will occur just||N(g)|| times in the
sum of Corollary 1. Thus if we sum over these eleméntge must multiply by

[N (g)]l-
The result follows, since

Gl
NI ==
Il
by the same argument, each conjugatégx of g arising from|| N (g)|| elements
Z. <4
Examples:

1. Letus look again at*—%. The classes o, andS; are related as follows:

= 15

Hence

Class
size

Since
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o has just 3 distinct simple parts. whose determination is left to the reader.

The relation betwees, and.S; is unusual, in thatlasses never splitf g
is a class inS, theng N S5 is either a whole clask in H, or else is empty.
This is true more generally f&¥,, andS,, (m < n), wheres,, is identified
with the subgroup of,, leaving the last: — m elements fixed. If is a class
in S, then

gN S, =horf.

. Now let’s look at the cyclic subgroup
Cy = {(abed)) = {e, (abed), (ac)(bd), (adch)}

of S;. SinceC} is abelian, each element is in a class by itself. 4.be the
1-dimensional representation ©f defined by

(abed) — i
We have
1]NCy = {e}
212)NCy = 0
2°]NCy = {(ac)(bd)}
B1NnCy = 0
[4]NCy = {(abed), (adeb)}
Hence
() = fpvle) =6
Xos: ([217]) = 0
X () = s xol(ac) (b)) = -2
Xes1([31]) = 0
Xesa([4]) = %<x9(<abcd>>+ xo((adcb)))
= i+ (=i)=0

Class| [11] [217] [2?] [31] [4]
size | 1 6 3 8 6
054 6 -2 0 0 0
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Since )
S. Sa\ 2 2\ __
I(0 4794)_ﬂ(6 +6-2)—3,

65+ has just 3 distinct simple parts. whose elucidation we again leave to the
reader.

3. dima® =[G : H]dim «.

It is worth noting that permutation representations are a particular case of in-
duced representations.

Lemma 10.4 Supposé&- acts transitively on the finite séf. Leta be the corre-
sponding representation 6f. Taker € X; and let

S; ={9g€G:gx =1}

be the corresponding stabilizer subgroup. Then

o =1%7C

ie « is the representation aff obtained by induction from the trivial representa-
tion of S,.

Remark:The result is easily extended to non-transitive actions. For in that case the
set splits into a number of orbits, on each of whi¢hcts transitively. On applying

the Proposition to each orbit, we conclude that any permutation representation can
be expressed as a sum of representations, each of which arises by induction from
the trivial representation of some subgrougof

Proof » By Definition 1,
o =157¢

is the representation in the subspace
V c C(G)
consisting of those functions : G — k satisfying

F(gh) =h"'F(g9) Vhe&S,.
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But sinceS, acts trivially onk this condition reduces to

F(gh) = F(g),

ie F' is constant on each cosgb,. ThusV can be identified with the space
C(G/S,, k) of functions on the set’/ S, of S,-cosets inG.

On the other hand, th@-setsX andG/S,. can be identified, with the element
gr € X corresponding to the coseg$,. Thus

C(G/Su, k) = C(X, k).

Sincea is by definition the representation 6fin C'y the result follows. «

Proof » (Alternative) By Proposition 2,

Xer(9) = [Hi:g7"99: € Su}|
= |{i: g9iv = gix}|]
= |{ye X :gy =y}l
since eachly € X is uniquely expressible in the forgn= g;x. But by Proposition
???,
Xa(9) = [{y € X : gy = y}.

Thus
Xa = Xa's
and so
a=ao =1%7C
<

Induced representations are of great practical value. But we end with an ex-
tremely important theoretical application.

Proposition 10.3 The number of simple representations of a finite gréus
equal to the number of conjugacy classes:in

Proof » Let s denote the number of classes(i We already know that
e The characters af are class functions.

e The simple characters are linearly independent.
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ThusG has at most simple characters; and the result will follow if we can show
that every class function is a linear combination of characters.

It suffices for the latter to show that we can find a linear combination of char-
acters taking the value 1 on a given clgsand vanishing on all other classes.

We can extend the formula in the Theorem above to define a map

f(h)— f9(g): X(H k) — X(G,k)

from the spaceX (H, k) of class functions on the subgroup C G to the space
X (G, k) of class functions o, by

= h||f(R).
gl 2= 117

Evidently this map is linear:
F(h) = af(h) +bg(h) = F(g) = af%(g) + bf(9)-

Choose any € g. Let H be the subgroup generated dyThus ifg is of order
d,
H=Ci=(g9)={e.9,6%...9""}

Let # denote the 1-dimensional characteri@rdefined by

SinceH is abelian, each element is in a class by itself, so all functiond @me
class functions. The characters o are

1,60,6%,...,0%°%
Let f(h) denote the linear combination
f =14+ (.4)_19 + w—?e? T w—(d—l)ed—l.

Then
o | d ifti=1,
fm)—{OW@:Q’
ie f vanishes off the7-class{g}, but is not identically 0.
It follows that the induced functiorf®(g) has the required property; it van-
ishes offg, while
_ |Glld
f4(@9) = -
9= a1

£ 0.
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This proves the result, singé& is a linear combination of characters:
fG’ _ 1G + weG + w?(&Z)G NS w—(d—l)(ed—l)G‘

<

Examples:

1. S3 has 3 classed:?, 21 and3. So it has 3 simple representations oleas
of course we already knew: namelyelanda.

2. D(4) has 5 classege}, {s*}, {s, s}, {c,d} and{h,v}. So it has 5 simple
representations ovef. We already know of 4 1-dimensional representa-
tions. In addition the matrices defining the natural 2-dimensional represen-
tation inRR? also define a 2-dimensional complex representation. (We shall
consider this process of complexification more carefully in Chapter ???.)
This representation must be simple, since the matrices do not commute, as
they would if it were the sum of 2 1-dimensional representations. Thus all
the representations @, are accounted for.

Proposition 10.4 (Frobenius’ Reciprocity Theorem) Suppasés a representa-
tion of G, and 3 a representation oif C G. Then

Io(a, B9) = Iy (am, B).

Proof » We have

> lIkllxs(h

hCg

I 5 ¢ - «
ale: 6%) HGHZH oI 51

= m; 12| xa () x5(P)
= IH(OZH,ﬁ)-

<
This short proof does not explawhyFrobenius’ Reciprocity Theorem holds.
For that we must take a brief excursion into category theory.
Let C; denote the category af-spaces and--maps. Then restriction and
induction defindunctors

S:CG—>CH, ,IZCH—>CG.

Now 2 functors
E:Cl—>C2, FZC2—>61
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are said to badjointif for any 2 objectsX € C,,Y € C, there are bijections
Me, (X, FY) = M¢,(EX,Y)
which are natural in the sense that given any morphism
f:X—-X

in C; the diagram
M(X, FY) «— M(X' FY)

M(EX)Y) «— M(EX"Y)
is commutative, and similarly given any morphism

e:Y =Y

in C, the diagram
M(X,FY) — M(X, FY')

M(EX)Y) — M(EX,Y")

IS commutative.

It's not difficult to establish—but would take us too far out of our way—that
theinduction and restriction functors are adjoimt this sense: il is aG-space,
andU a H-space, then

hom® (Vi, U') = hom®(V,U%).
On taking dimensions, this gives Frobenius’ Theorem:

I (o, B) = Ia(a, 3%).



Chapter 11

Representations of Product Groups

The representations of a product graiip< H can be expressed—in as neat
a way as one could wish—in terms of the representations afd H .

Definition 11.1 Supposex is a representation of7 in the vector spacé& overk,
and 3 a representation of{ in the vector spac& overk. Then we denote by
a x (3 the representation of the product groGpx H in the tensor produdt/ @ V'
defined by

(9, h)Y u®@v=> gu® hv.
Lemma11.1 1. xaxp(9,h) = Xal9)xs(h)
2. dim(a x 3) = dima dim 3
3. if « and 3 are both representations 6f then
(a x B)e = ap,
where the restriction is to the diagonal subgroup
G={(9,9) :9g€ G} CGxQG.

Proposition 11.1 The representation x 5 of G x H overC is simple if and only
if « and§ are both simple. Moreover, every simple representatiofd of H is of
this form.

Proof »

Lemma 11.2 If a;, ay are representations a, andj3;, 5, are representations of
H, all overk, then

I(on % Br, a9 x Ba) = I(on, B1)I (0, B2)

424—-1 11-1
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Proof » We have

1 -
I(Oél X 517&2 X 52) = |G||H| Z Xa1x 61 (97 h)X@z><ﬁ2(gr h)
(g9,h)eGxH
1

= o0l Z Xay (g)Xﬁl (h)Xaz (9>Xﬁ2 (h)
GIH ( pyetxn

1 e 1
= @ZXM(Q)X@Z(Q)@

geG

= I(on, B1)I(ag, B2)

Z X1 (h)Xﬂ2 (h)

heH

<
Recall that a representationoverC is simple if and only if

I{a,a) = 1.

Thus if a is a simple representation 6f and 3 is a simple representation of
H (both overC) then

I(a x B,ax §) = I(a,a)I(3,5) = 1;

and thereforex x [ is simple.
Now supposé&- hasr classes andl hass classes. The&' x H hasrs classes,
since
(g,h) ~(¢',h) <= g~ g andh ~ I

But we have just produced simple representationsx 3 of G x GG; so these are
in fact the full complement.
(The lemma shows that these representations are distinct; for

I(ag x Br, a9 X 1) = I(ay, az) (B, B32) =0

unlessa; = ap andp; = B5.) <

It is useful to give a proof of the last part of the Proposition not using the fun-
damental result that the number of simple representations is equal to the number
of classes; for we can give an alternative proof of this result using product groups.

Proof » (of last part of Proposition). Supposés a representation @i x H in
W overC.
Consider the restrictiofy of v to the subgrougi = e x H C G x H. LetV
be a simple part ofl/:
Wp=Vea&-..

Let
X = hom™(V, W)
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be the vector space formed by themapst : V' — W. This is non-trivial since
V' is a subspace di/.
Now X is aG-space, under the action

(gt)(v) = g(tv)
Let U be a simple=-subspace oK. Then

hom® (U, X) = hom® (U, hom” (V,W))
hom“* (U @ V,W).

Since this space is non-trivial, there existS & H map
0: UV —W.
But since bothV @ V andW are simple, we must have
kerf =0, im6d=1W.

Hencef is an isomorphism, ie

W=U®V.
Thus

¥=axf,
whereq is the representation @f in U, and is the representation of in V.
<«

Theorem 11.1 Supposé&; hasn elements and classes. Then
1. G hass simple representations ovér,
2. ifthese arery, ..., o0, then
dim?o; + - - - + dim% o, = n.
Proof » Let 7 be the permutation representationd¥ G in C'(G, k) induced by

the action
(9. h)x = gzh™

of G x G ond.

Lemma 11.3 The character of is given by

| 1Gl/1g] itg~h
Xr(g:h) = { 0 otherwise
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Proof » Sincer is a permutational representation,

x-(9,h) = Ha:(g,h)x =z}
= Ho:gzh™ =}
= [z :27'gx =R}

If g ¢ hthen clearly no such exists.
Supposegy ~ h. Then there exists at least ongsayz,, such that

h = 2" gxo.
Now
v lgr=h <= 2 gz =u1;"g70
= (vx7')g = g(zg")
— zx;,' € Z(9)
< z € Z(g)xo.
Thus
Xr(g,h) = Ha:gzh™ =2z
= 1Z(9)]
= |G|/lgl.
<

Lemma 11.4 Supposé&- has simple representations, . .. o5. Then

T=0] X0+ +0, X0

Proof » We know that the simple representations’ok G areo; x o;. Thus

T= Ze(i,j)ai X 0,

4,J

wheree(i.j) € N.
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To determine=(i, 7) we must compute the intertwining number
I(T7O-i X Jj) = |G|2 ZXT g? XO'iXO'j<g7h/)

= |G|QZXT 9, )Xo, (9) X0, ()
1 |G|
IGP 2 131 *

= ﬁxai (9)Xs,(9)

- ﬁxa; 90, (9)

= I<O;70j)'

o:(9)Xa, ()

hwg

Thus
1 |f O';-k = O'j
0 otherwise

I(1,0; xaj):{

In other wordsg; x o, occurs int if and only if o7 = ¢}, and then occurs just
once. «

It follows from this result in particular that the number of simple representa-
tions is equal td (7, 7).

Lemma 11.5 I(7, 7) is equal to the number of classesih

Proof » We have

I(r,7) = ‘GPZIXT g,h

- \GPZZCG')

7 oo \ 9]
elk

N
= g —
\G!“';' AFE

1

B ?m

equal to the number of classes.«
That proves the first part of the Theorem; the number of simple representations
is equal tol (7, 7), which in turn is equal to the number of classes.
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The second part follows at once on taking dimensions in
T=0] X0+ +0, X0

<

Example:We can think of product groups in 2 ways—as a method of constructing
new groups, or as a way of splitting up a given group into factors.
We say that: = H x K, whereH, K are subgroups af, if the map

Hx K — G:(hk)— hk

is an isomorphism.
A necessary and sufficient condition for this— supposihfinite—is that

1. elements off and K commute, ie
hk = kh
forallh € H, k € K; and
2. |G| = |H]|K].

Now consider the symmetry groug@ of a cube. This has 48 elements; for
there are 8 vertices, and 6 symmetries leaving a given vertex fixed.

Of these 48 symmetries, half are proper and half improper. The proper sym-
metries form a subgroup C G.

Let Z = {I, J}, whereJ denotes reflection in the centre of the cube. In fact
Z is the centre of7:

Z=7G={2€G:zg=gzforallg € G}.

By the criterion above,
G=7ZxP

Moreover,
P =25,

as we can see by considering the action of symmetries on the 4 diagonals of the
cube. This defines a homomorphism

©:P—S5,.
Since no symmetry send every diagonal into itself,

ker© = {I}.
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ThusO is injective; and so it is bijective, since
|P| =24 = |Sy].

Hence© is an isomorphism.
Thus
G = CQ X S4.

In theory this allows us to dtermine the character tablé’dfom that of S,.
However, to make use of this table we must know how the class€s &fS, are
to be interpreted geometrically. This is described in the following table.

class inCy, x P | size| order geometricaldescription

{I} x 11 1 1 | identity

{J} x 11 1 1 | reflection in centre

{I} x 212 6 2 | half-turn about axis joining centres of op-
posite edges

{J} x 212 6 2 | relflection in plane through opposite
edges

{I} x 22 3 2 | rotation about axis parallel to edge
throughnm

{J} x 2? 3 2 | relflection in central plane parallel to face

{I'} x 31 8 3 | rotation about diagonal through?

{J} x 31 8 6 | screw reflection about diagonal

{I} x4 6 4 |rotation about axis parallel to edge
through+-73

{J} x4 6 4 | screw reflection about axis parallel to
edge

The character table af, x S, id readily derived from that of,. We denote
the non-trivial character af', (J — —1) by 7.

Class|I x 1% Jx1* I x212 Jx212 Tx2%2 Jx221x31 Jx311Ix4Jx4
Ix1] 1 1 1 1 1 1 1 1 1 1
nx1| 1 -1 1 -1 1 -1 1 -1 1 -1
Ixel| 1 1 -1 -1 1 1 1 1 -1 -1
nxel|l 1 -1 —1 1 1 -1 1 -1 -1 1
Ixal| 2 2 0 0 2 2 -1 -1 0 0
n X o 2 —2 0 0 2 —2 —1 1 0 0
1x3| 3 3 1 1 -1 -1 0 0 -1 -1
nxB| 3 -3 1 -1 —1 1 0 0 -1 1
1xel| 3 3 -1 -1 -1 -1 0 0 1 1
nxel| 3 -3 -1 1 -1 1 0 0 1 -1
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Now supposer is the 6-dimensional permutational representatiordzoh-
duced by its action on the 6 faces of the cube. Its character is readily determined:

ClasST x 1% Jx 14 I'x212 Jx212 I x2%2 Jx22 Ix31 Jx31 Ix4Jx4
T 6 0 0 2 2 4 0 0 2 0

For example, to determing, ({J} x 4) we note that an element of this class
is a rotation about an axis parallel to an edge followed by reflection in the centre.
This will send each of the 4 faces parallel to the edge into an adjacent face, and
will swap the other 2 faces. Thus it will leave no face fixed; and so

X=({J} x4)=0.

We have
1
I(m1x1) = o(1-1-646-2-143-2-143-4-146-2-1) =1

(as we knew it would be, since the action is transitive). Similarly,

1

I(mnx1) = 2(1-1:6-6:2-1+3-2:1-3-4:146-2-1) =0,
1

I(m1xe) = (1-16-6-2:143-2:1+3-4:1-6-2-1) =0,
1

I(mnxe) = o(1-1:6+6:2:143:2:1-3-4-1-6-2-1)=0.

Itis clear at this point that the remaining simple parts ohust be of dimensions
2 and 3. Thusr contains eithet x « orn x «. In fact

1
I(mlxa)= o(1-6-243:2:243-4-2)=1.

The remaining part drops out by subtraction; and we find that

T=1x14+1xa+nxef.



Chapter 12

Exterior Products

12.1 The exterior products of a vector space

Supposé/ is a vector space. Recall that it#h exterior product\"V is a vector
space, spanned by elements of the form

vy A Ao, (v1,...,0. € V),
where
Vet Ao AUy, = €(m)vg A+ Aoy

for any permutationr € S,..
This implies in particular that any product containing a repeated element van-
ishes:
e AUAAUDAe =0,

(We are assuming here that the characteristic of the scalatfisldot 2. In fact
we shall only be concerned with the cages R or C.)
The exterior produch”V could be defined rigorously as the quotient-space

NV =V /X,
whereX is the subspace df®” spanned by all elements of the form
Unt A oo O, — €(M)Up A v - A vy,

T

wherevy, ..., v, € V. € S,, ande denotes the parity representationf
Suppose;, ..., e, is a basis fol/. Then

e, Neig N+ Ne, (i1<i2<"'<ir)

4241 12-1
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is a basis forA"V. (Note that there is one basis element corresponding to each
subset of ey, . .., e, } containingr elements.) It follows that iflim V' = n then

ANV =0if r > n;

dim A"V = (”)
T

Now supposé’: V — V' is a linear map. Then we can define a linear map

while if r < n then

ANT: NV = ANV

by
(AT (y A== Avp) = (Tog) A== A (Toy).

(To see that this action is properly defined, it is sufficient to see that it sends the
subspaceX ¢ V" described above into itself; and that follows at once since

(A"T) (Vg1 A=+ Ao, )—€e(m)viA. . v, = (Tog) A - AN(Tog, ) —e(m) (To)A- - A (Tv,)

is again one of the spanning elementsXa)
In the case = n, A"V is 1-dimensional, with the basis element

e1 N\ Ney;

and
AT = (det T))1.

This is in fact the “true” definition of the determinant.
Although we shall not make use of this, the spacég can be combined to
form theexterior algebranV of V/

AV =EP AV,
with the “wedge multiplication”
ANV XAV — NV
defined by
(U Ao Au) A0 Ao Avg) =ug A= A Avg A+ A g,

extended to\V" by linearity.
Observe that it € A"V, b € A*V then

bAa=(—1)"aNb.

In particular the elements of even order forrm@anmutativesubalgebra of\V'.
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12.2 The exterior products of a group representa-
tion

Definition 12.1 Supposex is a representation afr in V. Then we denote by «
the representation af in A"V defined by

glog A Aw) = (gur) A+ A (goy).
In other wordsy acts through the linear mag (a(g)).

Proposition 12.1 Supposg; € G has eigenvalues, ..., \, in the representa-
tion a. Then the character of"« is therth symmetric sum of thes, ie

X/\"a(Q) - Z )‘il >\i2 e )‘ir'

1 <ig<-+<ip

Proof » Let us suppose thdt = C. We know thatx(g) can be diagonalised, ie
we can find a basis,, . . ., e,, of the representation-spatesuch that

ge; = \ie; (1=1,...,n).
But now
ge€i, /\6,‘2 JANKIERIVAN €i, = Ail/\ig .. .)\ileil /\61'2 AN /\Gir,

from which the result follows, since these products form a basis’for. <

12.3 Symmetric polynomials

We usually denote the symmetric product in the Proposition above by

ST A A
It is an example of @ymmetric polynomiah Ay, ..., \,.
More generally, supposé is a commutative ring, with 1. (In fact we shall
only be interested in the rindgand@Q.) As usual A[z4, ..., z,| denotes the ring
of polynomials inz4, . . ., z,, with coefficients inA.

The symmetric group,, acts on this ring, by permutation of the variables:
(mP)(x1,...,2,) =P (xr1(1), . ,xﬁq(n)) (m € Sy).

The polynomialP(zy, ..., z,) is said to besymmetridf it is left invariant by this
action ofS,,. The symmetric polynomials evidently fornsab-ringof Az, ..., z,],
which we shall denote by, (A).
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Then polynomials

CL1:Z$Z', ag = Z Li1Ligy «ovyQn = T1 Ty
11 <ig

are symmetric; as are
S1 :Zl'i, S9 :ZfL‘?,;Sg :ZCIT?,
Proposition 12.2 The ring¥;(n) is freely generated ovéf by a4, . . ., a,, ie the
map
p(T1, .. @) = plag, ... an)  Zxy, .. x,] — X0 (Z)
IS a ring-isomorphism.
Proof » We have to show that

1. Every symmetric polynomiaP(zy,...,z,) overZ (ie with integer coeffi-
cients) is expressible as a polynomiakin . . . , a,, overZ:

P(zy,...,x,) = play,...,a,).
This will show that the map is surjective.
2. The map is injective, ie
play,...,a,) =0=p=0.
1. Any polynomial is a linear combination afonomialsc(" - - - x5». We order

the monomials first by degree, with higher degree first, and then within each
degredexicographically eg if n = 2 then

1<:172<:1:1<:B%<:v1x2<xf<$g<---

Theleading termin p(z4, ..., z,) is the non-zero termz§! - - - ¢ contain-
ing the greatest monomial in this ordering.

Now suppose the polynomidt(xy, ..., x,) is symmetric. Evidently; >

e > --- > e, in the leading term. For if say; < e, then the term
cx?xg - - - xé» — which must also appear iR(x1, . .., z,).
<

Corollary 12.1 The ringXq(n) is freely generated ove by ay, . . ., a,,
Proposition 12.3 The ringXy(n) is freely generated oved by sy, . .., sy,

Proof » <«
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12.4 Newton'’s formula

It follows from the Propositions above that the power-suimare expressible in
terms of the symmetric products, and vice versa. More precisely, there exist
polynomialssS,,(z1, ..., x,) andA,(xy, ..., x,) such that

Sp=Sp(at,...,m), a,=A,(a,...,n),

with the coefficients of5, integral and those ofl,, rational. Newton’s formula
allows these polynomials to be determined recursively.

Let
ft) =0 —=zqt) - (1 — zpt)
=1—ayt+agt? — -+ (=1)"a,t".
Then
J'(#)
= —xr1l —xt+ -+ —x,1 — x,t
0 frac—x11 —xit + - + frac—x x
= —51 — syt — sgt? — -+ .
Thus

—a1+2ast—3azt*+- - +(—1)"na,t" ' = (1—ayt+agt?— -+ (—1)"a,t")(—s;—sot —s3t>—- - - ).

Equating coefficients,

a; = 851
2(12 = 511 — S92
3as = S1a9 — Soa1 + S3
-1
ra, = 810, — SoU,_1+ -+ (=1)"""s,

Evidently these equations allow us to expresss,, s3, ... successively in
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terms ofaq, as, as, . . ., Or vice versa:

S1 = aq
Sy :a% — 2a9

Sg = ai{’ — 3ajas + 3as

a; = 81
2
2a9 = 57 — S

6as = s‘rf — 35189 + 253

12.5 Plethysm

There is another way of looking at the exterior product — as a particular case of
the plethysnoperator on the representation-riRgG).

Supposé/ is a vector space over a fiekdof characteristic 0. (We shall only
be interested in the casés= R or C.) Then the symmetric grouf, acts on the
tensor product®" by permutation of the factors:

T @ @Up) = Vp-11 @ + -+ @ Up—1p,.

ThusV®™ carries a representation 8f. As we know this splits into components
V* corresponding to the simple representatibnsf S,,:

V®nzvzl @@VE5’

whereX, ..., X, are the simple representationstf (We shall find it convenient
to use superfixes rather than suffixes for objects corresponding to representations
of S,.)

We are particularly interested in the components corresponding to the 2 1-
dimensional representations 6f,: the trivial representation,, and the parity
representation,, and we shall write

vP =yl VYN =y,

We also use” and N to denote the operations eymmetrisatiorand skew-
symmetrisatioon VV®"; that is, the linear maps

PN Vo yon
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defined by
1
Hm®w®%ﬁ>7ZWM®~®%)
n. ﬂESn
1
N ®- - ®@uvy) = - Y e(m)m(vr @ - @ vy).
n: ﬂ'ESn

Supposer € S,,. Regardingr as a mag/®" — V", we have
7P =P=Pr, 7N =¢mr)N=Nm.

It follows that
{P>=P, N?=N,

ie P andN are bothprojectionsonto subspaces 6f*".
We say thatr € VV®" is symmetridf

e =X
for all = € S,,; and we say that is skew-symmetrii
mx = €e(m)x

for all 7. It follows at once from the relationsP = P, 7N = €N thatz is
symmetric if and only if

Px =uzx;
while = is skew-symmetric if and only if

Nz =uz.

ThusP is a projection onto the symmetric element$/ifi*, andN is a projection
onto the skew-symmetric elements.
To see the connection with the exterior produétl/, recall that we could
define the latter by
ANV =Ve/X,
whereX c V®" is the subspace spanned by elements of the form

wx — e(m).

It is easy to see thaVx = 0 for such an element; while conversely, for any
xeVvenr

v — No— ;' S e() (e(m)x — mas)

: WESTL

e X



12.5. PLETHYSM 424-1 12-8

It follows that
X =ker N;

and so (sincéV is a projection)
A"V =V/X =2im N =V,

that is, the nth exterior product ofl” can be identified with the-component of
yen,

Now suppose thdt” carries a representatienof some grougs. ThenG acts
on VV®" through the representatiort.

Proposition 12.4 Supposey is a represenation of7 in V. Then the actions af
andS,, on V" commute.

For each simple representation of S,,, the component’> of V" is stable
underG, and so carries a representatiart of G. Thus

an:azl—i-..._i_aES’

whereXq, ..., Y, are the simple representations 8f.

Proof » We have

(1 @ - Quy) =m(gv1 @ -+ - ® guy,)
= (gvﬂ'_ll K- ® gvﬂ—ln)
=gr(v ® - @ uy).
<

Since the actions off and S,, on V®" commute, they combine to define a
representation of the product groGpx S,, on this space.

Corollary 12.2 The representation @ x S, onV®" is given by
™ X B4+ a¥ x 2,

Supposeg; € G (or more accuratelyy(g)) has eigenvalues, ..., \;. We
know that the character of

€n

ANa =«

is thenth symmetric product of tha;:

Xnra(9) = an(A1, .. Aa).
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Proposition 12.5 To each simple representation of S, there corresponds a
unique symmetric functiofiy, of degreen such that for any representatian of
G, and for anyg € GG with eigenvalues., ..., Ay,

X/\na(g) = SZ(}\l, ceey )\d)

Proof » We begin by establishing an important result which should perhaps have
been proved when we discussed the splitting GFgpacel” into components

V=V,& -V,
corresponding to the simple representations . . , o, of G.

Lemma 12.1 The projectionP, onto thes-component of/ is given by

dimo _
P = 1o 2 Xe(97 9.
G gez
Proof of Lemma> Supposex is a representation a¥ in V. Then the formula

above defines a linear map
PV -V

Supposé: € G. Then (writingd for dim o)

d
hPh™t = ——
1G]]

d .
:mzxg(h 191 lh)g,
gl

> xolg " )hgh™!
g

d 1
=—=> xXo(¢d g
1G4
—P

Now supposex is simple. By Schur's Lemma, the only linear transformations
commuting with alla(g) are multiples of the identity. Thus

P=pl

for somep € C. Taking traces,

\éH > Xo(g7 " )xalg) = pd.
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It follows that
B 1l a=o0
P= 0 a#o

P I a=¢
0 a#o
It follows that P acts as the identity on all simpie-subspaces carrying the repre-
sentationr, and as 0 on all simple subspaces carrying a representdtigr. In
particular,” = I onV, andP = 0 onV,. for all ¢’ # . In other wordsP is the

projection onto the componeht .
<«

< In other words,



Chapter 13

Real Representations

Representation theory ovér is much simpler than representation theory
overR. For that reason, we usualtpmplexifyreal representations—extend
the scalars fronR to C—just as we do with polynomial equations. But at the
end of the day we must determine if the representations—or solutions—that
we have obtained are in fact real.

Supposd/ is a vector space ové&®. Then we can define a vector spdce=
CU overC by “extension of scalars”. More precisely,

V=CxrU.

In practical terms,
V=U®®iU,

ie each element € V' is uniquely expressible in the form
v=1uy +iug (uj,ug € U).

If e1,...,e, IS a basis forU over R, then it is also a basis fo¥ over C. In
particular,
dim¢ V = dimg U.

On the other hand, suppogeis a vector space ovéi. Then we can define a
vector spacé/ = RV overR by “forgetting” scalar multiplication by non-reals.
Thus the elements df are precisely the same as thoselof If e,...,e, is a
basis forV overV, theney,ie, es,iea,. .., e,, e, IS a basis fol/ overR. In
particular,

Now suppose&- acts on the vector spa¢éoverR. ThenG also acts orCU,
by
g(uy + iug) = (guy) + i(gusz).

424—-1 13-1
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On the other hand, suppoégacts on the vector spadé over C. ThenG also
acts onRV by the same rule

(g,v) — gv.

Definition 13.1 1. Supposes is a real representation of; in U. Then we
denote byCs the complex representation 6fin the vector space

CU=U@a®iU
derived fromU by extending the scalars froRto C.

2. Supposer is a complex representation 6f in V. Then we denote bRa
the real representation off in the vector spac®V derived fromV" by
“forgetting” scalar multiplication by non-reals.

Remarks:

1. Suppose is described in matrix terms, by choosing a basigf@and giving
the matrices3(g) representings(g) with respect to this basis. Then we can
take the same basis f@iU, and the same matrices to represgntyg). Thus
from the matrix point of view,7 andC3 appear the same. The essential
difference is thaC s may split even if3 is simple, ie we may be able to find
a complex matrixP such that

PB(g)P~ = ( Cég) D(()g) )

for all g € G, although no real matri® has this property.

2. Suppose is described in matrix form, by choosing a basises, ..., e,
for V, and giving the matriced (g) representingy(g) with respect to this
basis. Then we can take tle elementse,,ie;, ey, i€, ..., ¢e,, 16, as a
basis forRV'; and the matrix representirign(g) with respect to this basis
can be derived from the matrit = A(g) representingy(g) as follows. By
definition,

geér = Z AST€S'

Let
Ar,s = Xr,s + i}/r,s’
whereX, ;, Y., € R. Then
ge, = Xsres + }/;Ties
g(ier> = _}/;res + Xsries
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Thus the entry4, ; is replaced iRRa(g) by the2 x 2-matrix

Xr,s _Y;',s
Yis Xos

Proposition 13.1 1. C(B8+ 3') =CB+ C#

2.

10.
11.
12.
13.

Proof » All is immediate except (perhaps) parts (11) and (13).

© © N o 00 b~ W

C(Bo') = (CH)(CP)
C(3*) = (CB)*
Cl=1

dim C3 = dim 3
xcs(9) = xs(9)
I(C3,Cp') = 1(3,0')
R(a + ') = Ra + Rt
R(a*) = (Ra)*

dim Ra = 2dim &
Xra(9) = 2RXa(9) = Xa(9) + Xalg™)
RCS = 243

CRa =a+ a*

11. Suppose(g) is represented by the x n matrix

A= X +iY,

whereX Y are real. Then—as we saw above—the eritryis replaced irRa(g)
by the2 x 2 matrix

Xr,s _Y;”,s
Y;‘,s Xr,s
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Thus
trRa(g) = 2> X,
= 2R _A,,)
2R tra(g)
2Rxa(9)
Xa(g) + Xa(g_l)
since

x(9) = x(g7H).
13. This now follows on taking characters, since

XCRQ(Q) = XRa(g)
= Xal9) + Xalg 1)
on(g) +Xa*( )

Since this holds for aly,
CRa = a+ a”.

<

Lemma 13.1 Given a representation of G overC there exists at most one real
representatiorn of G overR such that

a=Cp.

Proof » By Proposition 1,

Co=CF = xcs(9) = xcp(9)
= xs(9) = xp(9)
= g=0".

<

Definition 13.2 A representationv of G overC is said to be real itv = C( for
some representatiofi overR.

Remarks:
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1. In matrix termsx is real if we can find a complex matri® such that the
matrices
PB(g)P*

are real for ally € G.

2. Sinceg is uniquely determined by in this case, one can to some extent
confuse the two (as indeed in speakingaofs real), although egq if dis-
cussing simplicity it must be made clear whether the referencedsotao

0.

Lemma 13.2 Consider the following 3 properties of the representatiooverC:

1. aisreal

2. xaisreal, iex,(g) € Rforallg € G

3.a=a"
We have

(1) = (2) = (3).

Proof » (1) = (2): If a = C{ then

Xal(9) = x5(9)-

But the trace of a real matrix is necessarily real.
(2) <= (3): If x, is real then

Xa(9) = Xalg) = Xar(9)

forall g € G. Hence

<

Problems involving representations ovRroften arise in classical physics,
since the spaces there are normally real, eg those given by the electric and mag-
netic fields, or the vibrations of a system. The best way of tackling such a problem
is usually to complexify, ie to extend the scalars fr&rto C. This allows the pow-
erful techniques developed in the earlier chapters to be applied. But at the end of
the day it may be necessary to determine whether or not the representations that
arise are real. The Lemma above gives a necessary conditianisifeal then
its character must be real. But this condition is not sufficient; and our aim in the
rest of the Chapter is to find necessary and sufficient conditions for reality, of as
practical a nature as possible.
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Definition 13.3 Suppose is a simple representation ov€r. Then we say that
is strictly complexf y,, is not real; and we say that is quaternionidf y,, is real,
but « itself is not real;

Thus the simple representations @fover C fall into 3 mutually exclusive
classes:

R real: a = Cpg
C strictly complex:y, not real

H quaternionic:y,, real buta not real

Lemma 13.3 Supposex is a simple representation ové&l. Then
1. Ifaisreal,Ra = 23, wherej is a simple representation ova;

2. if ais strictly complex or quaternioni®« = 3 is a simple representation
overR.

In particular, if ,, is not real therRa must be simple.

Proof » If o is real, sayx = C(3, then by Proposition 1
Ra = RCA = 28.
Conversely, supposka splits, say
Ra =3+ 4.
Then by Proposition 1,
a+a*=CRa=Cga+Cga.

But sincea anda* are simple, this implies (by the unique factorisation theorem)
that
a=CgBora=Cf.

In either casevisreal. «
This gives a (not very practical) way of distinguishing between the 3 classes:

R: areal<= y, real andR« splits
C: «a quaternionic—= x,, real andR« simple

H: « strictly complex<=> y, not real & Ra simple)
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The next Proposition shows that the classification of simple representations
over C into 3 classes leads to a similar classification of simple representations
overR.

Proposition 13.2 Suppose’ is a simple representation ov&®. Then there are 3
(mutually exclusive) possibilities:

R: CB = ais simple
C. CB=a+a”,
H: Cg = 2a, with a simple witha (anda*) simple, andv # o*

In case R), a is real and

1(8,8) = 1.
In case (), « is strictly complex and

1(8,8) = 2.
In case M), « is quaternionic and

1(8,5) =4.
Proof » Since

RCp = 20,

Cp cannot split into more than 2 parts. Thus there are 3 possibilities:
1. C3 = ais simple
2. CB = 2a, with  simple
3. CG =a+ o, with a, o simple andx # o/

Since
1(3,8) = 1(CB,CpB)

by Proposition 1, the values {3, 3) in the 3 cases follow at once. Thus it only
remains to show that is in the class specified in each case, and éhat o* in
case (3).

In case (1)¢ is real by definition.

In case (2),

2Xa(9) = x20(9) = x5(9)
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is real for allg € G. Hencey,(g) is real, and sa is either real or quaternionic.
If o were real, say = C/3’, we should have

Cp =2Cp’
which would imply that
B=20
by Proposition 2. Hence is quaternionic.
In case (3)

23 =RCA = Ra + Rd'.

Hence
Ra = 3 = Rd/.

But then

a+ad =Ch=a+a.
Hence

o = aF.

Finally, sincea™ = o/ # «, «is strictly complex. «

Proposition 5 gives a practical criterion for determining which of the 3 classes
a simple representatiof over R belongs to, namely by computings, 5) from
x - Unfortunately, the question that more often arises is: which class does a given
simple representatiom over C belong to? and this is more difficult to determine.

Lemma 13.4 Supposer is a simple representation 6f overC in V. Then

R: if « is real,there exists an invariant symmetric (quadratic) forml@runique
up to a scalar multiple—but there is no invariant skew-symmetric form on
Vi

C: if ais complex, there is no invariant bilinear form &h

H: if « is quaternionic, there exists an invariant skew-symmetric formi/on
unique up to a scalar multiple—but there is no invariant symmetric form
onV,

Proof » A bilinear form onV is a linear map
VeV —C,

ie an element of
(VeV)y =V V"
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Thus the space of bilinear maps carries the representatioh of G. Hence the
invariant bilinear maps form a space of dimension

I(1,(a")?) = I(1,a*a*) = I(a, a*)

Sincea anda* are simple, this is 0 or 1 according @as= «* or not, ie according
as« is either real or quaternionic, or strictly complex. In other wordsy i
complex there is no invariant bilinear form; whilexifis real or quaternionic there
is an invariant bilinear form o, sayF'(u, v), unique up to a scalar multiple.

Now any bilinear form can be split into a symmetric (or quadratic) part and a
skew-symmetric part; say

F(u,v) = Q(u,v) + S(u,v),

where

1 1
Q(ua U) = 5 (F(U’> U) + F(U,U)) ) S(U,’U) = 5 (F(ua U) - F(’U, U’))
But it is easy to see that i is invariant then so ar@ andS. SinceF' is the only

invariant bilinear form orl/, it follows that either
F=QorF =S5,

ie F is either symmetric or skew-symmetric. It remains to show that the former
occurs in the real case, the latter in the quaternionic case.

Supposer is real, sayy = C(3, whereg is a representation in the real vector
spacel/. We know thatl/ carries an invariant symmetric form (in fact a positive-
definite one), say)(u,«’). But this defines an invariant symmetric for@) on
V' = CU by extension of scalars. Sodfis real,V’ carries an invariant symmetric
form.

Finally, supposey is quaternionic. Ther carries either a symmetric or a
skew-symmetric invariant form (but not both). Suppose the former{Xayv')
is invariant. By Proposition 33 = Ra is simple. Hence there exists a real
invariant positive-definite symmetric form ddl’; and this is the only invariant
symmetric form onRV, up to a scalar multiple. But the real part@fv,v’) is
also an invariant form oRV; and it is certainly not positive-definite, since

RQ(iv,iv) = —RQ(v,v).

This contradiction shows that cannot carry an invariant symmetric form. We
conclude that it must carry an invariant skew-symmetric forme

We deduce from this Proposition the following more practical criterion for
reality.



424-1 13-10

Proposition 13.3 Supposey is a simple representation ovér. Then

1 ifaisreal
> Xal(g?) =< 0 if ais strictly complex
9€G —1 if ais quaternionic

b
|G

Proof » Every bilinear form has a unique expression as the sum of its symmetric
and skew-symmetric parts. In other words, the space of bilinear forms is the direct
sum of the spaces of symmetric and of skew-symmetric forms; say

VeV =Vea V.

Moreover, each of these subspaces is stable ufidso the representatigia*)?
in the space of bilinear forms splits in the same way; say

(a)* = a?+a”,

wherea? is the representation af in the spacd/? of symmetric forms on V,
anda?® is the representation in the spdcé of skew-symmetric forms.
Now the dimensions of the spaces of invariant symmetric and skew-symmetric
space are
I(1,a%9) andI(1,a”),

respectively. Thus Proposition 6 can be reworded as follows:

R: If ais real then
I(1,a9) = 1andI(1,a°) = 0.

C: If ais complex then

I(1,a9) =0andI(1,a") = 0.

H: If « is quaternionic then

I(1,a9) = 0andI(1,a”) = 1.

Thus all () we have to do is to compute these 2 intertwining numbers. In fact
it suffices to find one of them, since

I(1,09) + I(1,a°) = I(1, (a®)?) = I(a,a”)

which we already know to be 1 df is real or quaternionic, and 0df is complex.
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To computel (1, a?), choose a basis, ..., ¢, for V; and let the corresponding
coordinates bey, ..., z,,. Then then(n + 1)/2 quadratic forms

i (1<i<n), 2z, (1<i<j<n)

form a basis for’?. Let g;; denote the matrix defined hy(g). Thus ifv =
(x1,...,x,) € V, then the coordinates @b are

U)z = Z gijxj'
J

Hence

9(%2) = Zgiﬂjgikﬂﬁk-
jk

In particular, the coefficient of? in this (which is all we need to know for the
trace) isgZ. Similarly, the coefficient oRx;x; in g(2z;z;) is
9ii9j5 + 9ij9ji-

We conclude that

Xac (g Zgzz + Z (9:i955 + 9ij9ji)-
1,7:1<J
But
= Zgiia Xa(QQ) = Zgijgji-
7 1,7
Thus |
_ 2 2
Ya2(9) = 5 (Xa(9)* + xalg)
Since
I(1, Xal2
-Gz
it follows that
21(1, G (Xa(9))* + Xal9?)) -
| ’ geG
But
Xa(9)” = I(a, ™).
P>
Thus

21(1,a% = I(a,a") Xa(9g

The result follows, sincé(«, o*) = 1 in the real and quaternionic cases, and 0 in
the complex case. «



Appendix A

Linear algebra over the quaternions

The basic ideas of linear algebra carry over with the quaterrfiofar in-
deed any skew-field) in place & or C.

A vector spacéV over H is an abelian group (written additively) together
with an operation
HxW —W: (¢gw)+— qu,

which we cann scalar multiplication, such that
1. q(wi + w2) = qu; + quy,
2. (¢1 + @)w = qw + g,
3. (1@)w = ¢(qw),
4. 1w = w.

The notions ofbasisand dimension(together withlinear independencand
spanning carry over without change. Thus, .. ., ¢, are said to be linearly inde-
pendent if

qer+---+ e, =0—q¢ =---=gq,=0.

424—-1 1-0
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