

Course 374 (Cryptography)

Sample Paper 1

Dr Timothy Murphy

GMB ?? Friday, ?? 2007 ??:00-??:00

Attempt 4 questions from Part A, and 2 questions from Part B.

Part B

9. Prove that the multiplicative group F^{\times}of a finite field F is cyclic.

Find all the primitive roots $\bmod 17$, ie the generators of $(\mathbb{Z} / 17)^{\times}$.
How many primitive elements does $\mathbb{F}_{3^{3}}$ possess?

Answer:

(a) Let

$$
\|F\|=q .
$$

Lemma 1. The exponent of F^{\times}is $q-1$.
Proof. By Lagrange's Theorem,

$$
e \mid q-1
$$

On the other hand, since the equation

$$
x^{e}-1=0
$$

has at most e roots in F,

$$
q-1 \leq e
$$

Hence

$$
e=q-1 .
$$

Lemma 2. If A is an abelian group, and $g, h \in A$ are of orders m, n, where

$$
\operatorname{gcd}(m, n)=1,
$$

then gh is or order mn.
Proof. Suppose the order of $g h$ is d. Then

$$
d \mid m n
$$

since

$$
(g h)^{m n}=g^{m n} h^{m n}=1,
$$

On the other hand,

$$
(g h)^{d}=1 \Longrightarrow(g h)^{m d}=h^{m d}=1 .
$$

Thus

$$
n|m d \Longrightarrow n| d
$$

since $\operatorname{gcd}(m, n)=1$. Similarly

$$
m \mid d
$$

Hence

$$
m n \mid d,
$$

since $\operatorname{gcd}(m, n)=1$; and so

$$
d=m n .
$$

Lemma 3. A finite abelian group A of exponent e contains an element of order e.

Proof. Suppose

$$
e=p_{1}^{e_{1}} \cdots p_{r}^{e_{r}} .
$$

For each $i \in[1, r], A$ contains an element α_{i} of order divisible by $p_{i}^{e_{i}}$, say of order $p_{i}^{e_{i}} q_{i}$. But then

$$
\beta_{i}=\alpha_{i}^{q_{i}}
$$

is of order $p_{i}^{e_{i}}$.
Hence by the previous Lemma,

$$
\beta=\beta_{1} \cdots \beta_{r}
$$

is of order

$$
e=p_{1}^{e_{1}} \cdots p_{r}^{e_{r}} .
$$

It follows from this Lemma that F^{\times}contains an element of order $e=q-1$, and so is cyclic.
(b) $(\mathbb{Z} / 17)^{\times}$is a cyclic group of order 16. So each element has order $1,2,4,8$ or 16 .
There is 1 element of order 1, namely 1; 1 element of order 2, namely $-1 ; \phi(4)=2$ elements of order $4 ; \phi(8)=4$ elements of order 8; and $\phi(16)=8$ elements of order 28,
If x has order 16 then

$$
x^{8}=-1 .
$$

Hence

$$
(-x)^{8}=-1
$$

and so the 4 elements $\pm x, \pm x^{-1}$ all have order 16 .
Since

$$
2^{4}=-1 \bmod 17
$$

it follows that 2 has order $8 \bmod 17$.
Since

$$
(-2)^{4}=2^{4}=-1 \bmod 17
$$

it follows that the 4 elements of order 8 are

$$
\pm 2, \pm 2^{-1}
$$

ie

$$
2,15,9,8 .
$$

Also, since 2 is of order $8,4=2^{2}$ is of order 4. Thus the 2 elements of order 4 are

$$
\pm 4
$$

ie

$$
4,13
$$

Thus the 8 elements of order 16 (ie the primitive roots) are:

$$
3,5,6,7,10,11,12,14
$$

(c) The number of primitive elements in $\mathbb{F}_{3^{3}}$ is

$$
\begin{aligned}
\phi\left(3^{3}-1\right) & =\phi(26) \\
& =\phi(2) \phi(13) \\
& =1 \cdot 12 \\
& =12
\end{aligned}
$$

10. Explain what is meant by a singular point on a curve, and show that the curve

$$
y^{2}=x^{3}+a x^{2}+b x+c
$$

is always singular over a field of characteristic 2 .
What is the condition for the curve to be singular over a field of characteristic $\neq 2$?
Determine whether the equation

$$
y^{2}=x^{3}+x^{2}+x+1
$$

defines an elliptic curve over each of the fields $\mathbb{F}_{3}, \mathbb{F}_{5}, \mathbb{F}_{7}, \mathbb{F}_{8}$; and in those cases where it does, determine the group on the curve (as eg $\mathbb{Z} /(2) \oplus \mathbb{Z} /(2))$.
Answer:
(a) Suppose the curve is given by

$$
F(X, Y, Z)=0
$$

in homogeneous coordinates. Then the point $P=\left[X_{0}, Y_{0}, Z_{0}\right]$ on the curve is said to be singular if

$$
\partial F / \partial X=\partial F / \partial Y=\partial F / \partial Z=0
$$

at P. [In other words, P is singular if the tangent at P is undefined.]
(b) In homogeneous coordinates the curve is given by

$$
F(X, Y, Z) \equiv Y^{2} Z+X^{3}+a X^{2} Z+b X Z^{2}+c Z^{3}=0
$$

Thus

$$
\begin{aligned}
& \partial F / \partial X=X^{2}+b Z^{2}, \\
& \partial F / \partial Y=0 \partial F / \partial Z
\end{aligned} \quad=a X^{2}+c Z^{2} .
$$

It follows that the point $O=[0,1$,$] , which is on the curve, is$ singular. Hence the curve is singular.
(c) If char $k \neq 2$ then the curve

$$
y^{2}=x^{3}+a x^{2}+b x+c
$$

is singular if and only if the polynomial

$$
p(x)=x^{3}+a x^{2}+b x+c
$$

has a multiple root.
The condition for this is that

$$
\operatorname{gcd}\left(p(x), p^{\prime}(x)\right) \neq 1
$$

$k=\mathbb{F}_{3}$ Then

$$
p(x)=x^{3}+x^{2}+x+1, \quad p^{\prime}(x)=2 x+1 .
$$

Since

$$
p^{\prime}(x)=0 \Longrightarrow x=-1 / 2=1
$$

and

$$
p(1)=1 \neq 0,
$$

the curve is non-singular, and so is an elliptic curve.
The quadratic residues $\bmod 3$ are $\{0,1\}$.
Let us draw up a table for $x, p(x), y$:

x	$p(x)$	y
0	1	± 1
1	1	± 1
-1	0	0

We deduce that the curve has 6 points: $(0, \pm 1),(1, \pm 1),(0,0)$ and the point $[0,1,0]$ at infinity.
There is only 1 abelian group of order 6 , namely $\mathbb{Z} /(6)=$ $\mathbb{Z} /(2) \oplus \mathbb{Z} /(3)$, so we deduce that

$$
\mathcal{E}\left(\mathbb{F}_{3}\right) \cong \mathbb{Z} /(6) .
$$

$k=\mathbb{F}_{5}$ Then

$$
p(x)=x^{3}+x^{2}+x+1, \quad p^{\prime}(x)=3 x^{2}+2 x+1 .
$$

Now

$$
3 p(x)-x p^{\prime}(x)=x^{2}+2 x+3,
$$

while

$$
3\left(x^{2}+2 x+3\right)-p(x)=4 x+8 .
$$

Thus

$$
\operatorname{gcd}\left(p(x), p^{\prime}(x)\right)=1 \Longleftrightarrow p(-2) \neq 0 \cdot x=-2 .
$$

In fact

$$
p(-2)=-8+4-2+1=2-1-2+1=0 .
$$

Thus the curve is singular in this case, and so is not an elliptic curve.
$k=\mathbb{F}_{7}$ As before,

$$
\begin{gathered}
3 p(x)-x p^{\prime}(x)=x^{2}+2 x+3 \\
3\left(x^{2}+2 x+3\right)-p(x)=4 x+8
\end{gathered}
$$

But in this case

$$
p(-2)=-8+4-2+1=-1-3-2+1=2 \neq 0 .
$$

Thus the curve is non-singular, ie it is an elliptic curve.
The quadratic residues $\bmod 7$ are $\{0,1,2,4\}=\{0,1,2,-3\}$.
We draw up the table for $x, p(x), y$:

x	$p(x)$	y
0	1	± 1
1	-3	± 3
2	1	± 1
3	-2	-
-3	1	± 1
-2	2	± 3
-1	0	0

We deduce that the curve has 12 points: $(0, \pm 1),(1, \pm 3),(2, \pm 1),(-3, \pm 1),(-2$, and the point $[0,1,0]$ at infinity.

There are 2 abelian groups of order 12, namely $\mathbb{Z} /(4) \oplus \mathbb{Z} /(3)=$ $\mathbb{Z} / 12$ and $\mathbb{Z} /(2) \oplus \mathbb{Z}(2) \oplus \mathbb{Z}(3)=\mathbb{Z} /(6) \oplus \mathbb{Z} /(2)$.
The first of these has just 1 element of order 2, while the second has 3 elements of order 2.
But if $P=(x, y)$ then

$$
-P=(x,-y)
$$

It follows that P is of order 2 if and only if $y=0$. Since $(-1,0)$ is the only such point in this case, we deduce that

$$
\mathcal{E}\left(\mathbb{F}_{3}\right) \cong \mathbb{Z} /(12)
$$

\mathbb{F}_{8} The curve in this case is singular.
[More generally, the curve

$$
y^{2}=f(x)
$$

where $f(x)$ is a cubic, is always singular in characteristic 2. To get an elliptic curve in characteristic 2, there must be a term in $x y$ or y, or both, on the left. If the characteristic is not 2 then one can complete the square on the left,

$$
\left.y^{2}+A x y+B y=(y+A x / 2+B / 2)^{2}+g(x) .\right]
$$

To verify singularity in this case, we write the equation in projective form:

$$
F(X, Y, Z) \equiv Y^{2} Z+X^{3}+X^{2} Z+X Z^{2}+Z^{3}=0
$$

Now

$$
\begin{aligned}
& \partial F / \partial X=X^{2}+Z^{2} \\
& \partial F / \partial Y=0 \\
& \partial F / \partial Z=Y^{2}+X^{2}+Z^{2}
\end{aligned}
$$

The fact the $\partial F / \partial Y$ vanishes identically means that a singular point can be found by solving 2 equations in 3 unkowns, which is always possible.
In general the solution does not lie in the ground field, but in this case it does: $(1,0)=[1,0,1]$ is a singular point on the curve.
11. Show that a polynomial $f(x)$ of degree n over the finite field \mathbb{F}_{p} is irreducible if and only if

$$
\operatorname{gcd}\left(f(x), x^{p^{m}}-x\right)=1
$$

for $m=1,2, \ldots,[n / 2]$.
Find an irreducible polynomial $p(x)$ of degree 6 over \mathbb{F}_{2}.
Show that

$$
y^{2}+y=x^{3}+1
$$

defines an elliptic curve over $\mathbb{F}_{2^{6}}$, and determine the group on this curve.

Answer:

(a) If $f(x)$ is composite, it must have a factor $g(x)$ of degree $m \leq$ [$n / 2$].
Recall that

$$
U_{m}(x)=x^{p^{m}}-x=\prod \pi(x)
$$

where $\pi(x)$ runs over all irreducible polynomials of degree $d \mid m$. In particular

$$
g(x) \mid U_{m}(x)
$$

and so

$$
\operatorname{gcd}\left(f(x), U_{m}(x)\right) \neq 1
$$

Conversely, suppose

$$
\operatorname{gcd}\left(f(x), U_{m}(x)\right) \neq 1
$$

Then some irreducible factor $\pi(x)$ of $U_{m}(x)$ must divide $f(x)$. This factor has degree $d \leq m$, and so is not $f(x)$. Hence $f(x)$ is composite.
(b) Consider the polynomial

$$
f(x)=x^{6}+x+1
$$

in $\mathbb{F}_{2}[x]$.
Since x is not a factor of $f(x)$, this will be irreducible if and only if

$$
\operatorname{gcd}\left(f(x), x^{2^{m}-1}-1\right)=1
$$

for $m=2,3$.
Now

$$
x^{6} \equiv 1 \bmod x^{3}-1,
$$

and so

$$
f(x) \equiv x \bmod x^{3}-1 .
$$

Hence

$$
\operatorname{gcd}\left(f(x), x^{3}-1\right)=1
$$

Also

$$
x f(x)=x^{7}+x^{2}+x \equiv x^{2}+x+1 \bmod x^{7}-1,
$$

while

$$
x^{3}-1=(x-1)\left(x^{2}+x+1\right) \equiv 0 \bmod x^{2}+x+1 .
$$

Hence

$$
x^{6} \equiv 1 \bmod x^{2}+x+1,
$$

and so

$$
x^{6}+x+1 \equiv x^{2} \bmod x^{2}+x+1
$$

Thus

$$
\operatorname{gcd}\left(f(x), x^{7}-1\right)=1
$$

We conclude that

$$
f(x)=x^{6}+x+1
$$

is irreducible over \mathbb{F}_{2}.
(c) The curve

$$
y^{2}+y=x^{3}+1
$$

takes homogeneous form

$$
F(X, Y, Z)=Y^{2} Z+Y Z^{2}+X^{3}+Z^{3}
$$

Now

$$
\begin{aligned}
\partial F / \partial X & =X^{2}, \\
\partial F / \partial Y & =Z^{2}, \\
\partial F / \partial Z & =Y^{2}+Z^{2} .
\end{aligned}
$$

Thus

$$
\partial F / \partial X=\partial F / \partial Y=\partial F / \partial Z=0 \Longrightarrow X=Y=Z=0 .
$$

Hence the curve is non-singular (since $[0,0,0]$ is not a point in the projective plane).
(d) We want to determine the number of points, N say, on the curve $\mathcal{E}\left(\mathbb{F}_{2^{6}}\right)$.
Note first that the left-hand side of the equation, $y^{2}+y=y(y+1)$, is invariant under $y \mapsto y+1$. Thus

$$
(x, y) \in \mathcal{E}\left(\mathbb{F}_{2^{6}}\right) \Longleftrightarrow(x, y+1) \in \mathcal{E}\left(\mathbb{F}_{2^{6}}\right)
$$

[In fact, since the line $x=c$ passing through these two points also passes through $O=[0,1,0]$, these points are the negatives of each other:

$$
-(x, y)=(x, y+1) .]
$$

On adding the point $[0,1,0]$ at infinity on the curve, it follows that N is odd.
The points defined over $\mathbb{F}_{2}, \mathbb{F}_{2^{2}}, \mathbb{F}_{2^{3}}$ give subgroups of $\mathcal{E}\left(\mathbb{F}_{2^{6}}\right.$:

$$
\mathcal{E}\left(\mathbb{F}_{2}\right) \subset \mathcal{E}\left(\mathbb{F}_{2^{2}}\right) \subset \mathcal{E}\left(\mathbb{F}_{2^{6}}\right), \mathcal{E}\left(\mathbb{F}_{2}\right) \subset \mathcal{E}\left(\mathbb{F}_{2^{3}}\right) \subset \mathcal{E}\left(\mathbb{F}_{2^{6}}\right)
$$

We start by looking at the smaller groups, since this will probably give useful information about the large group.
\mathbb{F}_{2} By inspection the curve $\mathcal{E}\left(\mathbb{F}_{2}\right)$ contains the points $(1,0),(1,1)$, together with the point at infinity. Thus

$$
\mathcal{E}\left(\mathbb{F}_{2}\right)=\mathbb{Z} /(3) .
$$

$\mathbb{F}_{2^{2}}$ If $x=0$ the equation becomes

$$
y^{2}+y+1=0 .
$$

This polynomial is irreducible over \mathbb{F}_{2}, but has two roots in $\mathbb{F}_{2^{2}}$, since we could take

$$
\mathbb{F}_{2^{2}}=\mathbb{F}_{2}[x] /\left(x^{2}+x+1\right) .
$$

We know that the number of points on the curve is divisible by 3 (since $\mathcal{E}\left(\mathbb{F}_{2}\right)=\mathbb{Z} /(3)$ is a subgroup). So there is at least one more point, with $x \in \mathbb{F}_{2^{2}} \backslash \mathbb{F}_{2}$.
But in fact, as we have seen, if there is one such point for a given x then there are two.
This implies that both values of x must provide 2 new points, giving 9 points in all.
[Concretely, the elements of $\mathbb{F}_{2^{2}} \backslash \mathbb{F}_{2}$ are the roots of

$$
x^{2}+x+1=0 .
$$

If one root is ω then the other is ω^{2}.
The 9 points on the curve are:

$$
(0, \omega),\left(0, \omega^{2}\right),(1,0),(1,1),(\omega, 0),(\omega, 1),\left(\omega^{2}, 0\right),\left(\omega^{2}, 1\right)
$$

together with the point $[0,1,0]$ at infinity.]
It follows that

$$
\mathcal{E}\left(\mathbb{F}_{2^{2}}\right)=\mathbb{Z} /(9) \text { or } \mathbb{Z} /(3) \oplus \mathbb{Z} /(3)
$$

To distinguish between these, we use a little geometry to identify the points of order 3 on the curve.
A point P on an elliptic curve has order 3 if and only if it is a point of inflexion, ie the tangent at P meets the curve in 3 points P, P, P. For $2 P=-Q$, where Q is the point where the tangent meets the curve again. Thus

$$
3 P=0 \Longleftrightarrow 2 P=-P \Longleftrightarrow Q=P
$$

ie the tangent meets the curve again at P. The tangent at $P=(x, y)$ is

$$
y=m x+c,
$$

where $m=d y / d x$. In our case

$$
(2 y+1) \frac{d y}{d x}=3 x^{2}
$$

ie

$$
m=x^{2} .
$$

This meets the curve where

$$
(m x+c)^{2}+(m x+c)=x^{3}+1 .
$$

If the roots of this cubic are x_{1}, x_{2}, x_{3} then

$$
x_{1}+x_{2}+x_{3}=m^{2} .
$$

Thus

$$
\begin{aligned}
3 P=0 & \Longleftrightarrow 3 x=m^{2} \\
& \Longleftrightarrow x=x^{4} \\
& \Longleftrightarrow x^{3}=1,
\end{aligned}
$$

if we ignore the case $x=0$ (which we know from $\mathcal{E}\left(\mathbb{F}_{2}\right)$ does actually give 2 points of order 3).
But we know (from Lagrange's Theorem) that

$$
x \in \mathbb{F}_{2^{3}}^{\times} \Longrightarrow x^{3}=1 .
$$

We conclude that all the points on $\mathcal{E}\left(\mathbb{F}_{2^{2}}\right)$ are of order 3, and so

$$
\mathcal{E}\left(\mathbb{F}_{2^{2}}\right)=\mathbb{Z} /(3) \oplus \mathbb{Z}(3)
$$

$\mathbb{F}_{2^{3}}$ The map

$$
\theta: x \mapsto x^{3}: \mathbb{F}_{2^{3}} \rightarrow \mathbb{F}_{2^{3}}
$$

has $\operatorname{ker} \theta=\{1\}$ (since the group has order 8). Thus each element of $F_{2^{3}}$ has a unique cube root.
It follows that the equation, which can be written

$$
x^{3}=y^{2}+y+1
$$

has a unique solution for each y. Thus there are $8+1=9$ points on the curve; and so

$$
\mathcal{E}\left(\mathbb{F}_{2^{3}}\right)=\mathbb{Z} /(9) \text { or } \mathbb{Z} /(3) \oplus \mathbb{Z} /(3)
$$

But as we saw in the case $\mathbb{F}_{2^{2}}$, the point $P=(x, y)$ is of order 3 if and only if $x=0$ or $x^{3}=1$.
As we just saw, if $x \in \mathbb{F}_{2^{3}}^{\times}$then

$$
x^{3}=1 \Longrightarrow x=1 \Longrightarrow y=0 \text { or } 1 .
$$

Thus there are just 2 points of order 3 on $\mathcal{E}\left(\mathbb{F}_{2^{3}}\right)$, namely $\mathcal{E}\left(\mathbb{F}_{2}\right) \backslash O$, and so

$$
\mathcal{E}\left(\mathbb{F}_{2^{3}}\right)=\mathbb{Z} /(9) .
$$

Now let us turn to $\mathcal{E}\left(\mathbb{F}_{2^{6}}\right)$. Since

$$
\mathcal{E}\left(\mathbb{F}_{2^{2}}\right) \cap \mathcal{E}\left(\mathbb{F}_{2^{2}}\right)=\mathcal{E}\left(\mathbb{F}_{2}\right)
$$

it follows that the subgroup

$$
\mathcal{E}\left(\mathbb{F}_{2^{2}}\right)+\mathcal{E}\left(\mathbb{F}_{2^{2}}\right)=\mathbb{Z} /(3) \oplus \mathbb{Z} /(9)
$$

(This is the only one of the 3 abelian groups of order 3^{3} with subgroups $\mathbb{Z} /(9)$ and $\mathbb{Z} /(3) \oplus \mathbb{Z} /(3))$.
In particular, if $\mathcal{E}\left(\mathbb{F}_{2^{6}}\right.$ has N points then

Also, by Hasse's theorem,

$$
\begin{gathered}
|N-65| \leq 2 \sqrt{64}=16 \\
49 \leq N \leq 81
\end{gathered}
$$

ie

Since N is odd, it follows that

$$
N=81=3^{4} .
$$

There are three possibilities:
$\mathcal{E}\left(\mathbb{F}_{2^{6}}\right)=\mathbb{Z} /(27) \oplus \mathbb{Z} /(3)$ or $\mathbb{Z} /(9) \oplus \mathbb{Z} /(9)$ or $\mathbb{Z} /(9) \oplus \mathbb{Z} /(3) \oplus \mathbb{Z} /(3)$.
The first two of these groups have $3^{2}-1$ elements of order 3, while the last has $3^{3}-1=26$.
As we have seen, if $P=(x, y)$ then

$$
3 P=0 \Longleftrightarrow x=0 \text { or } x^{3}=1
$$

Thus the only points of order 3 are the 8 in $\mathcal{E}\left(\mathbb{F}_{2^{2}}\right)$, ruling out the third group.
To distinguish between the first 2 cases, let us determine the number of points of order 9 .
We have seen that if $P=(x, y) \in \mathcal{E}\left(\mathbb{F}_{2^{6}}\right)$ then

$$
\begin{aligned}
2 P=\left(x^{4}, y_{1}\right) & \Longrightarrow 4 P=\left(x^{16}, y_{2}\right) \\
& \Longrightarrow 8 P=\left(x^{64}, y_{3}\right) .
\end{aligned}
$$

But

$$
x^{6} 4=x
$$

for all $x \in \mathbb{F}_{2^{6}}$. Hence

$$
8 P= \pm P
$$

for all points on the curve. Now

$$
8 P=P \Longrightarrow 7 P=0
$$

is impossible (since the group has order 3^{4}). We conclude that

$$
9 P=0
$$

for all $P \in \mathcal{E}\left(\mathbb{F}_{2^{5}}\right)$.
Hence

$$
\mathcal{E}\left(\mathbb{F}_{2^{6}}\right)=\mathbb{Z} /(9) \oplus \mathbb{Z} /(9) .
$$

[That was much more difficult than intended!]

