Chapter 1

The Fundamental Theorem of
Arithmetic

1.1 Prime numbers
If a,b € Z we say that: dividesb (or is a divisor ofb) and we writea | b, if
b=ac

for somec € Z.
Thus—2 | 0 but0 1 2.

Definition 1.1 The numbep € N is said to bgrimeif p has just 2 divisors ilN,
namely 1 and itself.

Note that our definition excludes 0 (which has an infinity of divisor¥)rand
1 (which has just one).
Writing out the prime numbers in increasing order, we obtairsttguence of
primes
2,3,5,7,11,13,17, 19, . ..

which has fascinated mathematicians since the ancient Greeks, and which is the
main object of our study.

Definition 1.2 We denote theth prime byp,,.

Thusps = 11, pigo = 541.
It is convenient to introduce a kind of inverse functiomio

Definition 1.3 If z € R we denote byt(x) the number of primes. z:

m(z) = [{p <z : p prime}|].
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Thus
m(1.3) =0, 7(3.7) = 2.
Evidently(x) is monotone increasing, but discontinuous with jumps at each
primezx = p.

Theorem 1.1 (Euclid’s First Theorem)The number of primes is infinite.

Proof » Suppose there were only a finite number of primes, say

P1,DP25- -3 Pn-
Let
N =pips---pn+ 1.
Evidently none of the primeg, . . ., p, dividesN.

Lemma 1.1 Every natural numben > 1 has at least one prime divisor.

Proof of Lemma- The smallest divisoti > 1 of n must be prime. For otherwise

d would have a divisoe with 1 < e < d; ande would be a divisor o, smaller
thand. <«

By the lemmaN has a prime factop, which differs fromp,...,p,. <«

Our argument not only shows that there are an infinity of primes; it shows that

pn < 2%

a very feeble bound, but our own. To see this, we argue by induction. Our proof
shows that
Pn1 S P12 pn + 1.

But now, by our inductive hypothesis,

p< 22 py <2 p, <2
It follows that
Pnt1 < 92 +2% 442"
But
21+22+___+2n:2n+1_1 <2?’L+1.
Hence
n+1
DPn+1 < 22"
It follows by induction that
pn < 2%,

for all n > 1, the result being trivial fon = 1.
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This is not a very strong result, as we said. It shows, for example, that the 5th
prime, in fact 11, is
< 2% = 2%% = 4294967296.

In general, any bound far, gives a bound fofr(z) in the opposite direction,
and vice versa, for
pn < x <= 7(x) > n.

In the present case, for example, we deduce that
m(27) > [yl >y -1
and so, setting = 22,
m(x) > logylogy x — 1 > loglogz — 1.

for x > 1. (We follow the usual convention that if no base is given then
denotes the logarithm af to baser.)
ThePrime Number Theorefhich we shall make no attempt to prove) asserts
that
Pn ~ nlogn,

or, equivalently,
xXr

m(@) ~ logx’

This states, roughly speaking, that the probability.dfeing prime is about
1/logn. Note that this includes even numbers; the probability obddinumber
n being prime is abou/ log n. Thus roughly 1 in 6 odd numbers arout®f are
prime; while roughly 1 in 12 arounth!? are prime.

(The Prime Number Theorem is the central resulaoélytic number theory
since its proof involves complex function theory. Our concerns, by contrast, lie
within algebraic number theory

There are several alternative proofs of Euclid’'s Theorem. We shall give one
below. But first we must establish the Fundamental Theorem of Arithmetic (the
Unique Factorisation Theorem) which gives prime numbers their cedein
number theory; and for that we need Euclid’s Algorithm.

1.2 Euclid’s Algorithm

Proposition 1.1 Supposen,n € N, m # 0. Then there exist uniquer € N
such that
n=qgqm-+r, 0<r<m.

Proof » For uniqueness, suppose

n=qgm+r=q¢m-+r,
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wherer < 7/, say. Then
(¢ —qm=r"—r

The number of the right isc m, while the number on the left has absolute value
> m, unlessy = ¢, and so alse’ = r.

We prove existence by induction on The result is trivial ifn < m, with
q =0, r = n. Suppose: > m. By our inductive hypothesis, sinece— m < n,

n—m=qm-+r,

where0 < r < m. But then
n=qm-+r,

withg=¢ +1. <

Remark:One might ask why we feel the need to justify division with remainder
(as above), while accepting, for example, proof by induction. This is not an easy
guestion to answer.

Kronecker said, God gave the integers. The rest is Mah'svirtually all
number theorists agree with Kronecker in practice, even if they do not accept his
theology. In other words, they believe that the integers exist, and have certain
obvious properties.

Certainly, if pressed, one might go back to Peano’s Axioms, which are a stan-
dard formalisation of the natural numbers. (These axioms include, incidentally,
proof by induction.) Certainly any properties of the integers that we assume could
easily be derived from Peano’s Axioms.

However, as | heard an eminent mathematician (Louis Mordell) once say, “If
you deduced from Peano’s Axioms tHat 1 = 3, which would you consider most
likely, that Peano’s Axioms were wrong, or that you were mistaken in believing
thatl + 1 = 27"

Proposition 1.2 Supposen,n € N. Then there exists a unique numhee N
such that
d|m, d|n,

and furthermore, it € N then
elm, eln=eld

Definition 1.4 We call this numbet the greatest common divisaf m and n,
and we write
d = ged(m,n).

Proof » Euclid’s Algorithm is a simple technique for determining the greatest
common divisorged(m, n) of two natural numbersn,n € N. It proves inci-
dentally — as the Proposition asserts — that any two numti@nsdeed have a
greatest common divisor (or highest common factor).
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First we divide the larger, say n, by the smaller. Let the quotient l@ad let
the remainder (all we are really interested in)rhe

n=mgq; + 1.
Now dividem by r; (which must be less tham):
m =riqs + .
We continue in this way until the remainder becomes 0:

n =mgq + rq,
m =Tiqs + 7o,

1 = T2q3 + T3,

i1 = T4—2Gi—1 + T,
Ty = Ti—14y.-

The remainder must vanish after at meststeps, for each remainder is strictly
smaller than the previous one:

m>r7ry>7T9> -

Now we claim that the last non-zero remaindér= r; say, has the required
property:
d = ged(m,n) = ry.

In the first place, working up from the bottom,

d=r | Ti—1,
d | Tt andd | Ti_1 —> d ’ Tt—2,
d | T—1 andd | Ti_o =—> d ’ Tt—3,

d|rsandd | ro = d |,
d|reandd | ry = d|m,
d|r andd | m = d | n.
Thus
d | m,n;

sod is certainlya divisor of m andn.
On the other hand, supposés a divisor ofm andn;:

e | m,n.
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Then, workingdownwardswe find successively that

e|mande | n = e | ry,
e|r ande | m = e | rq,
e|ryande | ry = e| rs,

e|ri_sande|r,_; = e|r.
Thus
el|lr =d.

We conclude that our last non-zero remaindas number we are looking for:
ged(m,n) = .

<
It is easy to overlook the power and subtlety of the Euclidean Algorithm. The
algorithm also gives us the following result.

Theorem 1.2 Supposen,n € N. Let
ged(m,n) = d.
Then there exist integets y € Z such that

mx + ny = d.

Proof » The Proposition asserts thatan be expressed as a linear combination
(with integer coefficients) ofn andn. We shall prove the result by working
backwards from the end of the algorithm, showing successivelyitisah linear
combination ofr, andr,{, and so, since,,, is a linear combination af,_; and
rs, d 1S also a linear combination of_; andr,.
To start with,
d=r.

From the previous line in the Algorithm,
T2 = QT¢—1 + Tt

Thus
d=1y =719 — @T—1.

But now, from the previous line,
Ti—3 = qt—1T¢—2 + T't—1.

Thus
Te1 =1t —3 — q—1T1—2.
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Hence
d=ri_o9—qrt—1
=Tt—2 — Qt(rtfii - Qtflrth)
= —q7i-3+ (1 + @q-1)ri—2.
Continuing in this way, suppose we have shown that
d=asrs+ bsrsiq.
Since
Ts—1 = qs41Ts T Ts41,
it follows that
d = asrs + bs(re—1 — qsg17s)
= bsrs-1 + (a5 — bsGsy1)Ts.
Thus
d=as_17s-1 + bs_17s,
with
as—1 = by, bs_1 = a5 — bsqsy1.
Finally, at the top of the algorithm,
d = agrg + bory
= agro + bo(m — qi70)
= bom + (ap — boq1)70
= bom + (ag — boq1)(n — gom)
= (bo — aoqo + bogoq1)m + (ag — bogo)n,
which is of the required form. «
Example:Supposen = 39, n = 99. Following Euclid’s Algorithm,

99 =2-39 + 21,
39=1-21+18,
21 =118+ 3,
18=6"-3.
Thus
ged(39,99) = 3.
Also
3=21-18
=21 —(39—-21)
=-39+2-21

= —39+2(99 — 2- 39)
—2.99—5-39.
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Thus theDiophantine equation
992x 4+ 39y =3

has the solution
r=2,y=-5.

(By a Diophantine equation we simply mean a polynomial equation to which we
are seeking integer solutions.)

This solution is not unique; we could, for example, add 39 #nd subtract
99 fromy. We can find the general solution by subtracting the particular solution
we have just found to give llomogeneoulinear equation. Thus if’, v’ € Z also
satisfies the equation thexs = 2/ — z, Y = ¢/ — y satisfies the homogeneous
equation

99X + 39Y =0,

33X +13Y =0,
the general solution to which is
X =13t, Y = —33t
for t € Z. The general solution to this diophantine equation is therefore

r=2+13t, y=-5-33t (L)

Itis clear that the Euclidean Algorithm gives a complete solution to the general
linear diophantine equation
ax + by = c.

This equation has no solution unless
ged(a,0) | ¢,

in which case it has an infinity of solutions. For(if,y) is a solution to the
equation
ax + by = d,

andc = dc then(d'z, cy) satisfies
ax + by = c,

and we can find the general solution as before.
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Corollary 1.1 Supposen,n € Z. Then the equation
mx +ny =1
has a solutione, y € Z if and only ifgcd(m,n) = 1.

It is worth noting that we can improve the efficiency of Euclid’s Algorithm by
allowing negative remainders. For then we can divide with remairder/2 in
absolute value, ie

n=qm-+r,

with —m/2 < r < m/2. The Algorithm proceeds as before; but now we have
m > lro/2| > /2% > ...,

so the Algorithm concludes after at masg, m steps.

This shows that the algorithm is class R ie it can be completed in polyno-
mial (in fact linear) time in terms of the lengths of the input numbers. — the
lengthof n, ie the number of bits required to express binary form, being

[log, n] + 1.

Algorithms in class P (opolynomial timealgorithms) are considereshsyor
tractable while problems which cannot be solved in polynomial time are consid-
eredhard orintractable RSA encryption — the standard technighe for encrypting
confidential information — rests on the belief — and it should be emphasized that
this is a belief and not a proof — that factorisation of a large number is intractable.

Example:Takingm = 39, n = 99, as before, the Algorithm now goes

99 = 3-39 — 18,
39 =218+ 3,
18=6-3,

giving (of course)
gcd(39,99) = 3,

as before.

1.3 Ideals

We used the Euclidean Algorithm above to show thagif(a,b) = 1 then there
we can findu, v € Z such that

au + bv = 1.

There is a much quicker way of proving that such exist, without explicitly
computing them.

Recall that arideal in a commutative ringd is a non-empty subset C A
such that
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l.a,bea=a+becuq
2.a€a ceE A= ace€ .
As an example, the multiples of an elemer¢ A form an ideal
(a) ={ac:ce A}.
Such an ideal is said to lgincipal.

Proposition 1.3 Every ideala C Z is principal.

Proof » If a = 0 (by convention we denote the idefdl} by 0) the result is trivial:
a = (0). We may suppose therefor that 0.

Thena must contain integers > 0 (since—n € a = n € a). Letd be the
least such integer. Then

a = (d).
For suppose € a. Dividing a by d,
a=qd+r,
where
0<r<d.
But

r=a+(—q)d € a.

Hencer = 0; for otherwiser would contradict the minimality of. Thus
a=qd,

ie every element € ais a multiple ofd. <
Now suppose, b € Z. Consider the set of integers

I ={au+bv:uvelZ}

It is readily verified that is an ideal.
According to the Proposition above, this ideal is principal, say

I = (d).

But now
acl=d|a, bel=d]|b.

On the other hand,

ela, e|b=e¢|au+bv
= e|d
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It follows that
d = ged(a, b);

and we have shown that the diophantine equation
au+bv=d

always has a solution.
In particular, ifged(a, b) = 1 we canu, v € Z such that

au + bv = 1.

This proof is much shorter than the one using the Euclidean Algorithm; but it
suffers from the disadvantage that it provides no way of computing

d = ged(a, b),
and no way of solving the equation
au + bv = d.

In effect, we have takei as the least of an infinite set of positive integers, using
the fact that the natural numbe¥sarewell-ordered ie every subset C N has a
least element.

1.4 The Fundamental Theorem of Arithmetic

Proposition 1.4 (Euclid’s Lemma) Suppogec N is a prime number; and sup-
posea, b € Z. Then
plab=plaorp|b.

Proof » Suppose | ab, p 1 a. We must show that | b. Evidently
ged(p,a) = 1.
Hence, by Corollary 111, there existy € Z such that
pr +ay = 1.
Multiplying this equation by,
pxb+ aby = b.
Butp | pzb andp | aby (sincep | ab). Hence

plo.
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Theorem 1.3 Suppose: € N, n > 0. Them is expressible as a product of prime
numbers,

n=pip2- - Pr,
and this expression is unique up to order.

Remark:We follow the convention that an empty product has value 1, just as an
empty sum has value 0. Thus the theorem holds:fex 1 as the product ofo
primes.

Proof » We prove existence by induction an the result begin trivial (by the
remark above) when = 1. We know thatn has at least one prime factpy by

LemmalI], say

n = pm.
Sincem = n/p < n, we may apply our inductive hypothesisitg
m = qiqz2- - {qs-

Hence
n =pqiqz---gs-

Now suppose
n=pip2:--Pr =M =4q1492 " " (s-
Sincep; | n, it follows by repeated application of Euclid’s Lemma that

p1|€1j

for somej. But then it follows from the definition of a prime number that
P1 = q;-

Again, we argue by induction am. Since

A

n/p1:p2przq1qqu

(where the ‘hat’ indicates that the factor is omitted), and sin¢e, < n, we

deduce that the factogs, . .., p, arethe same as, ..., qj, . .., gs, in some order.
Hencer = s, and the primeg, - - - , p, andqy, . . ., g, are the same in some order.
|

We can base another proof of Euclid’s Theorem (that there exist an infinity of
primes) on the fact that if there were only a finite number of primes there would
not be enough products to “go round”.

Thus suppose there were justprimes

P1y--- 3 Pm-
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Let N € N. By the Fundamental Theorem, eack< N would be expressible in
the form
(Actually, we are only using the existence part of the Fundamental Theorem; we

do not need the uniqueness part.)
For each (1 <i <m),

n=p;' <n
= <N
— 2% <N
= ¢; <log, V.

€4
b;

Thus there are at mokig, N + 1 choices for each exponesit and so the number
of numbers: < N expressible in this form is

< (logs N + 1)™.
So our hypothesis implies that
(logy N+1)" > N

for all V.
But in fact, to the contrary,

log X "
X > (logy, X + 1) = <Og +1>

log 2

for all sufficiently largeX . To see this, sek = ¢*. We have to show that

s (24 :
e — :
log 2

Since
1 <2
log 2 * v
if x > 3, itis sufficient to show that
e’ > (2x)™
for sufficiently larger. But
xm—i—l
X > e
‘ (m+1)!

if x > 0, since the expression on the right is one of the terms in the power-series
expansion ot*. Thus the inequality holds if

mm—&—l

mr > 2"
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ie if
x>2"(m+ 1)L
We have shown therefore thait primes are insufficient to express all< N
1t N > 2™ (m+1)!

Thus our hypothesis is untenable; and Euclid’s theorem is proved.
Our proof gives the bound

Pn < e2mmAD!

which is even worse than the bound we derived from Euclid’s proof. (For it is
easy to see by induction that

(m+1)!>e™

for m > 2. Thus our bound is worse thafi", compared witr2?" by Euclid’s
method.)

We can improve the bound considerably by taking out the square factor in
Thus each number € N (n > 0) is uniquely expressible in the form

n:d2p1...pr,

where the primeg, ..., p, are distinct. In particular, if there are only primes
then each is expressible in the form

_ J2..€e1 em
n_dpl pm,

where now each exponetitis either O or 1.
Consider the numbers < N. Since

d<vn<VN,

the number of numbers of the above form is
< v/N2™.
Thus we shall reach a contradiction when

VN2™ > N,

N < 22m,

This gives us the bound
P <277,

better thar2?”, but still a long way from the truth.
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1.5 The Fundamental Theorem, recast

We suppose throughout this section tHais an integral domain. (Recall that an
integral domain is a commutative ring with 1 having no zero divisorsdghife A
then

ab=0=a=0 or b=0.)

We want to examine whether or not the Fundamental Theorem holdis-n
we shall find that it holds in some commutative rings and not in others. But to
make sense of the question we need to re-cast our definition of a prime.
Looking back atZ, we see that we could have defined primality in two ways
(excludingp = 1 in both cases):

1. pis prime if it has no proper factors, ie

p=ab=—=a=1o0rb=1.

2. pis prime if
plab=p|a orp|b.

The two definitions are of course equivalent in the riig However, in a
general ring the second definition is stronger: that is, an element satisfying it must
satisfy the first definition, but the converse is not necessarily true. We shall take
the second definition as our starting-point.

But first we must deal with one other point. In defining primality4nwe
actually restricted ourselves to the semi-rigdefined by therderin Z:

N={neZ:n>0}.

However, a general ring has no natural order, and no such semi-ring, So we must
consider all elements € A.

In the case ofZ this would mean consideringp as a prime on the same
footing asp. But now, for the Fundamental Theorem to make sense, we would
have to regard the primeisp as essentially the same.

The solution in the general ring is that to regard two primesgsvalentif
each is a multiple of the other, the two multiples necessarily beiits

Definition 1.5 An element € A is said to be aunitif it is invertible, ie if there is
an element) € A such that
en = 1.

We denote the set of units ihby A*.

For example,
7* = {+£1}.

Proposition 1.5 The units inA form a multiplicative groupA*.



374 1-16

Proof » This is immediate. Multiplication is associative, from the definition of a
ring; andn = ¢! is a unit, since it has inverse <
Now we can define primality.

Definition 1.6 Suppose € A is not a unit, anc: # 0. Then
1. ais said to bdrreducibleif

a = bc == b oOr cis aunit

2. ais said to beprimeif

albc=al|borp]|b.
Proposition 1.6 If a € A is prime then it is irreducible.

Proof » Suppose
a = bc.

Then
albora]|ec.

We may suppose without loss of generality thath. Then
alb, b|a= a=be,

wheree is a unit; and
a=bc=be = c=c¢.

<
Definition 1.7 The elements, b € A are said to beequivalentwritten

a ~ b,

b=ea
for some unit.
In effect, the group of unitsl* acts onA and two elements are equivalent if
each is a transform of the other under this action.

Now we can re-state the Fundamental Theorem in terms which make sense in
any integral domain.

Definition 1.8 The integral domaim is said to be ainique factorisation domain
if each non-uni € A, a # 0 is expressible in the form

a=p1-Pr;

wherepy, . . ., p, are prime, and if this expression is unique up to order and equiv-
alence of primes.
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In other words, if

a=qu--qs
is another expression of the same form, thea s and we can find a permutation
mof {1,2,...,r} and unitsy, e, . . . , €, such that
qi = €Pr(s)

fori=1,2,...,r.
Thus a unique factorisation domain (UFD) is an integral domain in which the
Fundamental Theorem of Arithmetic is valid.

1.6 Principal ideals domains

Definition 1.9 The integral domainA is said to be aprincipal ideal domainf
every ideak € A is principal ie

a=(a) ={ac:ce A}

for somen € A.

Example:By Propositiof TJ3Z is a principal ideal domain.

Our proof of the Fundamental Theorem can be divided into two steps — this
is clearer in the alternative version outlined in Secfiah 1.3 — first we showed that
thatZ is a principal ideal domain, and then we deduced from thiszhat unique
factorisation domain.

As our next result shows this argument is generally available; it is the tech-
nigue we shall apply to show that the Fundamental Theorem holds in a variety of
integral domains.

Proposition 1.7 A principal ideal domain is a unique factorisation domain.

Proof » Supposed is a principal ideal domain.
Lemma 1.2 A non-unita € A, a # 0 is prime if and only if it is irreducible, ie
a =bc = aisaunitorbis a unit

Proof of Lemma- By Propositior[ L]6, a prime is always irreducible.

Conversely, if
a=p1pr
is irreducible then evidently = 1, anda is prime. <«
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Now suppose is neither a unit nor 0; and suppose thas not expressible as
a product of primes. Themis reducible, by the Lemma above: say

a = aby,

whereay, b; are non-units. One at least @f, b; is not expressible as a product of
primes; we may assume without loss of generality that this is trueg.of
It follows by the same argument that

a; = agbs,

whereay, b, are non-units, and, is not expressible as a product of primes.
Continuing in this way,

a = albl, ap = a2b27 a9 = CL3b3, e
Now consider the ideal
a= (a1, as,as,...).
By hypothesis this ideal is principal, say
a=(d).
Sinced € a,
de{ay,...,a.) = (a,)
for somer. But then
art1 € (d) = (a,).
Thus
Qr | Qr41, Ar4d ’ Ay == Qp = Qp41€ = br+1 =€,

wheree is a unit, contrary to construction.
Thus the assumption thatis not expressible as a product of primes is unten-
able;

a=prpr
To prove unigueness, we argue by induction-pwherer the smallest number

such that is expressible as a productoprimes.
Suppose

a=pi-Pr=0q1" " qs
Then
pLlqi- g =11 g
for somej. Sinceyg; is irreducible, by Proposition 1.6, it follows that

qj = P1€,

wheree is a unit.
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We may suppose, after re-ordering tf®thatj = 1. Thus
b1~ q1.
If » =1then
a=pr=e€epqa---qs = 1 =¢€q-- - ¢s.

If s > 1 this implies thatyp, . . ., g, are all units, which is absurd. Henge= 1,
and we are done.
If » > 1then

G = €p1 = pap3 - Pr = (€q2)q3 - - - g5

(absorbing the unitinto ¢3). The result now follows by our inductive hypothesis.
<«

1.7 Polynomial rings
If Aisacommutative ring (with 1) then we denotedy:| the ring of polynomials
p(z) =ax™ +---4+ay (ag,...,a, € A).

Note that these polynomials should be regarded as formal expressions rather
than mapy : A — A; forif A is finite two different polynomials may well define
the same map.

We identify ain A with the constantpolynomial f (z) = a. Thus

A C Alz).

Proposition 1.8 If A is an integral domain then so id|x].

Proof » Suppose
fx) =anz™ + - +ap, g(z)="0ba" +---+ by,
wherea,, # 0, b, # 0. Then
f(@)g(x) = (ambp)a™ ™ + - + aobo;
and the leading coefficiemt, b, # 0. =
Proposition 1.9 The units inA|[x] are just the units ofi:

(Afz])* = A%,
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Proof » It is clear thatu € A is a unit (ie invertible) inA[z] if and only if it is a
unitin A.

On the other hand, no non-constant polynoniiét) € A[x] can be invertible,
since

deg F'(z)G(x) > deg F(x)

if G(x) #0. <«

If A is afield then we can divide one polynomial by another, obtaining a
remainder with lowedegreethan the divisor. Thus degree plays tlégerin &[]
played by size ir¥.

Proposition 1.10 Supposek is a field; and supposé¢(z),g(x) € k[z], with
g(x) # 0. Then there exist unique polynomials), r(x) € k[z] such that

f(x) = g(x)q(x) + r(z),
where

degr(z) < degg(x).

Proof » We prove the existence gfz), r(x) by induction ondeg f(x).
Suppose

f(z) = ama™ + -4 ag, g(x) = bpa" + -+ by,

wherea,, # 0, b, # 0.
If m < nthenwe cantake(x) =0, r(x) = f(x). We may suppose therefore
thatm > n. In that case, let

fi(z) = f(z) — (@ /bp)x™".

Then
deg fi(z) < deg f(x).

Hence, by the inductive hypothesis,

fi(x) = g(x)qu(x) + (),

where
degr(z) < degg(z);
and then
f(x) = g(x)q(z) + r(z),
with

q(z) = (@ /ba)z™ " + @ (2).
For uniqueness, suppose

f(@) = 9(@)q1 () + r1(2) = g(x)g2(2) + r2(2).
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On subtraction,

where
q(z) = g2(x) — q(x), r(x) = ri(z) —ra(z).
But now, ifg(x) # 0,
deg(g(x)q(x)) > degg(x), degr(z) < degg(x).

This is a contradiction. Hence

a(z) = q(), ri(x) =r2).

Proposition 1.11 If k is a field thenk|x] is a principal ideal domain.

Proof » As with Z we can prove this result in two ways: constructively, using the
Euclidean Algorithm; or non-constructively, using ideals. This time we take the
second approach.
Suppose
a C klz]

is an ideal. Ifa = 0 the result is trivial; so we may assume that 0.
Let
d(z) €a

be a polynomial irn of minimal degree. Then
a = (d(z)),
For supposé (z) € a. Divide f(x) by d(z):
f(x) = d(z)q(z) +
wheredeg r(z) < degd(x). Then
r(z) = f(x) —d(z)q(z) € a
sincef(x),d(x) € a. Hence, by the minimality ofleg d(x),

r(z),

<
By Propositior[ L]7 this gives the result we really want.
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Corollary 1.2 If k is a field therk[z| is a unique factorisation domain.

Every non-zero polynomigf(z) € k[z] is equivalent to a unique monic poly-
nomial, namely that obtained by dividing by its leading term. Thus each prime,
or irreducible, polynomiap(x) € k[z] has a unique monic representative; and we
can restate the above Corollary in a simpler form.

Corollary 1.3 Each monic polynomial
fx)=a"+ap 12" '+ +ag

can be uniquely expressed (up to order) as a product of irreducible monic polyno-
mials:

f(x) = pi(@) - pr().

1.8 Postscript

We end this Chapter with a result that we don't really need, but which we have
come so close to it would be a pity to omit.

Supposéed is an integral domain. Lek’ be thefield of fractionsof A. (Recall
that K consists of the formal expressions

a
b’
with a,b € A, b # 0; where we set

a c
2 y if ad=bc

The map

aH%:AHK

is injective, allowing us to identifyd with a subring ofK".)
The canonical injection
ACK

evidently extends to an injection
Alz] C Klx].
Thus we can regardl(x) € A[z] as a polynomial ovek'.

Proposition 1.12 If A is a unique factorisation domain then soA$x].

Proof » First we must determine the primesz].

Lemma 1.3 The elemenp € A is prime inA|z] if and only if it is prime inA.
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Proof of Lemma- It is evident that

p prime in A[z] = p prime in A.

Conversely, suppogeis prime inA; We must show that if'(z), G(z) € Alx]
then

p| F(x)G(x) = p| F(z) orp | G(x).
In other words,

ptF(z), pt G(z) = pt F(z)G(x).
Suppose
F(:C):am;(;m+...+a07 G(x):bnx”+.‘.+bo;

and suppose
ptF(x), ptGa).
Leta,, bs be the highest coefficients ¢fx), g(z) notdivisible byp. Then the
coefficient ofz" % in f(x)g(z) is

aoby4s + aibyys—1 + -+ aybg + -+ - + a4 0o = a,bs mod p,
since all the terms exceptb, are divisible byp. Hence
p | a.bs = p mod a, or p mod by,

contrary to hypothesis. In other words,

pt F(2)G(x).
<

Lemma 1.4 Supposef(z) € K[z]|. Thenf(x) is expressible in the form

f(z) = aF(x),

wherea € K and
F(z) = apa" + -+ ag € Alz]

with
ged(ag, - .., a,) = 1;

and the expression is unique up to multiplication by a unit, ie if
f(z) = aF(z) = pG(z),

whereG(x) has the same property then
G(x) =€F(z), a=¢€B

for some unikt € A.
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Proof of Lemma- Suppose

f(z) = apa™ 4+ - - + ay.

Let

wherea;, b; € A; and let

Then
bf(x) =bpa" 4 -+ by € Alx].
Now let
d = ged(bo, ..., by).
Then

fz) = (b/d)(cpz™ + -+ + co)
is of the required form, since

ged(egy ..o yen) = 1.
To prove uniqueness, suppose
f(@) = aF(z) = BG(z).

Then
G(z) = vF (),

wherey = «/f.
In a unique factorisation domaih we can express any € K in the form

’7267

with ged(a, b) = 1, since we can divide andb by any common factor.
Thus
aF(x) = bG(z).

Let p be a prime factor ob. Then
plaF(z) = p| F(z),

contrary to our hypothesis on the coefficientd@f:). Thusb has no prime factors,
ie b is a unit; and similarly: is a unit, and so is a unit. <

Lemma 1.5 A non-constant polynomial
F(z) = apa" + - - + ag € Alz]

is prime inA[z] if and only if
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1. F(x) is prime (ie irreducible) inkK (x); and
2. ged(ag, ..., a,) = 1.

Proof of Lemma- Supposé(z) is prime inA[x]. Then certainly

ged(ag, - .., a,) =1,

otherwiseF'(x) would be reducible.
Supposé-(x) factors inK[z]; say

F(z) = g(x)h(z).
By Propositiof 114,
9(x) = aG(z), h(r)= FH(z),
whereG(z), H(x) have no factors ind. Thus
F(x) = 7G(2)H (z),
wherey € K. Lety = a/b, wherea,b € A andged(a,b) = 1. Then
bF(z) = aG(x)H (z).
Suppose is a prime factor ob. Then
p|G(x) or p|H(z),
neither of which is tenable. Henééas no prime factors, ieis a unit. But now
F(z) = ab™'G(x)H(z);

and soF'(x) factors inA[z].

Conversely, supposE(x) has the two given properties. We have to show that
F(x)is prime inAfz].

Suppose

F(z) | G(x)H(z)

in Alz].

If F(x)is constant then

F(z)=a~1

by the second property, so
F(x)| G(z) and F(z)| H(z).

We may suppose therefore thi F'(x) > 1. SinceK|[x] is a unique factori-
sation domain (Corollary to Propositipn 1.11),

F(z)| G(x) or F(x)|H(x)
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in K[z]. We may suppose without loss of generality that
F(z) | G(z)
in Kz|, say

whereh(x) € K|[z].
By Lemma/ 1.4 we can expreész) in the form

h(z) = aH(x),
where the coefficients off (x) are factor-free. Writing

a
a = -,

b
with ged(a, b) = 1, we have
bG(z) = aF(x)H(z).
Suppose is a prime factor ob. Then
pla or p|F(z) or p|H(z),
none of which is tenable. Henééas no prime factors, iis a unit. Thus
F(x) | G(x)

in Alz]. <
Now suppose
F(z) =apz" +---ag € Alx]

is not a unit inA[z].

If F(z)is constant, say'(x) = a, then the factorisation of into primes inA
is a factorisation into primes id[z], by Lemma1]3. Thus we may assume that
deg F'(z) > 1.

Since K[z] is a unique factorisation domain (Corollary to Proposifion|1.11),
F(x) can be factorised ifx [z]:

F(x) = anpr(2) - - - ps(),

wherep,(z),...,ps(z) are irreducible monic polynomials ik [z]. By Lem-
mas[1.h andl 1.5 eagh(z) is expressible in the form

pi(z) = a; Py(x),

whereP,;(z) is prime inA[z].
Thus
F(z) = aPi(z)--- (),
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where
a=a,o o € K.

Let

a
o = —,

b
wheregced(a, b) = 1. Then

bF(z) = aPi(x)--- P.(x).
Let p be a prime factor ob. Then
p| Pi(x)

for somei, contrary to the definition oP;(z). Henceb has no prime factors, ie
is a unit.
If a is a unit then we can absoeb= a /b into P, (z):

F(x) = Q(x)Py(x) - - - Pr(x),

whereQ(z) = (a/b) Py (z).
If ¢ is not a unit then
ab™' =pi - ps,

wherep, ..., ps are prime inA (and so inA[z| by Lemmg13); and
F(z)=p1 - psPy(2)--- Po(x),

as required.

Finally, to prove uniqueness, we may suppose thgtF'(z) > 1, since the
result is immediate if’(x) = a is constant.

Suppose

F(x)=p1--pPi(x) - P(x) =qi- - qeQi(x) - - - Qr ().

Each P,(z), Q;(z) is prime in K[z] by Lemma[1}. Sinceé([z| is a unique
factorisation domain (Corollary to Propositipn 1.11) it follows that " and
that after re-ordering,

Qi(r) = aP(x),

wherea € K*. Let
a=a/b

with ged(a,b) = 1. Then
aPi(z) = bQ;(z).

If pis a prime factor ob then

p | bQi(x) = p | Qi(x),
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contrary to the definition of);(x). Thusb has no prime factors, and is therefore a
unit. Similarly a is a unit. Hence

QZ(CU) = €iPi<x>>

wheree; € A is a unit.
Setting

€= H €
we have
pl...ps :qu"'QS"
SinceA is a unique factorisation domain= s’ and after re-ordering,
4; = 1N;Pj,

wheren; € Ais a unit.
We conclude that the prime factors Bf ) are unique up to order and equiv-
alence (multiplication by units), id[z] is a unique factorisation domain. «

Example:There is unique factorisation i z], sinceZ is a principal ideal domain
by Propositiorf T]3 and so a unique factorisation domain by Propo§itipn 1.7.
Note thatZ[z] is nota principal ideal domain, since eg the ideal

a=(2z),
consisting of all polynomials
F(x) = apa™ + -+ + ag
with a, even, is not principals:
a7 (G(x)).

For if it were, its generatoZ(x) would have to be constant, sineeontains
non-zero constants, and

deg G(z)H (z) > deg G(x)
if H(z) # 0. Butif G(z) = d then
aNZ=(2) = d = +2,

ie a consists of all polynomials witkvencoefficients. Since: € a is not of this
form we conclude that is not principal.



Chapter 2

Number fields

2.1 Algebraic numbers

Definition 2.1 A numbera € C is said to bealgebraidf it satisfies a polynomial
equation
fx)y=2"+a2" '+ +a,=0

with rational coefficients; € Q.

For example,/2 andi/2 are algebraic.

A complex number is said to teanscendentaif it is not algebraic. Bothe
andr are transcendental. It is in general extremely difficult to prove a number
transcendental, and there are many open problems in this area, eg it is not known
if 7¢ is transcendental.

Proposition 2.1 The algebraic numbers form a fie@ c C.

Proof » If « satisfies the equatiof{z) = 0 then—a« satisfiesf(—z) = 0, while
1/« satisfiest™ f(1/z) = 0 (wheren is the degree of (z)). It follows that —«
and1/« are both algebraic. Thus it is sufficient to show that.if; are algebraic
then so arex + 3, af5.

Supposey satisfies the equation

fx)=2™ +a 2™ 4+ +a, =0,
andg the equation

g@)=2" + b+ + b, = 0.
Consider the vector space

V={('B:0<i<m, 0<j<n)
overQ spanned by the:n elementsy!37. Evidently

a+p,af V.

2-1
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But if 6 € V then themn + 1 elements
1,0,6%...,m™

are necessarily linearly dependent (0@ sincedim V' < mn. In other words
0 satisfies a polynomial equation of degreéenn. Thus each elememitc V is
algebraic. In particulat 4+ 3 anda3 are algebraic. «

2.2 Minimal polynomials and conjugates

Recall that a polynomigh(z) is said to bemonicif its leading coefficient — the
coefficient of the highest power af— is 1:

p(x) = 2"+ a "t -+ ay,.

Proposition 2.2 Each algebraic number ¢ Q satisfies a unique monic polyno-
mial m(z) of minimal degree.

Proof » Supposex satisfies two monic polynomials:, (x), ms(z) of minimal
degreel. Thena also satisfies the polynomial

p(x) = ma(x) = ms(z)

of degree< d; and if p(z) # 0 then we can make it monic by dividing by its
leading coefficient. This would contradict the minimality:af (x). Hence

my(z) = me(z).

Definition 2.2 The monic polynomiah(z) satisfied byr € Q is called themin-
imal polynomialof o«. Thedegreeof the algebraic number is the degree of its
minimal polynomiain(z).

Proposition 2.3 The minimal polynomial(z) of o € Q is irreducible.

Proof » Suppose to the contrary

where f(x), g(x) are of lower degrees than(z). But thena must be a root of
one off(x),g(z). =

Definition 2.3 Two algebraic numbers, 7 are said to beconjugatef they have
the same minimal polynomial.
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Proposition 2.4 An algebraic number of degreEhas justd conjugates.

Proof » If the minimal poynomial otv is
m(z) = 4+ a4+ ay,
then by definition the conjugates efare thed rootsa; = a, as, . .., ag of m(x):
m(z) = (x —ay)(x —ag) -+ (T — ag).

These conjugates are distinct, since an irreducible polynamia) overQ is
necessarilyseparableie it cannot have a repeated root. Forifvere a repeated
root of m(z), ie

(= a)* [ m(x)

then
(z — ) | M (),
and so
(z = a) | d(z) = ged(m(z), m'(z)).
But
d(z) | m(x)
and

1 <deg(d(z)) <d-—1,
contradicting the irreducibility ofn(z). <

2.3 Algebraic number fields

Proposition 2.5 Every subfield< C C contains the rational§):
Qc K cC.

Proof » By definition,1 € K. Hence
n=1+---+1eK

for each integen > 0.
By definition, K is an additive subgroup @. Hence—1 € K; and so

—n=(-1nekK
for each integen > 0. Thus
Z C K.
Finally, sinceK is a field, each rational number
n
——cK
T P S

wheren,d € Zwithd #0. =
We can consider any subfield C C as a vector space ovér.
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Definition 2.4 An number field(or more precisely, amlgebraic number fie)ds
a subfieldK” c C which is of finite dimension as a vector space d@elf

dim@ =d
then K is said to be a number field of degrée
Proposition 2.6 There is a smallest number field containing the algebraic

numbersyy, ..., a,.

Proof » Every intersection (finite or infinite) of subfields Gfis a subfield ofC;

so there is a smallest subfield containing the given algebraic numbers, namely
the intersection of all subfields containing these numbers. We have to show that
this field is a number field, ie of finite dimension ov@r

Lemma 2.1 Supposes C C is a finite-dimensional vector space o@r Then
K is a number field if and only if it is closed under multiplication.

Proof of Lemma- If K is a number field then it is certainly closed under multi-

plication.
Conversely, if this is so thef is closed under addition and multiplication; so
we only have to show that it is closed under division by non-zero elements.
Supposer € V, « # 0. Consider the map

r—ar:V —=V.
This is a linear map ove; and it is injective since
ar=0= 2 =0.
SinceV is finite-dimensional it follows that the map is surjective; in particular,
ar =1

for somer € V, ie ais invertible. Hencé/ is a field. «
Now supposey; is of degreel; (ie satisfies a polynomial equation of degree
d; over@Q). Consider the vector space (ov@)

V={("ar:0<i<dy, - ,0<i, <d).
It is readily verified that
OéiV - Vv,
and so
Vv cV,
ie V' is closed under multiplication.
It follows that V' is a field; and since any field containing, ..., «, must

contain these producty; is the smallest field containing,, . . . , «,.. MoreoverV
is a number field since
dimgV < d;---d,.
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Definition 2.5 We denote the smallest field containing. . ., o, € CbyQ(ay, ..., ;).

Proposition 2.7 If « is an algebraic number of degrekthen each element €
Q(«) is uniquely expressible in the form

d—
ap+ aja+ - +ag_1a®t (ag,ay,. .., aq-1 € Q).

Proof » It follows as in the proof of Proposition 2.6 that these elements do con-
stitute the fieldQ(«). And if two of the elements were equal therwould satisfy
an equation of degree d, which could be made monic by dividing by the leading
coefficient. <«

A number field of the formK = Q(«), ie generated by a single algebraic
numberq, is said to besimple Our next result shows that, surprisingly, every
number field is simple. The proof is more subtle than might appear at first sight.

Proposition 2.8 Every number field< can be generated by a single algebraic
number:

K = Q(a).

Proof » It is evident that
K =Q(ay,...,q;);
for if we successively adjoin algebraic numbers

(07| € K \ Q(ah s 7aT)
then
dim Q(aq) < dim Q(ay, as) dim Q(ay, e, a3) <

and soK must be attained after at ma#ing K adjunctions.
Thus it is suffient to prove the result when= 2, ie to show that, for any two
algebraic numbers, 3,

Q(e, ) = Q(7)-

Let p(x) be the minimal polynomial of, andq(z) the minimal polynomial
of 5. Supposev; = «,...,«a,, are the conjugates ef andg;, = 3, ..., 3, the
conjugates of’. Let

v =a+af,

wherea € Q is chosen so that then numbers
o + aﬁj
are all distinct. This is certainly possible, since

Qi — Oy

B; =By

a; +af; = ap +afy <= a=
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Thusa has to avoid at mostin(mn — 1)/2 values.

Since
a=r7—ap,
and
pla) =0,
[ satisfies the equation
p(y —ax) =0.

This is a polynomial equation over the figld= Q(~).
But  also satisfies the equation

q(z) =0.
It follows that 5 satisfies the equation
d(z) = ged(p(y — ax), q(z)) = 0.
Now
(z—3) | d(x)
sinces is a root of both polynomials. Also, since

d(x) [ ¢(z) = (x = 1) -~ (& = Bn),

d(z) must be the product of certain of the factogs— ;). Suppos€z — 3;) is
one such factor. The#; is a root ofp(y — ax), ie

p(y —aB;) = 0.
Thus
v —af; = o
for somei. Hence
v = a; +ab;.

But this implies that = 1, j = 1, since we chose so that the elements
o; + aﬁj

were all distinct.
Thus

d(z) = (x— ).
But if u(z),v(z) € k[z] then we can computged(u(x),v(x)) by the eu-
clidean algorithm without leaving the field ie

u(z),v(x) € k[z] = ged(u(z),v(x)) € k[z].
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In particular, in our case

r—pBek=Q(7).

But this means that
B €Q(v);

and so also

a=7v—af €Qy)

Thus
a,f€Q(v) = Q(a,3) CQv) C Q(e, B).
Hence
Q(a, B) = Q(7)
L |

2.4 Algebraic integers

Definition 2.6 A numbera € C is said to be aralgebraic integeif it satisfies a
polynomial equation

fx)y=2"+aa" '+ +a,=0
with integral coefficients; € Z. We denote the set of algebraic integerszby
Proposition 2.9 The algebraic integers form a ring with
7ZCZcCQ.

Proof » Evidently
7 CZ,

sincen € Z satisfies the equation
x—n=0.
We have to show that
a,B€l = a+B,ap €.

Lemma 2.2 The numbery € C is an algebraic integer if and only if there exists
a finitely-generated (but non-zero) additive subgroug C such that

aScC S
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Proof of Lemma- Supposer € Z; and suppose the minimal polynomial @is

m(z) = 2% + a4+ +ag,
wherea, . ..,aq € Z. Let S be the abelian group generatedly, . .., a% '
S={1a,.. . o).

Then it is readily verified that
asS C S.

Conversely, supposgis such a subgroup. <

If « is a root of the monic polynomiaf(x) then—« is a root of the monic
polynomial f(—x). It follows that if « is an algebraic integer then so-isv. Thus
it is sufficient to show that ifv, 3 are algebraic integers then so are- 3, af3.

Supposer satisfies the equation

f@)y=a2"+a2x™ '+ +an=0 (a,...,am €7),
andg the equation
gl)=a"+bx" '+ +b, =0 (by,...,b, € 7).
Consider the abelian group (@rmodule)
M={'3:0<i<m,0<j<n)
generated by thewn elementsy37. Evidently
a+B,a8 V.

As a finitely-generated torsion-free abelian groipjs isomorphic taz? for
somed. Moreover) is noetherianie every increasing sequence of subgroups of
M is stationary: if

S CS;CS;---C M

then for someV,
SN = Sn41 = SN2 ="""
Supposé € M. Consider the increasing sequence of subgroups

(1) C (1,0) C (1,0,6%) C --- .
This sequence must become stationary; that is to say, for 86me
oY € (1,0,...,08 1),
In other wordsg satisfies an equation of the form
O = a0V 4 a4

Thus every) € M is an algebraic integer. In particular+ 8 anda3 are algebraic
integers. «
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Proposition 2.10 A rational number: € Q is an algebraic integer if and only if
it is a rational integer: B
ZNQ="7.

Proof » Suppose: = m/n, whereged(m,n) = 1; and suppose satisfies the
equation
2 +az® o+ ag=0 (a; € 7).

Then
m? +amitn+ - 4 agn? = 0.

Sincen divides every term after the first, it follows that | m?. But that is
incompatible withgcd(m,n) = 1, unlessn = 1,iec € Z. =

Proposition 2.11 Every algebraic numbet: is expressible in the form

o = —,
n

where/ is an algebraic integer, and € Z.

Proof » Let the minimal polynomial ofx be
m(z) = 2% + a4+ +ag,
whereay, ..., aq € Q. Let thelem of the denominators of the ben. Then
bi=na; €Z (1<i<d).
Now « satisfies the equation
nx + bzt + .-+ b, =0.

It follows that
0 = na«a

satisfies the equation
2+ b+ (nb)x® 2 4 - 4 (0% = 0.

Thus/ is an integer, as required. «
The following result goes in the opposite direction.

Proposition 2.12 Supposex is an algebraic integer. Then we can find an alge-
braic integer( # 0 such that
af € 7.
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Proof » Let the minimal polynomial ofx be
m(z) = 2% + a2 4+ ag,
whereay, ..., a4 € Z. Recall that the conjugates af
ol =aq,...,0q

are the roots of the minimal equation.
Each of these conjugates is an algebraic integer, since its minimal equation
m(x) has integer coefficients. Hence

/8 — 062 .« e ad
is an algebraic integer; and

af = ajay - aqg = tag € 7.

2.5 Units

Definition 2.7 A numbera € C is said to be aunit if both « and 1/« are alge-
braic integers.

Any root of unity, ie any number satisfying" = 1 for somen, is a unit.
But these are not the only units; for examplé — lis aunit.
The units form a multiplicative subgroup @f*.

2.6 The Integral Basis Theorem

Proposition 2.13 Supposed is a number ring. Then we can find, ...,y € A
such that eaclw € A is uniquely expressible in the form

o =171+ CdVd
with ey, ..., cq € Z.
In other words, as an additive group
A7

We may say that,, . .., vy IS aZ-basisfor A.

Proof » SupposeA is the ring of integers in the number field. By Proposi-
tion ??,

K =Q(«).
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By Propositiorf Z.12,
B
o= —,
m
wherej3 € Z, m € Z. Since
Q(B3) = Q(a),
we may suppose thatis an integer.

Let
m(z) = 2%+ a2t + -+ ay

be the minimal polynomial ofi; and let
] =aqQ,...,04

be the roots of this polynomial, ie the conjugates.of
Note that these conjugates satisfy exactly the same set of polynomial®pver
for
pla) =0 <= m(z) | p(x) <= p(ay;) = 0.

Now supposel € A. Then
6 = bo + bla + - bd,ladfl,

whereby, ..., by 1 € Q, say

8= fla)
with f(z) € Q|x].
Let
B =bo+ brag + -+ bg_1af "
fori=1,....d.

Eachg; satisfies the same set of polynomials ofleas(. for

p(B) =0 <= p(f(a)) = 0 <= p(f(a;)) =0+ p(5;) = 0.

In particular, eaclw; has the same minimal polynomial &sand so eacly; is an
integer.

We may regard the formulae for thik as linear equations for the coefficients
bo,...,bg_1:

bo + aiby +---a® by = By,

bo + agby + -+ - a4 by = Ba.
We can write this as a matrix equation
bo b1
Dy : [=]":
bdfl ﬁd
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whereD is the matrix

1 o !
D = S
I ag ... ot
By a familiar argument,
1 ox ... ¢!
det |+ . . i | =TI — ).
1 ozg ... 297! i<d

(The determinant vanishes whenewer = z; since then two rows are equal.
Hence(z; — z;) is a factor for each pai, j; from which the result follows on
comparing degrees and leading coefficients.)

Thus

det D = H(Oéz — Oéj).
1<)

In particular,det D is an integer.

On solving the equations fég, . . ., by, by Cramer’s rule, we deduce that

Bi
b=
det D
where3; is a co-factor of the matriXD, and so a polynomial i, .. ., ay with

coefficients inZ, and therefore an algebraic integer.
By Propositiof 2.12, we can find an integesuch that

odet D =n € Z,
where we may suppose that> 0. Thus eacl; is expressible in the form
b=,
where B
v €EZNQ=7Z.

In other words, eachi € A is expressible in the form
B = cobp + *++ + Ca-10a-1,

where

and
c; € 7 (0 <i< d)
The elements
CO(S() + o Feg10g-1 (Ci € Z)
form a finitely-generated and torsion-free abelian greypf rankd; and A is
a subgroup of” of finite index. We need the following standard result from the
theory of finitely-generated abelian groups.
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Lemma 2.3 If
S czt

is a subgroup of finite index then

S~ 74

Proof of Lemma- We have to construct &-index for.S. We argue by induction

ond.
Choose an element
e=(e1,...,eq) €S

with least positive last coordinatg. Suppose
s=(s1,...,8q4) €S.

Then
Sq4 = (g€,

or we could find an element ¢f with smaller last coordinate. Thus

s—qe=(t1,...,tq_1,0).

Hence
S=ZedT,
where
T=Snz"!
(identifying Z4-! with the subgroup of.? formed by thed-tuples with last coor-
dinate0).

The result follows on applying the inductive hypothesi§to <«
The Proposition follows on applying the Lemma to

AcCx=ze

2.7 Unique factorisation in number rings

As we saw in Chapter 1, a principal ideal domain is a unique factorisation domain.
The converse is not true; there is unique factorisatio#ir}, but the ideak2, z)

is not principal. Our main aim in this Section is to show that the convéoss

hold for number ringsA:

A principal ideal domair—=- A unique factorisation domain

We suppose throughout the Section thats a number ring, ie the ring of
integers in a number field .
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Proposition 2.14 Suppos@ C A is a non-zero ideal. Then the quotient-ring
Ala

is finite.

Proof » Takea € a, a # 0. By Proposition 1.8, we canfind € A, 3 # 0 such

that
a=af €.

We may suppose that> 0. Then
(a) C (a) C a.

Thus
a = moda= a= [ mod a.

By Proposition??, A has an integral basis;,...,vs, i€ eacha € A is
(uniquely) expressible in the form

= 171 + CaVd
with ¢y, ..., ¢s € Z. It follows thata is congrueninoda to one of the numbers

i+ rava (0<r <a).

Thus
IA/{a)]] = a.
Hence
14/a]| < a®.
<

Proposition 2.15 The number ringd is a unique factorisation domain if and only
if it is a principal ideal domain.

Proof » We know from Chapter 1 that
A principal ideal domain—=- A unique factorisation domain

We have to proce the converse.
Let us suppose therefore that the number ting a unique factorisation do-
main.
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Lemma 2.4 Suppose

a=er ... B= 5’%{1 ool
Let
5= W{nin(el,fl) . 7.[_mirl(ervfr)'
Then
5 — ng(Oé, ﬁ)

in the sense that

dla,d |3 and 0|, d|B=140|0.
Proof of Lemma- This follows at once from unique factorisation.<

Lemma 2.5 If
(1 = (B3 mod «
then
ged(a, B1) = ged(a, fa).

Proof of Lemma- It is readily verified that if

B = B2 + ay
then
(S|Oé, ﬁ1<:,>5|0é, ﬁg.
<
We say thaty, § arecoprimeif

ged(a, B) = 1.

It follows from the Lemma that we may speak of a congruence glassd o
being coprime tav.

Lemma 2.6 The congruence classesoda coprime toa form a multiplicative
group

(A/(a))™.
Proof of Lemma- We have

ged(ay, B1s) =1 <= ged(a, f1) = 1, ged(a, Fr) = 1.

Thus(A/{«))* is closed under multiplication; and jf is coprime toa then the
map

¥ By (A () — (A (@)
is injective, and so surjective sinck/(«) is finite. Hence(A/(a))* is a group.
<
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Lemma 2.7 Suppose
ged(a, B) = 0.
Then we can find, v € A such that

au + Pv = 0.

Proof of Lemma- We may suppose, on dividing ldy that

ged(a, ) = 1,
and so )

Be(A)()”.
Since this group is finite, )

g =1

for somen > 0. In other words,

6" =1 mod a,
ie

f*=1+ay,
ie

au+ pPv =1

withu = —y, v ="t <
We can extend the definition gtd to any set (finite or infinite) of numbers

a, €A (iel).

and by repeated application of the last Lemma we can fin¢all but a finite
number equal to 0) such that

> i = ged(ay).

icl el

Applying this to the idead, let

d = ged(a).
aca
Then
0= Zazﬁz € a;
and so
a= ().



Chapter 3

Quadratic Number Fields

3.1 The fieldsQ(,/m)

Definition 3.1 A quadratic fields a number field of degree 2.
Recall that this means the fieldhas dimension 2 as a vector space @yer
dimg k = 2.
Definition 3.2 The integem € Z is said to besquare-fredf
m=r’s = r = +1.

Thus
+1, 42, 43, 45,46, +7, £10, +11, +13, . ..

are square-free.

Proposition 3.1 Each quadratic field is of the for@(,/m) for a unique square-
free integerm # 1.

Recall thatQ(,/m) consists of the numbers

r+yvm (z,y€Q).

Proof » Supposé: is a quadratic field. Let: € &\ Q. Thena?, o, 1 are linearly
dependent ove@, sincedimgk = 2. In other words,a satisfies a quadratic
equation

apa® + aja+ as =0

with ag, aq, ao € Q. We may assume that, a,, a, € Z. Then

—ay + \/CL% — 4(10@2

2(10

o =

3-1
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Thus

\a? — dagas = 2apc + a; € k.

a? — dagay = r’m

Let

wherem is square-free. Then

1
Vm = ;\/a% — 4apay € k.

Q C Q(vm) C k.

Thus

Sincedimg k£ = 2,
k=Q(vm).

To see that different square-free integers m, give rise to different quadratic
fields, suppose

my € Q( V m2)7
say
my =z +yyms (v,y € Q)
Squaring,

T =z + m2y2 + 2xy+/mMes.
Thus eitherr =0 ory =0 or

Vms € Q,

all of which are absurd. «
When we speak of the quadratic fie@@(/m) it is understood thatn is a
square-free intege# 1.

Definition 3.3 The quadratic field)(/m) is said to berealif m > 0, andimag-
inaryif m < 0.

This is a natural definition since it means tf@t,/m) is real if and only if

Q(vm) CR.
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3.2 Conjugates and norms
Proposition 3.2 The map

x+yvme—x —yym

is an automorphism d@(,/m); and it is the only such automorphism apart from
the identity map.

Proof » The map clearly preserves addition. It also preserves multiplication, since

(z + yvm)(u +vvm = (zu + yom) + (zv + yu)v/m,

and so
(& — yv/m)(u — vv/m = (zu+ yom) — (zv + yu)y/m.

Since the map is evidently bijective, it is an automorphism.
Conversely, ifg is an automorphism d(,/m) thend preserves the elements
of Q; in fact if « € Q(y/m) then

f(a) =a <= acQ.

Thus
O(vm)? = 0(m) = m = 0(v/m) = £/m,

giving the identity automorphism and the automorphism abova.

Definition 3.4 If

a=z+yy/m (r,y€Q)
then we write

a=z—yy/m (z,y€Q)

and we calla the conjugateof a.

Note that ifQ(y/m) is imaginary (iem < 0) then the conjugaté coincides
with the usual complex conjugate.

Definition 3.5 We define the noroV («) of o € Q(y/m) by
N(a) = aa.

Thus if
a=z+yym (z,y€Q)
then

N(@) = (z +yvm)(z —yy/m) = 2% — my*.

Proposition 3.3 1. N(a) € Q;
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2. N()a=0< a=0;
3. N(aB) = N(a)N(B);
4. If a € QthenN(a) = a?;
5. If m < 0thenN(a) > 0.

Proof » All is clear except perhaps the third part, where

N(ap) = (aB)(af)
= (ap)(ap)
= (aa)(p)
= N()N(B)

3.3 Integers

Proposition 3.4 Supposé = Q(y/m), wherem # 1 is square-free.

1. If m £ 1 mod 4 then the integers i& are the numbers

a+ by/m,
wherea, b € Z.
2. Ifm = 1 mod 4 then the integers ik are the numbers
a b
2 TV
wherea, b € Z and

a = bmod 2,

ie a, b are either both even or both odd.

Proof » Suppose
a=a+bym (beQ)

is an integer. Recall that an algebraic numbes an integer if and only if its
minimal polynomial has integer coefficients.yif= 0 the minimal polynomial of
aisz — a. Thusa = ais in integer if and only ifa € Z (as we know of course
sinceZ NQ = 7).

If y # 0 then the minimal polynomial ok is

(x —a)* —mb® = 2% — 2ax + (a* — mb?).



374 3-5

Thusa is an integer if and only if
20 €7 and a®—mb® € Z.

Supposea = A, ie

A
a = —.
2
Then
40> € Z, a* —mb* € Z = 4mb* € Z
— 4’ eZ
—2beZ
sincem is square-free. Thus
B
b=—,
2
whereB € Z.
Now
2 2
a2—m1)2:A mbB € 7,
4
ie

A2 — mB? = 0 mod 4.
If Ais eventhen
2| A= 4| A*=4|mB* = 2| B*= 2| B;

and similarly
2|B=4|B*=4|A*=2] A

ThusA, B are either both even, in which casg € Z, or both odd, in which case
A% B? =1mod 4,
so that

1 —m = 0 mod 4,

m = 1 mod 4.
Conversely ifm = 1 mod 4 then

A, Bodd = A% —mB?=0mod 4
— a’ —mb* € Z.

<
It is sometimes convenient to express the result in the following form.
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Corollary 3.1 Let

vm  ifm # 1 mod 4,
w =
@ if m = 1 mod 4.

Then the integers iR(,/m) form the ringZ|w).

Examples:

1. The integers in the gaussian fi€}d:) are the gaussian integers

a+ bi (a,b € Z)

2. The integers i)(1/2) are the numbers

a+bv2 (a,b e Z).

3. The integers i®(1/—3) are the numbers
a + bw (a,b € Z)
where

1++v/-3
W= ————.
2

Proposition 3.5 If o« € Q(y/m) is an integer then
N(a) € Z.

Proof » If « is an integer then so is its conjugatgsincea, a satisfy the same
polynomial equations oveép). Hence

N(a)eZNQ="Z.

3.4 Units

Proposition 3.6 An integere € Q(1/m) is a unit if and only if
N(e) = £1.

Proof » Suppose is a unit, say

en = 1.
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Then
N(ON(n) = N(1) =1
Hence
N(e) = +1
Conversely, suppose
N(e) = 1,
ie
ce = +1.
Then
el =+

is an integer, ie is a unit. <«

Proposition 3.7 An imaginary quadratic number field contains only a finite num-
ber of units.

1. The unitsinQ(:) are +1, +i;
2. The units iQ(y/—3) are +1, +w, +w?, wherew = (1 + /—=3)/2.
3. In all other cases the imaginary quadratic number fi€d,/m) (where

m < 0) has just two units+1.

Proof » We know of course that-1 are always units.

Suppose
€=a-+bym

is a unit. Then
N)e) = a® + (—m)b* = 1

by Propositiorf 3]6. In particular
(—m)b* < 1.

If m = 3 mod 4 thena,b € Z; and sob = 0 unlessm = —1 in which case
b = +1 is a solution, giving: = 0, ie e = 4.
If m =1 mod 4 thenb may be a half-integer, ie= B/2, and

(—=m)b* = (—m)B*/4 > 1

if B # 0, unlessn = —3 andB = +1, in which cased = +1. Thus we get four
additional units inQ(v/—3), namely+w, +w?. <«
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Proposition 3.8 Every real quadratic number fiel@(,/m) (wherem > 0) con-
tains an infinity of units. More precisely, there is a unique wynit 1 such that the
units are the numbers

+n" (neZ)
Proof » The following exercise in the pigeon-hole principle is due to Kronecker.
Lemma 3.1 Supposer € R. There are an infinity of integers,, n with m > 0
such that

1
|ma —n| < —.
n

Proof of Lemma- Let {z} denote the fractional part of € R. Thus

{} =2~ [al,

where[z] is the integer part of.
SupposeV is a positive integer. Let us dividé, 1) into N equal parts:

Consider how theV + 1 fractional parts

{0}, {a},{2a},...,{Na}

fall into theseN divisions.
Two of the fractional parts — sayra} and{sa}, wherer < s — must fall
into the same division. But then

[{sa} = {ra}| <1/N,

ie
|(sa — [sal]) — (ra — [ra])| < N.
Let
m=s—r, n=/[sal —[ral.
Then
ma—n| <1/N <1/m.
<

Lemma 3.2 There are an infinity of, b € Z such that

la® — b®m| < 2y/m + 1.
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Proof of Lemma- We apply Kronecker's Lemma above with= \/m. There are
an infinity of integers:, b > 0 such that

la — by/m| < 1/b.

But then

a < bym+1,
and so

a+ bym < 2by/m + 1
Hence
|a® — b*m| = (a4 by/m)|a — by/m]|
< (2bym +1)/b
<2vm + 1.
<

It follows from this lemma that there are an infinity of integer solutions of
a2 —®’m=d

for some
d < 2v/m+ 1.

But then there must be an infinity of these soluti¢agh) with the same re-
maindersmodd.

Lemma 3.3 Suppose

a1 = ay + biv/m, as = as + bagy/m,

where
a? — bl =d=a3—b;
and
a1 = ay mod d, by = by mod d.
Then
651
Qi

is an algebraic integer.
Proof of Lemma- Suppose

as = ay +mr, bo = by + ms.

Then
Q9 = +dﬁ,
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where

Hence

Q1 Qi

Qo Qalip

=S +8
—1+5,

which is an integer. <«
Now supposéas, by ), (az, by) are two such solutions. Then

(631
€= —
Qg
is an integer, and
N(Oél) d

Hencee is a unit, by Proposition 3.6.
Since there are an infinity of integefissatisfying these conditions, we obtain
an infinity of units if we fixa; and letay vary. In particular there must be a unit

€+ +1.

Just one of the four units
+e, et

must lie in the rangél, co). (The others are distributes one each in the ranges
(_007 _1)1 (_17 0) and(Oa 1))

Suppose then that
€=a+bym> 1.
Then
e <1,
and so

E=decle(~1,1),

~l<a—bym<1.
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Adding these two inequalities,

0 < 2a,

a > 0.

On the other hand,
e>e=—=b>0.

It follows that there can only be a finite number of units in any range
l<e<e
In particular, ife > 1 is a unit, then there is a smallest uniin the range
l<n<e
Evidently is the least unit in the range
1 <n.

Now suppose is a unit# +1. As we observed, one of the four units, +-¢ !
must lie in the rangél, co). We can take this in place ef ie we may assume that

e > 1.
Sincen™ — oo,
777“ S €< n’/‘-‘rl
for somer > 1. Hence
1<en™ <.

Sincen is the smallest unit- 1, this implies that

ent=1,
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3.5 Unique factorisation

Supposed is an integral domain. Recall thatf is aprincipal ideal domainie
each ideald C A can be generated by a single element

a=(a),

then A is aunique factorisation domajne each: € A is uniquely expressible —
up to order, and equivalence of primes — in the form

€r
r o9

a=ent---T

wheree is a unit, andry, . . ., 7w, are inequivalent primes.
We also showed that ifl is the ring of integers in an algebraic number figld
then the converse is also true, ie

A principal ideal domain<= A unique factorisation domain

Proposition 3.9 The ring of integer&[w] in the quadratic field)(,/m is a prin-
cipal ideal domain (and so a unique factorisation domain) if

m=—11,-7,-3,-2,—1,2,3,5,13.

Proof » We take
W (o)l

as a measure of the size@fc Z|w].

Lemma 3.4 Supposey, 5 € Z|w|, with  # 0. Then there exist, p € Z[w] such
that

a=py+p
with
N (o)l < V()]

In other words, we can divide by 3, and get a remaindey smaller thang.

Proof of Lemma- Let
(8}

B:$+y\/ﬁ

wherezx,y € Q.
Suppose first that: = 1 mod 4. We can find integers, b such that

N =

|z —al, Jy—b| <

Let
v =a+bym.
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Theny € Z|w]; and

Thus

If now m < 0 then

a 1+m
< - -
0 N% et
yielding
NE ) <1
I(ﬁ 20l
if m=—2or — 1; while if m > 0 then
m a 1
< - < =
yielding
N(E - <1
|<ﬁ )]
if m = 2or3.

On the other hand, if. = 1 mod 4 then we can choose b to be integers or
half-integers. Thus we can chodsso that

1
—b) < Z:
Ny )< T
and then we can choogeso that
1
Nz —a)< 5

(Note thate must be an integer or half-integer accordingbas an integer or
half-integer; so we can only choogeo within an integer.)
If m < 0 this gives

« 44+m
<N(=—7v) < ——
U_N% e
yielding
NE - <1
I(ﬁ )|
if m=—11,—7or — 3; while if m > 0 then
m Q 1
< ~ < =
w—N% S
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yielding
NE -y <1
WG =)l
if m=>5or13.
Thus in all the cases listed we can find: Z[w] such that
NE -9 <1
NV 3 )]

Multiplying by 3,
IN(a = B)[ < IN(B)],

which gives the required result on setting

p:a_577

a = [y +p.

<
Now supposea # 0 is an ideal inZ[w]. Leta € a (« # 0) be an element
minimising |V («)|. (Such an element certainly exists, singé&«)| is a positive
integer.)
Now suppose € a. By the lemma we can findl, p € Z|w] such that

B=ay+p
with
IV (p)| < IN(a)]:
But
p=0—ay€a

Thus by the minimality of V' («/)],
N@)=0=p=0

= 3 =ay
= € (o).
Hence
a={(a).
<
Remarks:

1. We do not claim that these are thely cases in whicl@)(/m) — or rather
the ring of integers in this field — is a unique factorisation domain. There
are certainly othem for which it is known to hold; and in fact is not known
if the number of suchn is finite or infinite. But the result is easily estab-
lished for them listed above.
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2. On the other hand, unique factorisation fails in many quadratic fields. For
example, ifm = —5 then

6=2-3=(1++v-5)(1—+V-5)
Now 2 is irreducible irZ[v/5], since
a® + 5% =2
has no solution in integers. Thus if there were unique factorisation then
2[1++v=5 or 2|1—+/-5,

both of which are absurd.

As an example of a real quadratic field in which unique factorisation fails,
considern = 10. We have

6=2-3=(4+V10)(4 — V10)
The prime 2 is again irreducible; for
a® — 10b* = £2

has no solution in integers, since neithe? is a quadratic residusod
10. (The quadratic residuasod10 are0,+1,+4,5.) Thus if there were
unique factorisation we would have

2|4++10 or 2]4—+10,

both of which are absurd.

3.6 The splitting of rational primes

Throughout n this section we shall assume thatintegersZ|w| in Q(y/m) form
a principal ideal domair(and so a unique factorisation domain).

Proposition 3.10 Letp € N be a rational prime. Thep either remains a prime
in Z[w], or else

p==+nT,
wherer is a prime inZ|w]. In other wordsp has either one or two prime factors;
and if it has two then these are conjugage.

Proof » Suppose
P = €My - Tp.
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Then
N(m)---N(m) = N(p) = p*.

SinceN (7;) is an integek£ 1, it follows that eithen- = 1, ie p remains a prime,
or elser = 2 with
N(m) = £p, N(m) = +p.

In this case, writingr for 7,
p=*N(r)=+77.

|
We say thap splitsin Q(y/m) in the latter case, ie i divides into two prime
factors inZ[w]. We say thap ramifiesif these two prime factors are equal, ie if

Corollary 3.2 The rational primep € N splits if and only if there is an integer
a € Z[w] with

Proposition 3.11 Suppose € N is an odd prime wittp  m. Thenp splits in
Q(y/m) if and only ifm is a quadratic residuenodp, ie if and only if

2?2 =mmod p
for somex € Z.

Proof » Suppose
z? = m mod p.
Then
(z — Vm)(z +v/m) = pq
for someg € Z.

If now p is prime inZ[w] (where it is assumed, we recall, that there is unique
factorisation). Then

p’x_\/m or p’x—i_m’

both of which are absurd, since for example

plz—vm= z—m=pla+bym)

= pb = —1,

whereb is (at worst) a half-integer. «
It remains to consider two cases| m andp = 2.

Proposition 3.12 If the rational primep | m thenp ramifies inQ(y/m).
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Proof » We have
(vVm)* = m = pq,

for someg € Z. If p remains prime then

plvm= N(p) | N(vm)

:>p2 | —m,

which is impossible, since: is square-free.

Hence
p = &7,
and
vVm = ra
for somea € Z|w|. Note thata cannot contairr as a factor, since this would
imply that
p =77 | Vm,

which as we have seen is impossible.
Taking conjugates
—v/m = 7a.

Thus
7| vm.

Since the factorisation af/m is (by assumption) unique,
T~ T,
ie p ramifies. <
Proposition 3.13 The rational prime 2 remains prime Ia[w] if and only if
m = 5 mod 8.

Moreover, 2 ramifies unless
m = 1 mod 4.

Proof » We have dealt with the case whexe@ m, so we may assume that is
odd.
Suppose first that
m = 3 mod 4.

In this case
(I—=vm)(1+m)=1-m=2q.

If 2 does not split then

2|1 —+m or 2|1+ /m,
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both of which are absurd.
Thus
2 ==+,

where
T=a+b/m (a,b€Z),
say. But then

T =a—by/m=m+2by/m.

Sincer | 2 is follows that

7| 7
and similarly

T
Thus

T = €T,

wheree is a unit; and so 2 ramifies.
Now suppose
m = 1 mod 4.

Suppose 2 splits, say
a’? — mb* = £2,

wherea, b are integers or half-integers.dfb € Z then
a? —mb* = 0,41 mod 4,

sincea?, b> = 0 or 1 mod 4.
Thusa, b must be half-integers, say= A/2, b = B/2, whereA, B are odd
integers. In this case,
A? —mB?* = £8.

Hence

A2 —mB? =0 mod 8
But

A? = B? =1 mod 8,
and so

A2 —mB?=1— m mod 8.

Thus the equation is insoluble if
m = 5 mod 8,

ie 2 remains prime in this case.
Finally, if

m =1 mod 8
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then
1—m 1+\/m_1—m_2
2 > 4 7
If 2 does not split then
1-—- 1
2 | 2\/77_1 or 2| +2\/ﬁ’

both of which are absurd.

Suppose
2 =47m,
where
A+ Bym
==
with A, B odd; and
__A-Bym
T
=1 — Bym.

Thus

m|7®= 7| Byvm
— N (7) | N(Byvm)
= 12| B*m,

which is impossible sinc&, m are both odd. Hence 2 is unramified in this case.
<
3.7 Quadratic residues

Definition 3.6 Suppose is an odd rational prime; and suppoges Z. Then the
Legendre symbol is defined by

0 ifp|a
a . . . .
(—) =<1 if pta anda is a quadratic residuenodp
p b . .

—1 if ais a quadratic non-residueiodp

Proposition 3.14 Supposep is an odd rational prime; and supposeb € Z.

0%
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Proof » The resul is trivial ifp | a or p | b; SO we may suppose that a, b.
Consider the group-homomorphism

0:(Z/p)* — (Z/p)* : T+ T°

Since
ker = {£1}
it follows from the First Isomorphism Theorem that
. p—1
0| = ——
fim ] = #——,

and so
(Z/p)*/im O = Cy = {£1}.

The result follows, since
. a
imf ={a e (Z/p)*: (;) =1}
<

Proposition 3.15 Suppose is an odd rational prime; and suppogse= Z. Then
e (E) mod p.
p

Proof » The resul is trivial ifp | a; SO we may suppose that a.
By Lagrange’s Theorem (or Fermat’s Little Theorem)

a* ' =1 mod p.

Thus )
(a(p_l)/Q) = 1 mod p;

and so
a? Y2 = +1 mod p.

Suppose: is a quadratic residue, say
a = b* mod p.

Then .
T =l =1 mod p.

Thus
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As we saw in the proof of Propositign 3] 14, exactly halfzje of the numbers
1,2,...,p — 1 are quadratic residues. On the other hand, the equation

over the fieldF, = Z/(p) has at most* roots. It follows that

<g>—1<:>ap;1£1modp;

p
(2) = 4" mod ;
p
Corollary 3.3 If p € Nis an odd rational prime then
-1\ 1if p =1 mod 4,
p) |-1lifp=3mod4.

Proof » By the Proposition,

and so

<

p =1 mod 4,
say

p=4m+1,
then

p;l = 2m;

2

while if

p = 3 mod 4,
say

p=4m+ 3,
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then

p—1
—_— =2 1.
5 m +

<
It is sometimes convenient to take the remainder a mod p in the range

P P
——<r << —-.
2"

We may say that hasnegative remaindemodp if
—g <r<0.
Thus13 has negative remaindetod?7, since
13=—1mod 7.

Proposition 3.16 Suppose € N is an odd rational prime; and suppogef a.

Then
(E) = (_1)M7

wherey is the number of numbers among

p—1
1,2a,..., ——
7a7 ) 2 a

with negative remainders.

Suppose, for example,= 11, a = 7. Then

T=-4,14=3,21=—-1, 28 = -5, 35=2mod 11.

Thus
p=3
Proof » Suppose
p—1
1<r<——
- 2
Then just one of the numbers
p—1
2 S—
a? a? 2

has remaindet-r.
For suppose
ta =r mod p, ja= —r mod p.
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Then
(i+j)a=0modp=-p|i+J

which is impossible since
1<i+jyj<p-—-1
It follows (by the Pigeon-Hole Principle) that just one of the congruences
p—1

ia = +r mod p (1§i§T)

is soluble for eachr.
Multiplying together these congruences,

-1 —1
a-2a---2 aE(—l)“1-2~~-p—modp,
2 2
ie
p—1 —1 —
az1-2 .pT: (—1)“1-2---10—modp7
and so
e (—=1)* mod p.
Since

(a) = ¢"% mod D
p

by Propositiorf 3-15, we conclude that

<9> = (~1)" mod p.

p

<«

Proposition 3.17 If p € N is an odd rational prime then
2\  J1lifp==+1modS§,
P N —1if p=+3 mod 8.
Proof » Consider the numbers

2,4,...,p—1.

The numbeei will have negative remainder if

p .
— < 21 <p,
g S SP
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p . p
- << —=.
1553

Thus theu in Propositiof 3716 is given by

-]

We considep mod 8. If

p=1mod 8,
say

p=8m+1,
then

5] = am 1] = 2m
and so
W =12m

If

p = 3 mod 8§,
say

p=8m + 3,
then

-t 2]

and so
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say
p=8m+ 9,
then
g}_4 +2,E}—%n+L
and so
w=2m+ 1.
If
p=T7mod 8,
say
p=8m-+7,
then
E}:4m+3,V}:%n+L
and so
w=2m + 2.
<

Corollary 3.4 If p € N is an odd rational prime then
-2\ J1lifp=1or3modSs,
p) |-1lifp=5o0r7modSs.
Proof » This follows from the Proposition and the Corollary to Proposifion]3.15,
since
5)-G)0
p p)\p)’
Proposition 3.18 If p € N is an odd rational prime then

3\ J1lifp=+1mod 12,
p) | —1if p=+5mod 12.

by Propositiorf 3.14. «
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Proof » If
. P
O<i< =
N
then ;
. D
0< 3 < —.
'
Thus3i has negative remainder if
g<3i<p,
ie
—<1< =
Thus
o [a) -1
3 6
If
27:11’1/10(167
say
p=06m+1,
then
5 =2 (5] =
3 6
and so
p=m
If
p = 5mod 6,
say
p =06m + 9,
then
-z i)
and so

The result follows. <«
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Corollary 3.5 If p € Nis an odd rational prime then
=3\ J1ifp=1modH§6,
p) |-1ifp=>5mod6.
Proof » This follows from the Proposition and the Corollary to Proposifion]3.15,

since
5)-G)0
p p)\p)’
by Propositiorf 3.14. «

Proposition 3.19 If p € N is an odd rational prime then

5\ J1ifp=+1mod 10,
p) | -1if p=+3 mod 10.

Proof » If
A
O<i< =
L
then .
0< b < Ep.

Thusb5i has negative remainder if

3
]—9<5i<p or —p<i<2p,
2 2
ie
p . P 3p . 2p
— - or — —=.
10°"°5 10"
Thus
- 8- 5]+ (3] - []
=151 " |10 5 10
If
p=1mod 12,
say
p=10m + 1,
then
j% P 2p} [31)}
[5] m [10} ™ [5 1) T
and so

W= 2m.

The other cases are left to the readers
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3.8 Gauss’ Law of Quadratic Reciprocity

Proposition 316 provides an algorithm for computing the Legendre symbol, as
illustrated in Propositions 3.1F=3]19, perfectly adequate for our purposes. How-
ever, Euler discovered and Gauss proved a remarkable result which makes com-
putation of the symbol childishly simple. This result — The Law of Quadratic
Reciprocity — has been called the most beautiful result in Number Theory, so it
would be a pity not to mention it, even though — as we said — we do not really
need it.

Proposition 3.20 Suppose, ¢ € N are two distinct odd rational primes. Then

q\ (p\ _ —1if p = ¢ =3 mod 4,
p)\q) |1 otherwise

Another way of putting this is to say that

(-r=

1 1
52{1,2,...,%}, T:{1,2,...,QT}.

Proof » Let

We shall choose remaindetisodp from the set

{—g <¢<§}:-Su{0}u5,
and remaindersmodq from the set

{—% <i< g} = —TU{0}UT.

By Gauss’ Lemma (Propositign 3]16),
q p
=] = (-1 Ma -] =(-1 Va
()= () -

p=|{ieS:qgimodpe —S}|, v=|{i €T :pimodqe —-T}|.

where

By ‘qi mod p € —S” we mean that there existsjalnecessarily unique) such
that

qi—pj € =S,
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But now we observe that, in this last formula,

..p . q
I<i<==0< <=
'3 755

The basic idea of the proof is to associate to each such contributierthe
‘point’ (i, j) € S x T. Thus
M= ||{(27j) e SxT: —5 <qi—pj < O}H7
and similarly
. .. q
v=|{(i,j) e SxT:0<qi—pj< 5}“7

where we have reversed the order of the inequality on the right so that both for-
mulae are expressed in terms(gf — pj).
Let us write[ R] for the number of integer points in the regi&hc R2. Then

p=[Ri], v=[Ryl,
where

Ry ={(z,y) ER:—% <qr—py <0}, Ro={(z,y) ER:0< qr—py < g},

and R denotes the rectangle
R:{(I,y):0<x<§, 0<y<g}.

The line
qgr —py =0
is a diagonal of the rectangle, andR,, R, are strips above and below the diago-

nal (Fig[3-8).

This leaves two triangular regions ity

p q
Ry ={(z,y) € R:qx —py < —5}, Ry={(z,y) € R:qx —py > 5}-

We shall show that, surprisingly perhaps, reflection in a central point sends the
integer points in these two regions into each other, so that

[R3] = [Ra).

Since
R =Ry URyU R3U Ry,

it will follow that

[Ba] + [Ro] + [Rs] + [Ra] = [R] = ——~——,
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Figure3.1p=11, ¢=7

—1g-1
u+u+UM4{Rﬂ=BE—2?<

But if now [R3] = [R,] then it will follow that

_p—-1lq-1
w+v= 5 5 mod 2,

which is exactly what we have to prove.

It remains to define our central reflection. Note that reflection in the centre
(4, 1) of the rectangld? will not serve, since this does not send integer points into
integer points. For that, we must reflect in a point whose coordinates are integers
or half-integers.

We choose this point by “shrinking” the rectandketo a rectangle bounded
by integer points, ie the rectangle

—1 —1
R={1<z<f = 1<y<®—)

Now we takeP to be the centre of this rectangle, ie

p+1 qg+1
P:(—Zﬂ—jr)

The reflection is then given by

p+1 qg+1

(z,y) = (X,Y) = (=,

Y)-
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Itis clear that reflection i® will send the integer points at into themselves.
But it is not clear that it will send the integer points ity into those inR,, and
vice versa. To see that, let us shrink these triangles as we shrank the rectangle. If
x,y € Zthen

qr —py < —g = qr —py < —]%1;
and similarly
qx—py>g:>qx—py2¥.
Now reflection inP doessend the two lines
qr — pYy = —¥, qr — pYy = %1

into each other; for

gX —pY =qlp+1—2)—plg+1—y)=(q—p)— (g — py),
and so
p+1 p+1 qg+1
g —py=—p5— = aX —pY =(¢-p)+ ="

We conclude that

[R3] = [Ra).
Hence
[R] = [R1] + [Ra] + [R3] + [Ra] = p + v mod 2,
and so b lg-1
,U‘l’l/E[R}:??.

Example:Takep = 37, ¢ = 47. Then

37 47\ .
<4—7> = <§> since37 = 1 mod 4
10
()
2 5
(7))
= — <i> since37 = —3 mod &
37

= — (g) sinceb5 =1 mod 4

)

— (-1 =1.
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Thus 37is a quadratic residusod47.

. . 2
We could have avoided using the result <or> :

9

3.9 Some quadratic fields

We end by applying the results we have established to a small number of quadratic
fields.

3.9.1 The gaussian field)(7)

Proposition 3.21 1. The integers if(7) are the gaussian integers

a+bi (a,beZ)

2. The units irZ[i] are the numbers

+1, 4.

3. The ring of integer&|:] is a principal ideal domain (and so a unique fac-
torisation domain).

4. The prime 2 ramifies ifi|]:
2 = —i(1+1i)>
The odd prime splits inZ[i] if and only if
p =1 mod 4,
in which case it splits into two conjugate but inequivalent primes:

p = 7.
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Proof » This follows from Propositions 3.4, 3.[7, B[J, 3.IT=8.13, and the Corollary
to Propositiorf 3.15. «

Factorisation in the gaussian fie(@(:) gives interesting information on the
expression of a number as a sum of two squares.

Proposition 3.22 An integern > 0 is expressible as a sum of two squares,
n=a+0b (a,bec7)

if and only if each prime = 3 mod 4 occurs to an even power in

Proof » Suppose
n=a>+b* = (a+bi)(a— bi).
Let

Er

a+bi=enft---mr.

Taking norms,
n=N(a+bi)=N(m)* - N(m).

Suppose
p =3 mod 4.
Thenp remains prime ir%[i], by Propositior 3.21.
Suppose
p° || @+ b,
ie
p°la+ib but pt'ta+ib.
Then
p° || a —ib,
since

a+ib=p°a = a—ib=pa,
on taking conjugates. Hence
p* || n = (a+1ib)(a — ib),

ie p appears im with even exponent.
We have shown, incidentally, thatjf= 3 mod 4 then

p2€||n:a2+b2:>pe|a, p° | b.
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In other words, each expressionsofs a sum of two squares
n=a’+0b
is of the form
n = (pea/)2 4 (peb’)Q,
where n
2 12
ﬁ = a + b .

We have shown that each primpe= 3 mod 4 must occur with even exponent
in n. Conversely, suppose that this is so.
Each primep = 1 mod 4 splits inZ]:], by Propositiorj 3.21, say

D = TpTp.

Also, 2 ramifies inzi]:
2 = —i(1+1i)>

Now suppose
n=293%5% ...

wherees, e7, e11, €19, ... are all even, say

p=3mod 4= e, =2f,.

Let
@ = QaQi3Cey - - -,

where

(140)= ifp=2,

ap = TP if p=1mod 4,

plr if p =3 mod 4.

Then
N(O‘p) =p*

in all cases, and so

Thus if

then
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It's worth noting that this argument actually gives tmeémberof ways of ex-
pressing: as a sum of two squares, ie the number of solutions of

n=a+b (a,b€7).
For the number of solutions is the number of integers Z[i] such that
n=N(()a) = aa.

Observe that whep = 1 mod 3 in the argument above we could equally well
have taken

a, =m'7°
for anyr, s > 0 with
T+ S =¢€.
There are just
ep+1

ways of choosingy, in this way.
It follows from unique factorisation that the choice of thgfor p = 1 mod 4
determinesy up to a unit, ie the general solution is

a=cl+9> [[ o I »*

p=1 mod 4 p=3 mod 4

Since there are four units;1, 44, we conclude that the number of ways of ex-
pressing. as a sum of two sgares is

4 I] (ep+1).

p=1mod 4

Note that in this calculation, each solution
n=a’+b

with
O0<a<b

gives rise to 8 solutions:
n = (£a)®>+ (£b)? n = (£b)*+ (£a)*

To these must be added solutions with- 0 or with e« = b. The former occurs
only if n = m?, giving 4 additional solutions:

n = 0%+ (£m)? = (£m)? + 0%
while the latter occurs only ifi = 2m?, again giving 4 additional solutions:

n = (£m)* + (+m)>.
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We conclude that the number of solutions witld > 0 is
% [I)=1 mod ale, +1) if n #m?2 2m?
{% (sz1 mod 4(€p + 1) + 1) if n =m? or2m?.
This is of course assuming that
p=3mod4d=2|e,

without which there are no solutions.
In particular, each primg = 1 mod 4 is uniquely expressible as a sum of two
squares
n=a+b (0<a<b),

eg
53 = 22 4+ 72

As another example,
108 = 223°

cannot be expressed as a sum of two squares, sinee3 is odd.

3.9.2 The fieldQ(v/3)
Proposition 3.23 1. The integers if)(1/3) are the numbers
a+b/3 (a,b€Z)

2. The units irZ[/3] are the numbers
+n" (n€Z),

where
n=2+ V3.

3. The ring of integer<.[v/3] is a principal ideal domain (and so a unique
factorisation domain).

4. The primes 2 and 3 ramify @[v/3]:
2=n""(1+V3)%, 3= (V3)%
The odd prime # 3 splits inZ[+/3] if and only if
p = +1 mod 12,
in which case it splits into two conjugate but inequivalent primes:

p = E7T.

Proof » This follows from Proposition§ 3.4, 3.8, B.9, 3.I1=8.13, and Proposi-
tion318. «
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3.9.3 The fieldQ(v/5)
Proposition 3.24 1. The integers i)(1/5) are the numbers
a+bw (a,beZ),

where

1++/5

W = .

2

2. The units irZ[/5] are the numbers

+w" (n€Z).

3. The ring of integer&|w] is a principal ideal domain (and so a unique fac-
torisation domain).

4. The prime 5 ramifies ifi|w]:
5= (V52
The primep # 5 splits inZ|w] if and only if
p = £+1 mod 10,
in which case it splits into two conjugate but inequivalent primes:

p = E7T.

Proof » This follows from Proposition§ 3.4, 3.8, B.9, 3.I1-38.13, and Proposi-
tion319. <«



Chapter 4

Mersenne and Fermat numbers

4.1 Mersenne numbers

Proposition 4.1 If
n=a"—-1 (a,m>1)

is prime then
1.a=2;

2. m s prime.

Proof » In the first place,
(@ —1) | (a™ = 1);

so ifa > 2 thenn is certainly not prime.
Supposen = rs, wherer, s > 1. Evidently

(z—1) [ ("= 1)
in Z[z]; explicitly
' —1=(r—1) (2" "+ 22" 4+ ).
Subsititutingr = o,

(a"=1)](a"™=1)=a™— 1.

Thus ifa™ — 1 is prime thenn has no proper factors, i@ is prime.

Definition 4.1 The numbers
M, = 2P —1,

wherep is prime, are calledMersenne numbers

<
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The numbers
M2:3, M3:7, M5:31, M7:127

are all prime. However,

(It should be emphasized that Mersenne never claimed the Mersenne numbers
were all prime. He listed the numbetg, for p < 257, indicating which were
prime, in his view. His list contained several errors.)

The following heuristic argument suggests that there are probably an infinity
of Mersenne primes. (Webster’s Dictionary defines *heuristic’m@sviding aid
or direction in the solution of a problem but otherwise unjustified or incapable of
justification)

By the Prime Number Theorem, the probability that a large numbeprime
IS .

logn’
In this estimate we are including even numbers. Thus the probability thaddn
numbern is prime is

~
~

2
logn’
Thus the probability thatZ, is prime is

~
~

2
plog2’

~
~

So the expected number of Mersenne primes is

2 1
2

log 2

~
~

wherep,, is thenth prime.
But — again by the Prime Number Theorem —

Pn = nlogn.

Thus the expected number of Mersenne primes is

2 3 1
Nlog2 nlogn

since
1

nlogn

>

diverges, eg by comparison with

X 1
/ =loglog X 4+ C.

xlogx
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4.1.1 The Lucas-Lehmer test

Mersenne numbers are important because there is a simple test, announced by
Lucas and proved rigorously by Lehmer, for determining whether orMfipts
prime. (There are manyecessaryests for primality, eg ip is prime then

2P = 2 mod p.

What is rare is to find a necessary aficienttest for the primality of numbers
in a given class, and one which is moreover relatively easy to implement.) For this
reason, all recent “record” primes have been Mersenne primes.

We shall give two slightly different versions of the Lucas-Lehmer test. The
firstis only valid if p = 3 mod 4, while the second applies to all Mersenne num-
bers. The two tests are very similar, and equally easy to implement. We are giving
the first only because the proof of its validity is rather simpler. So it should be
viewed as an introduction to the second, and true, Lucas-Lehmer test.

Both proofs are based on arithmetic in quadratic fields: the fil®(i5), and
the second if)(v/3); and both are based on the following result.

Proposition 4.2 Supposey is an integer in the field)(,/m); and suppose’ is
an odd prime withP { m. Then

P
a if{—) =1,
o=
a If|{—|=-1
m
Proof » Suppose
a =a+ bym,

wherea, b are integers ifn #Z 1 mod 4, and half-integers ifn = 1 mod 4.
In fact these cases do not really differ; for 2 is invertibled P, so we may
considers as an integemod P if 2a € Z. Thus

P
aPEaP+(

P P-1
1>ap—1b\/ﬁ+ (2>ap_2bm+ c+b"m = /m mod P.

()

OéPECLP—i—me%\/E mod P

Now

if1<r<P—1.Hence

By Fermat’s Little Theorem,

a” = amod P, b = bmod P.
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Also

by Propositiorj 3.15. Thus

P
ot = a+b<a>\/ﬁ mod P,

(%) o = amod P,

(%) = —-1= o’ =amod P.
<
Corollary 4.1 For all integersa in Q(y/m,
o = amod P.
We may regard this as the analogue of Fermat’s Little Theorem
a” = amod P

for quadratic fields.
There is another way of establishing this result, which we shall sketch briefly.
It depends on considering the ring

A= Zlw)/(P).

formed by the remainders
a mod P

of integersa in Q(v/m).
There areP? elements in this ring, since eache Z[w] is congruentnod P
to just one of the numbers
a+bym

wherea, b € Z and
0<a,b<P.

There are no nilpotent elements in the riAgf P  m; for if « = a + by/m
then

Pla?* = P|2ab, P|ad*+bm
= P |a,b.
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Thus
a*=0mod P = a = 0 mod P,

from which it follows that, ifn. > 0,
" =0mod P = a=0mod P,

A ring without non-zero nilpotent elements is said todeeni-simplelt is not
hard to show thaa finite semi-simple commutative ring is a direct sum of fields

Now there is just one field (up to isomorphism) containgfigelements for
each prime powep®, namely the galois fiel@xF(p°). It follows that either

1. Z|w]/(P) = GF(P?); or
2. Zw]/(P) = GF(P) ® GF(P).

The non-zero elements &F (p©) form a multiplicative groupGF (p©)* with
p¢ — 1 elements. It follows from Legendre’s Theorem that

a#0=a""1=1

in GF(p°). Hence

€

a® =a

for all « € GF(p°).

Thus in the first case,
2
OéP =
for all « € Z|w]/(P); while in the second case we even have

O{PECY

for all o« € Z[w]/(P), since this holds in each of the constituent fields.
In the first case we can go further. The galois fi&l#'(p°) is of characteristic

p, ie
pa=a+---a=0,

for all ainGF(p°). Also, the map
a +— a?

is an automorphism of=F(p©). (This follows by essentially the same argument
that we used above to show thet = « or & above.)
In particular, the map
a— af mod P

is an automorphism of our field

Zlw]/(P).
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On the other hand, the map
a— Q

is also an automorphism @fw]/(P), since
Pla= P|a.

Moreover, this is the only automorphism®fw]/( P) apart from the identity map,
since any automorphism must send

vm mod P+ £+/m mod P.

The automorphism
ar—af mod P

is not the identity map, since the equation
e —2=0
has at mogs” solutions in the field|w]/(P). We conclude that
o = amod P.

If Z|w] is a principal ideal domain the second case arises if and oflgflits,
which by Propositio 3.14 occurs when

()

P = T2,

Explicitly, if

then

Zlw]/(P) = Zlw]/(m) ® Z[w]/(72)
~ GF(P) & GF(P).

Proposition 4.3 Suppose = 3 mod 4. Let the sequence, be defined by
r=3, Tpi1 = r,% — 2.
Then), is prime if and only if
M, | rp-1.
Proof » We work in the fieldQ(v/5). By Propositior] 314, the integers in this field

are the numbers
a+bw (a,b€Z)

where

145
5
By Propositior] 3]9, there is unique factorisation in the ring of integérs.
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Lemma 4.1 If r,, is the sequence defined in the Proposition then
Tp = w?" +w

for eachn > 1.
Proof of Lemma- Let us set

2’)’L
Sp =W +w

forn > 0. Then

n+1 _on+1
=¥ 4+ 24w
= 8n+1 + 2,
ie
2
Spt1 = S, — 2.
Also
_ -1
Sop=w +w
=w—-w
— 57
and so

We conclude that

foralln >1. <«
Let us suppose first that/, is prime. Let us write? = M,

Lemma 4.2 We have

Proof of Lemma- Since
2 =1mod 5
it follows that

2P =23 mod 5
= 3 mod 5.
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Hence
P=2—1=2mod 5;

and so, by Proposition 3]19,

<
It follows from this Lemma and Proposition #.2 that

o =amod P

for all & € Z[w]. In particular,

Hence

whtt v mod P

w
N(w) mod P = —1 mod P.

In other words,
w? = —1mod P.

Thus
w?¥ +1=0mod P.

Dividing by w? ™",

W’ 4w =0mod P,

rp—1 = 0 mod P.
Conversely, suppose is a prime factor of\/,,. Then

M, |r,-1 =>rp—1 =0mod P
— W +w ¥ =0mod P
— w” +1=0mod P
— w? = —1 mod P.

But this implies that the order af mod P is 2°*1. For
W = (W¥)*=1mod P,
so if the order ofv mod P is d then

d| 27t = d=2°
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for somee < p + 1; and ife < p then
w? =1 mod P.
On the other hand, by the Corollary to Proposition 4.2,
P2

WP =wmod P — w!' =1mod P.

Hence
20t P2 — 1= (P+1)(P—1).

Now
ged(P+1,P—1)=2.

It follows that
2| P+1 or 27| P—1.

The latter is impossible since
22> M,>P>P—-1,
while
| P+1=2<P+1=M,=2?-1<P= P =M,

<
Now for the ‘true’ Lucas-Lehmer test. As we shall see, the proof is a little
harder, which is why we gave the earlier version.

Proposition 4.4 Let the sequence, be defined by
ri=4, Tpi1= Ti — 2.
Then, is prime if and only if

Mp | Tp—1.

Proof » We work in the fieldQ(1/3). By Propositior] 314, the integers in this field
are the numbers
a+bv/3 (a,b€Z).

By Propositior] 3]9, there is unique factorisation in the ring of integé&3].
We set
n=1+V3, e=2+3
Lemma 4.3 The units inZ[/3] are the numbers

+e" (neN).
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Proof of Lemma- It is sufficient, by Propositiof 3.8, to show thas the smallest
unit > 1. And from the proof of that Proposition, we need only consider units of

the form
a—+bv3

with a, b > 0.
Thus the only possible units in the rangee) arev/3 and1++/3 = 7, neither
of which is in fact a unit, since

N(V3) = =3, N(n) = -2,
whereas a unit must have notsi, by Propositiorf 3]16. <«

Lemma 4.4 If r, is the sequence defined in the Proposition then

n—1 _on—1
T, = €2 + € 2

for eachn > 1.

Proof of Lemma- Let us set

forn > 1. Then

=" +24¢2
= Sn—i—]_ + 27
ie
2
Spt1 = S, — 2.
Also
_ -1
S =€+¢€
=€e+e€
We conclude that
n—1 _on—1
Tn = 8n = 62 + € 2

foralln>1. <«
Suppose first thab = M, is prime.

Lemma 4.5 We have
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Proof of Lemma- We have

M,=2" -1
= (—1)» — 1 mod 3
=—-1—1mod3
= 1 mod 3;
while
M, = —1 mod 4.

By the Chinese Remainder Theorem there is just one remaindéi?2 with
these remaindersiod3 andmod4; and that is7 = —5 mod 12. For any odd
primep,

M, =7 mod 12

Hence

3
—|=-1
(7
by Propositiorf 3.18, «
It follows from this Lemma and Propositign 4.2 that

o =amod P

for all o« € Z[v/3]. In particular,

¢’ =&emod P.
Hence
¢t = eemod P
= N(e) mod P = 1 mod P.
In other words,
¢ =1 mod P.

It follows that
=+ mod P.

We want to show that in fact
¢ = 1 mod P.

This is where things get a little trickier than in the first version of the Lucas-
Lehmer test. In effect, we need a number with negative norm. To this end we

introduce
n=1+ V3.

Lemma4.6 1. N(n) = —2.
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2. n? = 2e.
Proof of Lemma- This is a matter of simple verification:

while
= (1+V3)
=4+2V3
= 2e¢.
<]

By Proposition /refMersenneLemma,
n¥ = 7 mod P,
and so

"™ = nij— 2 mod P,

7" = —2 mod P.
By the Lemma, this can be written

(2¢)* = —2mod P,

ie
27 = _2mod P,
But by Propositionn 3.14,
, - 2
9t — 9?1 = (F) mod P
= 1 mod P,

by Propositiorf 3.17, since
P=2P—1=—1modS8.

Thus
22" =9 mod P
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and so

2¢2" = —2mod P.
Hence

' = _1mod P.

Thus

" +1=0mod P,

Dividing by ¢,
& 4 e =0mod P,

ie

rp—1 = 0 mod P.
Conversely, suppose is a prime factor of\/,,. Then
M, | rp-1 => rp—1 = 0 mod P
— & 4 e?  =0mod P
— ¢ ' +1=0mod P
— ' = 1modP.
But (by the argument we used in the proof of the first Lucas-Lehmer test) this

implies that the order of mod P is 2P.
On the other hand, by the Corollary to Proposition 4.2,

e =emod P = ' =1 mod P.

Hence
2| PP —1=(P+1)(P-1).
Now
ged(P+1,P—1) =2.

It follows that
201 P41 or 271 | P—1.

In either case,

M, —1
wl<cprl=p>t_1= p2
—rz
:>Mp<3

5 .

SincelM, is odd, this implies that
P=M

Do

ie M, is prime. <
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4.1.2 Perfect numbers

Mersenne numbers are also of interest because of their intimate connection with
perfectnumbers.

Definition 4.2 For n € N, n > 0 we denote the number of divisorsroby d(n),
and the sum of these divisors byn ).

Example:Sincel2 has divisord, 2, 3, 4, 6, 12,

d(12) = 6, o(12) = 28.

Definition 4.3 The number € N is said to beperfectif
o(n) = 2n,

ie if n is the sum of its proper divisors.

Example:The number 6 is perfect, since

6=1+2+3.
Proposition 4.5 If
M,=2"-1
is a Mersenne prime then
2P~1(2P — 1)

is perfect.
Conversely, evergvenperfect number is of this form.

Proof » In number theory, a functiofi(n) defined or{n € N : n > 0} is said to
bemultiplicativeif

ged(m,n) =1 = f(mn) = f(m)f(n).

If the function f(n) is multiplicative, and

n=pitep
then
f(n) = f(p1*) - f(py).

Thus the functionf(n) is completely determined by its valugp®) for prime
powers.



374

Lemma 4.7 The functionsi(n) ando(n) are both multiplicative.
Proof of Lemma- Supposescd(m,n) = 1; and suppose

d | mn.
Thend is uniquely expressible in the form
d= d1d2 (dl | m, dg | TL)

In fact
dy = ged(d, m), dy = ged(d, n).

It follows that
d(mn) = d(m)d(n);

and
o(mn)=> d
dlmn
Y Y ds
dilm da|n
=o(m)o(n).
<
Now suppose
n= 2p_1Mp

wherel, is prime. Sincel/, is odd,
ged(2P7H M) = 1.

Hence
a(n) = o(2"")o(M,).

If Pis prime then evidently
o(P)=1+P.
On the other hand,

pert_ 1
U(Pe):1+P+P2++Pe:ﬁ

In particular,
o(2¢) =2t — 1.

Thus
o2 =22 — 1 = M,
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while
o(M,) =M,+1=2"

We conclude that
o(n) =2"M, = 2n.

Conversely, supposeis an even perfect number. We can writ§uniquely)
in the form
n=2m

wherem is odd. Since¢ andm are coprime,
o(n) = a(2%)a(m) = (277" = 1)o(m).
On the other hand, it is perfect then
o(n) =2n = 2"'m,

Thus
26+1_1_ m

9e+1 - 0—<m> '

The numerator and denominator on the left are coprime. Hence

m = d(2°"" — 1), o(m) = d2°™,

for somed € N.
If d > 1thenm has at least the factotsd, m. Thus

o(m)>1+d+m=1+d2°",

contradicting the value far(m) we derived earlier.
It follows thatd = 1. But then

o(m) =21 =m + 1.
Thus the only factors of: are 1 andn, ie
m=2""—1=M._,
is prime. Setting + 1 = p, we conclude that
n=2""1M,

wherel, is prime. <
It is an unsolved problem whether or not there are @ihyperfect numbers.
The first 4 even perfect numbers are

2LV, = 6, 22M5 = 28, 24 M5 = 496, 250, = 8128.

(In fact these are the first 4 perfect numbers, since it is known that any odd perfect
number must have at least 300 digits!)
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4.2 Fermat numbers

Proposition 4.6 If
n=a"+1 (a,m>1)

is prime then
1. a2is even;
2. m = 2°
Proof » If a is odd them is even and> 2, and so not prime.
Supposen has an odd factor, say
m=rs,

wherer is odd. Sincer” + 1 = 0 whenx = —1, it follows by the Remainder
Theorem that
(x+1)] (2" +1).

Explicitly,
"4 1l=(r+ 1)@t =2~ D).

Substitutingr = 3°,
W+ " +1)
in Z[z]. Settingy = a,

(@®+1)| (@™ +1)=(a"+1).

In particular,a™ + 1 is not prime.
Thus ifa™ + 1 is prime thenmn cannot have any odd factors. In other words,

m = 2°.
<
Definition 4.4 The numbers
F,=2"+1 (n=0,1,2,...)
are calledFermat numbers
Fermat hypothesized — he didn’t claim to have a proof — that all the numbers
Fo,Fy, Fy, ...
are prime. In fact this is true for

Fy=3, F, =5, F, =17, Fy = 257, F, = 65537.
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However, Euler showed in 1747 that
Fy = 232 4 1 = 4294967297

is composite. In fact, no Fermat prime beyafidhas been found.

The heuristic argument we used above to suggest that the number of Mersenne
primes is probably infinite now suggests that the number of Fermat primes is
probably finite.

For by the Prime Number Theorem, the probabilityFgfbeing prime is

~ 2/log F,
~2-27"

Thus the expected number of Fermat primes is
2/ Y 27" =4 < oo,

This argument assumes that the Fermat numbers are “independent”, as far as
primality is concerned. It might be argued that our next result shows that this is
not so. However, the Fermat numbers are so sparse that this does not really affect
our heuristic argument.

Proposition 4.7 The Fermat numbers are coprime, ie
ged(F, Fy) =1

if m # n.

Proof » Suppose
ged(Fp,, Fr) > 1.

Then we can find a primg (which must be odd) such that

p| Fm, p| Fa

Now the numberg1,2,...,p— 1} form a group(Z/p)* under multiplication
modp. Sincep | F,,,,
22" = —1 mod p.

It follows that the order of mod p (ie the order of 2 iMZ/p)*) is exactly2™ 1,
For certainly
22" = (22")% = 1 mod p;

and so the order of 2 dividex"*!, ie it is 2¢ for somee < m + 1. Butife < m
then
22" =1 mod p,

whereas we just saw that the left hand side was 1 mod p. We conclude that
the order must ba™ 1,
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But by the same token, the order is al¥g!. This is a contradiction, unless
m =n. <

We can use this result to give a second proof of Euclid’s Theorem that there
are an infinity of primes.

Proof » Each Fermat numbér,, has at least one prime divisor, sgy But by the
last Proposition, the primes
qo, 41,92, - - -

are all distinct. «
We end with a kind of pale imitation of the Lucas-Lehmer test, but now applied
to Fermat numbers.

Proposition 4.8 The Fermat number
F,=2"+1

is prime if and only if

372 = —1mod F,.

Proof » SupposeP = F,, is prime.

Lemma 4.8 We have
F, = 5 mod 12.

Proof of Lemma- Evidently

F, =1 mod 4;
while

F,=(-1)*" +1mod3
= 2 mod 3.

By the Chinese Remainder Theorem these two congruences detefnined
12; and observation shows that

F, =5 mod 12.

<
It follows from this Lemma, and Propositi¢gn 3]18, that

Hence
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by Propositiorf 3.14.
Conversely, suppose

Fp—1

372 = —1mod Fy;
and supposé’ is a prime factor oft;,. Then

Fp—1

372 =—1mod P,

321 = _1 mod P,
It follows (as in the proof of the Lucas-Lehmer theorems) that the ordémasd
Pis
2%,
But by Fermat’s Little Theorem,

371 =1 mod P.

Hence
22" | P—1,
ie
F,—1|P—1.
SinceP | F, this implies that
F,=P,

ie F, is prime. <

This test is more-or-less useless, even for quite smadince it will take an
inordinate time to compute the power, even working modyjoHowever, it does
give a short proof — which we leave to the reader — thiats composite.

It may be worth noting why this test is simpler than its Mersenne analogue.

In the case of Mersenne primés = M, we had to introduce quadratic fields
because the analogue of Fermat’s Little Theorem,

o1 =1 mod P,

then allowed us to find elements of ordes- 1 = 27. In the case of Fermat primes
P = F,, Fermat’s Little Theorem

_ 2"
a’F '=a¢> =1modP

suffices.
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