

Course 374 (Cryptography)

Sample Paper 3

Dr Timothy Murphy

GMB ?? Friday, ?? 2007 ??:00-??:00

Attempt 4 questions from Part A, and 2 questions from Part B.

> Part B
9. Let the number of irreducible polynomials of degree d over \mathbb{F}_{p} be denoted by $N(d)$. Show that

$$
p^{n}=\sum_{d \mid n} d N(d)
$$

Hence or otherwise show that there is at least one irreducible polynomial of each degree d.
How many irreducible polynomials are there of degree 6 over \mathbb{F}_{2} ? How many of these polynomials are primitive?

Find one such primitive polynomial (of degree 6 over \mathbb{F}_{2}).

Answer:

(a) We assume the following result:

Lemma 1. Let

$$
U_{n}(x)=x^{p^{n}}-x \in \mathbb{F}_{p}[x] .
$$

Then

$$
U_{n}(x)=\prod f(x)
$$

where the product extends over all irreducible polynomials $f(x) \in$ $\mathbb{F}_{p}[x]$ of degree $d \mid n$.
[I think in this case one could state the Lemma without proof.
The proof is fairly long, depending on the following ideas:

- $U_{n}(x)$ factorises completely in $\mathbb{F}_{p^{n}}$;
- If $f(x) \mid U_{n}(x)$ then $f(x)$ must have a root $\alpha \in \mathbb{F}_{p^{n}}$, and then $\mathbb{F}_{p}[\alpha]$ will be a subfield of $\mathbb{F}_{p^{n}}$, and so $d \mid n$.
- Conversely, if $f(x)$ is irreducible of degree d|n then $\mathbb{F}_{p}[x] /(f(x))$ is a field of order p^{d}, which can be identified with the field $\mathbb{F}_{p^{d}} \subset \mathbb{F}_{p^{n}}$.
Remember, stating a Lemma like this clearly and correctly, but without proof, is likely to get full or nearly full marks.]
Comparing degrees on each side of the identity, on the left $U_{n}(x)$ has degree p^{n}, while on the right if there are $N(d)$ polynomials of degree $d \mid n$ they will contribute $d N(d)$ to the degree. Hence

$$
p^{n}=\sum_{d \mid n} d N(d) .
$$

(b) It follows from the formula that

$$
d N(d) \leq p^{d}
$$

Hence

$$
\begin{aligned}
n N(n) & =p^{n}-\sum_{d \mid n, d<n} d N(d) \\
& \geq p^{n}-\sum_{d \mid n, d<n} p^{d} \\
& \geq p^{n}-\sum_{d<n} p^{d} \\
& =p^{n}-\frac{p^{n}-1}{p-1} \\
& >0 .
\end{aligned}
$$

Thus

$$
N(n)>0 .
$$

(c) We have

$$
2^{6}=6 N(6)+3 N(3)+2 N(2)+N(1) .
$$

But

$$
\begin{aligned}
2^{3}=3 N(3)+N(1) & \Longrightarrow 3 N(3)=8-2 \\
& \Longrightarrow N(3)=2,
\end{aligned}
$$

while

$$
\begin{aligned}
2^{2}=2 N(2)+N(1) & \Longrightarrow 2(2)=4-2 \\
& \Longrightarrow N(2)=1 .
\end{aligned}
$$

Hence

$$
\begin{aligned}
2^{6}=6 N(6)+3 \cdot 2+2 \cdot 1+2 & \Longrightarrow 6 N(6)=64-10 \\
& \Longrightarrow N(6)=9
\end{aligned}
$$

there are 9 irreducible polynomials of degree 6 over \mathbb{F}_{2}.
(d) The number of primitive elements in $\mathbb{F}_{2^{6}}$ is

$$
\begin{aligned}
\phi\left(2^{6}-1\right) & =\phi(63) \\
& =\phi\left(3^{2} 7\right) \\
& =\phi\left(3^{2}\right) \phi(7) \\
& =3 \cdot 2 \cdot 6 \\
& =36 .
\end{aligned}
$$

Each primitive polynomial of degree 6 has 6 primitive elements as roots. Hence the number of primitive polynomials of degree 6 is

$$
\frac{36}{6}=6 .
$$

(e) Let us try the polynomial

$$
f(x)=x^{6}+x+1 .
$$

First we must see if it is irreducible.
Since $f(0)=f(1)=1, f(x)$ does not have a factor of degree 1 .
Thus if $f(x)$ factorizes, it is either the product of 3 factors of degree 2, or 2 factors of degree 3.

We have seen that there is one irreducible polynomial of degree 2, namely

$$
h(x)=x^{2}+x+1 .
$$

Now

$$
x^{3} \equiv 1 \Longrightarrow x^{6} \equiv 1 \bmod h(x)
$$

Hence

$$
x^{6}+x+1 \equiv x \bmod h(x),
$$

and so

$$
\operatorname{gcd}(f(x), h(x))=1
$$

There are 2 irreducible polynomials of degree 3, namely

$$
u(x)=x^{3}+x+1, v(x)=x^{3}+x^{2}+1 .
$$

Now

$$
u(x)^{2}=x^{6}+x^{2}+1, v(x)^{2}=x^{6}+x^{4}+1,
$$

while

$$
u(x) v(x)=x^{6}+x^{5}+x^{4}+x^{2}+x+1 .
$$

We conclude that $f(x)$ is irreducible.
To see if it is primitive we must determine the order of $x \bmod$ $f(x)$; if this is $2^{6}-1=63$ then $f(x)$ is primitive.
The order divides 63; so it is sufficient to consider x^{7}, x^{9} and $x^{21} \bmod$ $f(x)$. We have

$$
\begin{aligned}
x^{7} & \equiv x^{2}+x \not \equiv 1, \\
x^{9} & \equiv x^{4}+x^{3} \not \equiv 1, \\
x^{21} & \equiv\left(x^{2}+x\right)^{3} \\
& \equiv x^{3}(x+1)^{3} \\
& \equiv x^{3}\left(x^{3}+x^{2}+x+1\right) \\
& \equiv x^{6}+x^{5}+x^{4}+x^{3} \\
& \equiv x^{5}+x^{4}+x^{3}+x+1 \\
& \not \equiv 1 .
\end{aligned}
$$

We conclude that the order of $x \bmod f(x)$ is 63 , and so $f(x)$ is primitive.
10. Explain how points on an elliptic curve are added.

Show that

$$
y^{2}=x^{3}+x+1
$$

defines an elliptic curve over \mathbb{F}_{11}, and find the order of the group on the curve.

Find points on the curve of each possible order.

Answer:

(a) The quadratic residues mod11 are $0,1,4,-2,5,3$. We draw up a table showing $x, x^{3}+x+1$ and the possible values for y :

x	$x^{3}+x+1$	y
0	1	± 1
1	3	± 5
2	0	0
3	-2	± 3
4	3	± 5
5	-1	-
-5	3	$p m 5$
-4	-1	-
-3	4	± 2
-2	2	-
-1	-1	-

Taking the point at infinity into account, the curve has 14 points. It follows that the group on the curve is $\mathbb{Z} /(14)$, with elements of order 1,2, 7, 14 .
We know that if $d \mid n$ then there are just $\phi(d)$ elements of order d in $\mathbb{Z} /(n)$. Thus there is 1 element of order 1, 1 element of order 2, and 6 elements each of orders 7 and 14.
The zero element $[0,1,0]$ has order 1. If $P=(x, y)$ then $-P=$ $(-x, y)$. Thus P has order 2 if and only if $y=0$. We see from the table above that $A=(2,0)$ is such a point.
If P has order 7 then $-P$ has order 14; and since there are the same number of points of orders 7 and 14, the converse is also true: if P has order 14 then $-P$ has order 7.
Take the point $B=(0,1)$. Recall that $P+Q+R=0$ if the points P, Q, R on the curve are collinear. Thus the tangent at B meets the curve again in the point $-2 B$.

We have

$$
2 y \frac{d y}{d x}=3 x^{2}+1
$$

ie

$$
\frac{d y}{d x}=\frac{3 x^{2}+1}{2 y}
$$

In particular, at B

$$
m=\frac{d y}{d x}=1 / 2=-5 .
$$

Thus the tangent at B is

$$
y-1=-5(x-0)
$$

ie

$$
y=-5 x+1
$$

This meets the curve where

$$
(m x+c)^{2}=x^{3}+x+1
$$

If the roots of this are x_{0}, x_{1}, x_{2} then

$$
x_{0}+x_{1}+x_{2}=m^{2} .
$$

We know that two of the roots, say x_{0}, x_{1}, are 0,0 . Hence the third root is

$$
x=m^{2}-2 x_{0}=25-0=3 .
$$

From the equation for the tangent,

$$
y=-14=-3
$$

Thus the tangent at B meets the curve again in the point $C=$ $(3,-3)$:

$$
2 B=-C .
$$

Applying the same argument with C in place of B, we now have

$$
m=-28 / 6=-1
$$

Thus the tangent at C is

$$
y+3=-(x-3)
$$

ie

$$
y=-x
$$

This meets the curve again where

$$
x=(-1)^{2}-2 \cdot 3=-5
$$

From the equation for the tangent,

$$
y=5
$$

Thus the tangent at C meets the curve again in the point $D=$ $(-5,5)$:

$$
4 B=-2 C=D
$$

Repeating yet again, at D

$$
m=76 / 10=1
$$

Thus the tangent at D is

$$
y-5=x+5
$$

ie

$$
y=x-1 .
$$

This meets the curve again where

$$
x=1^{2}+2 \cdot 5=0 .
$$

From the equation for the tangent,

$$
y=-1
$$

Thus the tangent at D meets the curve again in the point $E=$ $(0,-1)$:

$$
8 B=-4 C=2 D=-E=B .
$$

In other words, the order of the point $B=(0,1)$ is 7 .
Finally, the point $-B=(0,-1)$ has order 14 .
11. Show that the polynomial

$$
x^{2}+1
$$

is irreducible over \mathbb{F}_{3}. Is it primitive?
Find the group on the elliptic curve

$$
y^{2}=x^{3}+x
$$

over $\mathbb{F}_{3^{2}}$.
Sketch the proof that the addition on an elliptic curve is associative.

Answer:

(a) If the polynomial

$$
p(x)=x^{2}+1
$$

were not irreducible, it would have a root in \mathbb{F}_{3}. But none of $0, \pm 1$ are roots mod3. Hence $p(x)$ is irreducible.
(b) To determine if it is primitive, we must find the order d of $x \bmod$ $p(x)$. We know that

$$
d \mid 3^{2}-1=8
$$

The order of x is not 2, since

$$
x^{2}-1 \not \equiv 0 \bmod p(x),
$$

But

$$
x^{2} \equiv-1 \Longrightarrow x^{4} \equiv 1 \bmod p(x) .
$$

Hence x is of order 4, and so is not primitive.
(c) The elements of $\mathbb{F}_{3^{2}}$ are represented by the polynomials

$$
a t+b \bmod p(t),
$$

where $a, b \in\{0, \pm 1\}$. (We have changed the variable to t to avoid confusion with the x-coordinate.)
The homomorphism

$$
\theta: x \mapsto x^{2}: \mathbb{F}_{3^{2}}^{\times} \rightarrow \mathbb{F}_{3^{2}}^{\times}
$$

has

$$
\operatorname{ker} \theta=\{ \pm 1\} .
$$

It follows that there are just 4 squares in $\mathbb{F}_{3^{2}}^{\times}$, and it is easy to see that these are

$$
1, t^{2}=-1,(t+1)^{2}=-t,(t-1)^{2}=t .
$$

ie

$$
[0,1],[0,-1],[1,0],[-1,0] .
$$

We draw up a table for the 9 values $x \in \mathbb{F}_{3^{2}}$ together with $x^{3}+x$ and possible values for y :

x	$x^{3}+x$	y
0	0	0
1	-1	$\pm t$
-1	1	± 1
t	0	0
$t+1$	$-t+1$	-
$t-1$	$-t-1$	-
$-t$	0	0
$-t+1$	$t+1$	-
$-t-1$	$t-1$	-

Thus there are 8 points on the curve (including the point at infinity).
Also, there are 3 points of order $2($ with $y=0)$.
There are 3 abelian groups of order 8:

$$
\mathbb{Z} /(8), \mathbb{Z} /(4) \oplus \mathbb{Z} /(2), \mathbb{Z} /(2) \oplus \mathbb{Z} /(2) \oplus \mathbb{Z} /(2)
$$

These have, respectively, 1, 3, 7 elements of order 2.
We conclude that the group on the curve is

$$
\mathbb{Z} /(4) \oplus \mathbb{Z} /(2) .
$$

