

Course 374 (Cryptography) Sample Paper 1

Dr Timothy Murphy

GMB ?? Friday, ?? 2007 ??:00-??:00

Attempt 4 questions from Part A, and 2 questions from Part B.

 \mathbf{P} art B

9. Prove that the multiplicative group F[×] of a finite field F is cyclic. Find all the primitive roots mod17, ie the generators of (Z/17)[×]. How many primitive elements does F₃₃ possess?
Answer:

(a) Let

 $\|F\| = q.$

Lemma 1. The exponent of F^{\times} is q-1.

Proof. By Lagrange's Theorem,

 $e \mid q-1$

On the other hand, since the equation

$$x^e - 1 = 0$$

has at most e roots in F,

$$q-1 \le e.$$

Hence

$$e = q - 1.$$

Lemma 2. If A is an abelian group, and $g, h \in A$ are of orders m, n, where

$$gcd(m,n) = 1,$$

then gh is or order mn.

Proof. Suppose the order of gh is d. Then

 $d \mid mn$,

since

$$(gh)^{mn} = g^{mn}h^{mn} = 1,$$

On the other hand,

$$(gh)^d = 1 \implies (gh)^{md} = h^{md} = 1.$$

Thus

$$n \mid md \implies n \mid d$$
,

since gcd(m, n) = 1. Similarly

 $m \mid d.$

Hence

 $mn \mid d$,

since gcd(m, n) = 1; and so

d = mn.

Lemma 3. A finite abelian group A of exponent e contains an element of order e.

Proof. Suppose

$$e = p_1^{e_1} \cdots p_r^{e_r}$$

For each $i \in [1, r]$, A contains an element α_i of order divisible by $p_i^{e_i}$, say of order $p_i^{e_i}q_i$. But then

$$\beta_i = \alpha_i^{q_i}$$

is of order $p_i^{e_i}$.

Hence by the previous Lemma,

$$\beta = \beta_1 \cdots \beta_r$$

is of order

$$e = p_1^{e_1} \cdots p_r^{e_r}$$

It follows from this Lemma that F^{\times} contains an element of order e = q - 1, and so is cyclic.

(b) (Z/17)[×] is a cyclic group of order 16. So each element has order 1,2,4,8 or 16.

There is 1 element of order 1, namely 1; 1 element of order 2, namely -1; $\phi(4) = 2$ elements of order 4; $\phi(8) = 4$ elements of order 8; and $\phi(16) = 8$ elements of order 28, If x has order 16 then

$$x^8 = -1$$

Hence

$$(-x)^8 = -1$$

and so the 4 elements $\pm x, \pm x^{-1}$ all have order 16. Since

$$2^4 = -1 \mod 17$$

it follows that 2 has order 8 mod 17. *Since*

$$(-2)^4 = 2^4 = -1 \bmod 17$$

it follows that the 4 elements of order 8 are

$$\pm 2, \pm 2^{-1},$$

ie

2, 15, 9, 8.

Also, since 2 is of order 8, $4 = 2^2$ is of order 4. Thus the 2 elements of order 4 are

 $\pm 4,$

ie

4, 13.

Thus the 8 elements of order 16 (ie the primitive roots) are:

3, 5, 6, 7, 10, 11, 12, 14.

(c) The number of primitive elements in \mathbb{F}_{3^3} is

$$\phi(3^3 - 1) = \phi(26)$$

= $\phi(2)\phi(13)$
= $1 \cdot 12$
= 12 .

10. Explain what is meant by a *singular point* on a curve, and show that the curve

$$y^2 = x^3 + ax^2 + bx + c$$

is always singular over a field of characteristic 2.

What is the condition for the curve to be singular over a field of characteristic $\neq 2$?

Determine whether the equation

$$y^2 = x^3 + x^2 + x + 1$$

defines an elliptic curve over each of the fields $\mathbb{F}_3, \mathbb{F}_5, \mathbb{F}_7, \mathbb{F}_8$; and in those cases where it does, determine the group on the curve (as eg $\mathbb{Z}/(2) \oplus \mathbb{Z}/(2)$).

Answer:

(a) Suppose the curve is given by

$$F(X, Y, Z) = 0$$

in homogeneous coordinates. Then the point $P = [X_0, Y_0, Z_0]$ on the curve is said to be singular if

$$\partial F/\partial X = \partial F/\partial Y = \partial F/\partial Z = 0$$

at P. [In other words, P is singular if the tangent at P is undefined.]

(b) In homogeneous coordinates the curve is given by

$$F(X, Y, Z) \equiv Y^2 Z + X^3 + aX^2 Z + bXZ^2 + cZ^3 = 0.$$

Thus

$$\partial F/\partial X = X^2 + bZ^2,$$

 $\partial F/\partial Y = 0\partial F/\partial Z = aX^2 + cZ^2.$

It follows that the point O = [0, 1,], which is on the curve, is singular. Hence the curve is singular.

(c) If char $k \neq 2$ then the curve

$$y^2 = x^3 + ax^2 + bx + c$$

is singular if and only if the polynomial

$$p(x) = x^3 + ax^2 + bx + c$$

has a multiple root.

The condition for this is that

$$gcd(p(x), p'(x)) \neq 1.$$

 $k = \mathbb{F}_3$ Then

$$p(x) = x^3 + x^2 + x + 1, \quad p'(x) = 2x + 1.$$

Since

$$p'(x) = 0 \implies x = -1/2 = 1$$

and

$$p(1) = 1 \neq 0,$$

the curve is non-singular, and so is an elliptic curve. The quadratic residues mod3 are $\{0,1\}$. Let us draw up a table for x, p(x), y:

x	p(x)	y
0	1	±1
1	1	± 1
-1	0	0

We deduce that the curve has 6 points: $(0, \pm 1)$, $(1, \pm 1)$, (0, 0)and the point [0, 1, 0] at infinity. There is only 1 abelian group of order 6, namely $\mathbb{Z}/(6) = \mathbb{Z}/(2) \oplus \mathbb{Z}/(3)$, so we deduce that

$$\mathcal{E}(\mathbb{F}_3) \cong \mathbb{Z}/(6).$$

 $k = \mathbb{F}_5$ Then

$$p(x) = x^3 + x^2 + x + 1, \quad p'(x) = 3x^2 + 2x + 1.$$

Now

$$3p(x) - xp'(x) = x^2 + 2x + 3,$$

while

$$3(x^2 + 2x + 3) - p(x) = 4x + 8.$$

Thus

$$gcd(p(x), p'(x)) = 1 \iff p(-2) \neq 0.x = -2.$$

In fact

$$p(-2) = -8 + 4 - 2 + 1 = 2 - 1 - 2 + 1 = 0.$$

Thus the curve is singular in this case, and so is not an elliptic curve.

 $k = \mathbb{F}_7$ As before,

$$3p(x) - xp'(x) = x^2 + 2x + 3,$$

$$3(x^2 + 2x + 3) - p(x) = 4x + 8.$$

But in this case

$$p(-2) = -8 + 4 - 2 + 1 = -1 - 3 - 2 + 1 = 2 \neq 0.$$

Thus the curve is non-singular, it is an elliptic curve. The quadratic residues mod7 are $\{0, 1, 2, 4\} = \{0, 1, 2, -3\}$. We draw up the table for x, p(x), y:

x	p(x)	y
0	1	±1
1	-3	± 3
2	1	± 1
3	-2	_
-3	1	± 1
-2	2	± 3
-1	0	0

We deduce that the curve has 12 points: $(0, \pm 1)$, $(1, \pm 3)$, $(2, \pm 1)$, $(-3, \pm 1)$, $(-2, \pm 1)$ and the point [0, 1, 0] at infinity.

There are 2 abelian groups of order 12, namely $\mathbb{Z}/(4) \oplus \mathbb{Z}/(3) = \mathbb{Z}/12$ and $\mathbb{Z}/(2) \oplus \mathbb{Z}(2) \oplus \mathbb{Z}(3) = \mathbb{Z}/(6) \oplus \mathbb{Z}/(2)$. The first of these has just 1 element of order 2, while the second has 3 elements of order 2. But if P = (x, y) then

$$-P = (x, -y).$$

It follows that P is of order 2 if and only if y = 0. Since (-1,0) is the only such point in this case, we deduce that

$$\mathcal{E}(\mathbb{F}_3) \cong \mathbb{Z}/(12).$$

 \mathbb{F}_8 The curve in this case is singular. [More generally, the curve

$$y^2 = f(x),$$

where f(x) is a cubic, is always singular in characteristic 2. To get an elliptic curve in characteristic 2, there must be a term in xy or y, or both, on the left. If the characteristic is not 2 then one can complete the square on the left,

$$y^{2} + Axy + By = (y + Ax/2 + B/2)^{2} + g(x).$$

To verify singularity in this case, we write the equation in projective form:

$$F(X, Y, Z) \equiv Y^2 Z + X^3 + X^2 Z + X Z^2 + Z^3 = 0.$$

Now

$$\begin{split} \partial F/\partial X &= X^2 + Z^2, \\ \partial F/\partial Y &= 0, \\ \partial F/\partial Z &= Y^2 + X^2 + Z^2 \end{split}$$

The fact the $\partial F/\partial Y$ vanishes identically means that a singular point can be found by solving 2 equations in 3 unknowns, which is always possible.

In general the solution does not lie in the ground field, but in this case it does: (1,0) = [1,0,1] is a singular point on the curve.

11. Show that a polynomial f(x) of degree *n* over the finite field \mathbb{F}_p is irreducible if and only if

$$gcd(f(x), x^{p^m} - x) = 1$$

for $m = 1, 2, \dots, [n/2]$.

Find an irreducible polynomial p(x) of degree 6 over \mathbb{F}_2 .

Show that

$$y^2 + y = x^3 + 1$$

defines an elliptic curve over \mathbb{F}_{2^6} , and determine the group on this curve.

Answer:

(a) If f(x) is composite, it must have a factor g(x) of degree $m \leq \lfloor n/2 \rfloor$.

Recall that

$$U_m(x) = x^{p^m} - x = \prod \pi(x)$$

where $\pi(x)$ runs over all irreducible polynomials of degree $d \mid m$. In particular

$$g(x) \mid U_m(x)$$

and so

$$gcd(f(x), U_m(x)) \neq 1.$$

Conversely, suppose

$$gcd(f(x), U_m(x)) \neq 1.$$

Then some irreducible factor $\pi(x)$ of $U_m(x)$ must divide f(x). This factor has degree $d \leq m$, and so is not f(x). Hence f(x) is composite.

(b) Consider the polynomial

$$f(x) = x^6 + x + 1$$

in $\mathbb{F}_2[x]$.

Since x is not a factor of f(x), this will be irreducible if and only if

$$gcd(f(x), x^{2^m - 1} - 1) = 1$$

for m = 2, 3.

Now

$$x^6 \equiv 1 \bmod x^3 - 1,$$

 $and\ so$

$$f(x) \equiv x \bmod x^3 - 1.$$

Hence

$$gcd(f(x), x^3 - 1) = 1$$

Also

$$xf(x) = x^7 + x^2 + x \equiv x^2 + x + 1 \mod x^7 - 1,$$

while

$$x^{3} - 1 = (x - 1)(x^{2} + x + 1) \equiv 0 \mod x^{2} + x + 1.$$

Hence

$$x^6 \equiv 1 \bmod x^2 + x + 1,$$

 $and\ so$

$$x^6 + x + 1 \equiv x^2 \mod x^2 + x + 1$$

1.

Thus

$$gcd(f(x), x^7 - 1) = 1$$

We conclude that

$$f(x) = x^6 + x + 1$$

is irreducible over \mathbb{F}_2 .

(c) The curve

$$y^2 + y = x^3 + 1$$

takes homogeneous form

$$F(X, Y, Z) = Y^2 Z + Y Z^2 + X^3 + Z^3.$$

Now

$$\begin{split} \partial F/\partial X &= X^2, \\ \partial F/\partial Y &= Z^2, \\ \partial F/\partial Z &= Y^2 + Z^2. \end{split}$$

Thus

$$\partial F/\partial X = \partial F/\partial Y = \partial F/\partial Z = 0 \implies X = Y = Z = 0.$$

Hence the curve is non-singular (since [0,0,0] is not a point in the projective plane).

(d) We want to determine the number of points, N say, on the curve $\mathcal{E}(\mathbb{F}_{2^6})$.

Note first that the left-hand side of the equation, $y^2 + y = y(y+1)$, is invariant under $y \mapsto y+1$. Thus

$$(x,y) \in \mathcal{E}(\mathbb{F}_{2^6}) \iff (x,y+1) \in \mathcal{E}(\mathbb{F}_{2^6}).$$

[In fact, since the line x = c passing through these two points also passes through O = [0, 1, 0], these points are the negatives of each other:

$$-(x, y) = (x, y + 1).$$
]

On adding the point [0, 1, 0] at infinity on the curve, it follows that N is odd.

The points defined over \mathbb{F}_2 , \mathbb{F}_{2^2} , \mathbb{F}_{2^3} give subgroups of $\mathcal{E}(\mathbb{F}_{2^6})$:

$$\mathcal{E}(\mathbb{F}_2) \subset \mathcal{E}(\mathbb{F}_{2^2}) \subset \mathcal{E}(\mathbb{F}_{2^6}), \ \mathcal{E}(\mathbb{F}_2) \subset \mathcal{E}(\mathbb{F}_{2^3}) \subset \mathcal{E}(\mathbb{F}_{2^6}).$$

We start by looking at the smaller groups, since this will probably give useful information about the large group.

 \mathbb{F}_2 By inspection the curve $\mathcal{E}(\mathbb{F}_2)$ contains the points (1,0), (1,1),together with the point at infinity. Thus

$$\mathcal{E}(\mathbb{F}_2) = \mathbb{Z}/(3).$$

 \mathbb{F}_{2^2} If x = 0 the equation becomes

$$y^2 + y + 1 = 0.$$

This polynomial is irreducible over \mathbb{F}_2 , but has two roots in \mathbb{F}_{2^2} , since we could take

$$\mathbb{F}_{2^2} = \mathbb{F}_2[x]/(x^2 + x + 1).$$

We know that the number of points on the curve is divisible by 3 (since $\mathcal{E}(\mathbb{F}_2) = \mathbb{Z}/(3)$ is a subgroup). So there is at least one more point, with $x \in \mathbb{F}_{2^2} \setminus \mathbb{F}_2$.

But in fact, as we have seen, if there is one such point for a given x then there are two.

This implies that both values of x must provide 2 new points, giving 9 points in all.

[Concretely, the elements of $\mathbb{F}_{2^2} \setminus \mathbb{F}_2$ are the roots of

$$x^2 + x + 1 = 0.$$

If one root is ω then the other is ω^2 . The 9 points on the curve are:

 $(0,\omega), \ (0,\omega^2), \ (1,0), \ (1,1), \ (\omega,0), \ (\omega,1), \ (\omega^2,0), \ (\omega^2,1),$

together with the point [0, 1, 0] at infinity.] It follows that

$$\mathcal{E}(\mathbb{F}_{2^2}) = \mathbb{Z}/(9) \text{ or } \mathbb{Z}/(3) \oplus \mathbb{Z}/(3).$$

To distinguish between these, we use a little geometry to identify the points of order 3 on the curve.

A point P on an elliptic curve has order 3 if and only if it is a point of inflexion, ie the tangent at P meets the curve in 3 points P, P, P. For 2P = -Q, where Q is the point where the tangent meets the curve again. Thus

$$3P = 0 \iff 2P = -P \iff Q = P,$$

ie the tangent meets the curve again at P. The tangent at P = (x, y) is

$$y = mx + c,$$

where m = dy/dx. In our case

$$(2y+1)\frac{dy}{dx} = 3x^2,$$

ie

$$m = x^2$$
.

This meets the curve where

$$(mx+c)^2 + (mx+c) = x^3 + 1.$$

If the roots of this cubic are x_1, x_2, x_3 then

$$x_1 + x_2 + x_3 = m^2.$$

Thus

$$3P = 0 \iff 3x = m^2$$
$$\iff x = x^4$$
$$\iff x^3 = 1,$$

if we ignore the case x = 0 (which we know from $\mathcal{E}(\mathbb{F}_2)$ does actually give 2 points of order 3).

But we know (from Lagrange's Theorem) that

 $x \in \mathbb{F}_{2^3}^{\times} \implies x^3 = 1.$

We conclude that all the points on $\mathcal{E}(\mathbb{F}_{2^2})$ are of order 3, and so

$$\mathcal{E}(\mathbb{F}_{2^2}) = \mathbb{Z}/(3) \oplus \mathbb{Z}(3)$$

 \mathbb{F}_{2^3} The map

$$\theta: x \mapsto x^3: \mathbb{F}_{2^3} \to \mathbb{F}_{2^3}$$

has ker $\theta = \{1\}$ (since the group has order 8). Thus each element of F_{2^3} has a unique cube root. It follows that the equation, which can be written

$$x^3 = y^2 + y + 1,$$

has a unique solution for each y. Thus there are 8 + 1 = 9 points on the curve; and so

$$\mathcal{E}(\mathbb{F}_{2^3}) = \mathbb{Z}/(9) \ or \ \mathbb{Z}/(3) \oplus \mathbb{Z}/(3).$$

But as we saw in the case \mathbb{F}_{2^2} , the point P = (x, y) is of order 3 if and only if x = 0 or $x^3 = 1$. As we just saw, if $x \in \mathbb{F}_{2^3}^{\times}$ then

$$x^3 = 1 \implies x = 1 \implies y = 0 \text{ or } 1.$$

Thus there are just 2 points of order 3 on $\mathcal{E}(\mathbb{F}_{2^3})$, namely $\mathcal{E}(\mathbb{F}_2) \setminus O$, and so

$$\mathcal{E}(\mathbb{F}_{2^3}) = \mathbb{Z}/(9).$$

Now let us turn to $\mathcal{E}(\mathbb{F}_{2^6})$. Since

$$\mathcal{E}(\mathbb{F}_{2^2}) \cap \mathcal{E}(\mathbb{F}_{2^2}) = \mathcal{E}(\mathbb{F}_2)$$

it follows that the subgroup

$$\mathcal{E}(\mathbb{F}_{2^2}) + \mathcal{E}(\mathbb{F}_{2^2}) = \mathbb{Z}/(3) \oplus \mathbb{Z}/(9).$$

(This is the only one of the 3 abelian groups of order 3^3 with subgroups $\mathbb{Z}/(9)$ and $\mathbb{Z}/(3) \oplus \mathbb{Z}/(3)$).

In particular, if $\mathcal{E}(\mathbb{F}_{2^6} \text{ has } N \text{ points then})$

$$27 \mid N.$$

Also, by Hasse's theorem,

$$|N - 65| \le 2\sqrt{64} = 16,$$

 $49 \le N \le 81.$

ie

Since N is odd, it follows that

$$N = 81 = 3^4.$$

There are three possibilities:

$$\mathcal{E}(\mathbb{F}_{2^6}) = \mathbb{Z}/(27) \oplus \mathbb{Z}/(3) \text{ or } \mathbb{Z}/(9) \oplus \mathbb{Z}/(9) \text{ or } \mathbb{Z}/(9) \oplus \mathbb{Z}/(3) \oplus \mathbb{Z}/(3).$$

The first two of these groups have $3^2 - 1$ elements of order 3, while the last has $3^3 - 1 = 26$.

As we have seen, if P = (x, y) then

$$3P = 0 \iff x = 0 \text{ or } x^3 = 1$$

Thus the only points of order 3 are the 8 in $\mathcal{E}(\mathbb{F}_{2^2})$, ruling out the third group.

To distinguish between the first 2 cases, let us determine the number of points of order 9.

We have seen that if $P = (x, y) \in \mathcal{E}(\mathbb{F}_{2^6})$ then

$$2P = (x^4, y_1) \implies 4P = (x^{16}, y_2)$$
$$\implies 8P = (x^{64}, y_3).$$

But

$$x^6 4 = x$$

for all $x \in \mathbb{F}_{2^6}$. Hence

$$8P = \pm P$$

for all points on the curve. Now

$$8P = P \implies 7P = 0$$

is impossible (since the group has order 3^4). We conclude that

$$9P = 0$$

for all $P \in \mathcal{E}(\mathbb{F}_{2^5})$. Hence

$$\mathcal{E}(\mathbb{F}_{2^6}) = \mathbb{Z}/(9) \oplus \mathbb{Z}/(9).$$

[That was much more difficult than intended!]