
Course 374 (Cryptography)

Sample Paper 1

Dr Timothy Murphy

GMB ?? Friday, ?? 2007 ??:00–??:00

Attempt 4 questions from Part A, and 2 questions from Part B.

Part B

9. Prove that the multiplicative group F× of a finite field F is cyclic.

Find all the primitive roots mod17, ie the generators of (Z/17)×.

How many primitive elements does F33 possess?

Answer:

(a) Let
‖F‖ = q.

Lemma 1. The exponent of F× is q − 1.

Proof. By Lagrange’s Theorem,

e | q − 1

On the other hand, since the equation

xe − 1 = 0

1



has at most e roots in F ,

q − 1 ≤ e.

Hence
e = q − 1.

Lemma 2. If A is an abelian group, and g, h ∈ A are of orders
m, n, where

gcd(m, n) = 1,

then gh is or order mn.

Proof. Suppose the order of gh is d. Then

d | mn,

since
(gh)mn = gmnhmn = 1,

On the other hand,

(gh)d = 1 =⇒ (gh)md = hmd = 1.

Thus
n | md =⇒ n | d,

since gcd(m, n) = 1. Similarly

m | d.

Hence
mn | d,

since gcd(m, n) = 1; and so

d = mn.

Lemma 3. A finite abelian group A of exponent e contains an
element of order e.



Proof. Suppose
e = pe1

1 · · · per
r .

For each i ∈ [1, r], A contains an element αi of order divisible by
pei

i , say of order pei
i qi. But then

βi = αqi

i

is of order pei
i .

Hence by the previous Lemma,

β = β1 · · · βr

is of order
e = pe1

1 · · · per
r .

It follows from this Lemma that F× contains an element of order
e = q − 1, and so is cyclic.

(b) (Z/17)× is a cyclic group of order 16. So each element has order
1,2,4,8 or 16.

There is 1 element of order 1, namely 1; 1 element of order 2,
namely -1; φ(4) = 2 elements of order 4; φ(8) = 4 elements of
order 8; and φ(16) = 8 elements of order 28,

If x has order 16 then
x8 = −1.

Hence
(−x)8 = −1,

and so the 4 elements ±x,±x−1 all have order 16.

Since
24 = −1 mod 17

it follows that 2 has order 8 mod 17.

Since
(−2)4 = 24 = −1 mod 17

it follows that the 4 elements of order 8 are

±2,±2−1,

ie

2, 15, 9, 8.



Also, since 2 is of order 8, 4 = 22 is of order 4. Thus the 2
elements of order 4 are

±4,

ie

4, 13.

Thus the 8 elements of order 16 (ie the primitive roots) are:

3, 5, 6, 7, 10, 11, 12, 14.

(c) The number of primitive elements in F33 is

φ(33 − 1) = φ(26)

= φ(2)φ(13)

= 1 · 12

= 12.

10. Explain what is meant by a singular point on a curve, and show that
the curve

y2 = x3 + ax2 + bx + c

is always singular over a field of characteristic 2.

What is the condition for the curve to be singular over a field of char-
acteristic 6= 2?

Determine whether the equation

y2 = x3 + x2 + x + 1

defines an elliptic curve over each of the fields F3, F5, F7, F8; and in
those cases where it does, determine the group on the curve (as eg
Z/(2)⊕ Z/(2)).

Answer:

(a) Suppose the curve is given by

F (X, Y, Z) = 0

in homogeneous coordinates. Then the point P = [X0, Y0, Z0] on
the curve is said to be singular if

∂F/∂X = ∂F/∂Y = ∂F/∂Z = 0

at P . [In other words, P is singular if the tangent at P is unde-
fined.]



(b) In homogeneous coordinates the curve is given by

F (X, Y, Z) ≡ Y 2Z + X3 + aX2Z + bXZ2 + cZ3 = 0.

Thus

∂F/∂X = X2 + bZ2,

∂F/∂Y = 0∂F/∂Z = aX2 + cZ2.

It follows that the point O = [0, 1, ], which is on the curve, is
singular. Hence the curve is singular.

(c) If char k 6= 2 then the curve

y2 = x3 + ax2 + bx + c

is singular if and only if the polynomial

p(x) = x3 + ax2 + bx + c

has a multiple root.

The condition for this is that

gcd(p(x), p′(x)) 6= 1.

k = F3 Then

p(x) = x3 + x2 + x + 1, p′(x) = 2x + 1.

Since
p′(x) = 0 =⇒ x = −1/2 = 1

and
p(1) = 1 6= 0,

the curve is non-singular, and so is an elliptic curve.
The quadratic residues mod3 are {0, 1}.
Let us draw up a table for x, p(x), y:

x p(x) y
0 1 ±1
1 1 ±1
−1 0 0

We deduce that the curve has 6 points: (0,±1), (1,±1), (0, 0)
and the point [0, 1, 0] at infinity.
There is only 1 abelian group of order 6, namely Z/(6) =
Z/(2)⊕ Z/(3), so we deduce that

E(F3) ∼= Z/(6).



k = F5 Then

p(x) = x3 + x2 + x + 1, p′(x) = 3x2 + 2x + 1.

Now
3p(x)− xp′(x) = x2 + 2x + 3,

while
3(x2 + 2x + 3)− p(x) = 4x + 8.

Thus

gcd(p(x), p′(x)) = 1 ⇐⇒ p(−2) 6= 0.x = −2.

In fact

p(−2) = −8 + 4− 2 + 1 = 2− 1− 2 + 1 = 0.

Thus the curve is singular in this case, and so is not an elliptic
curve.

k = F7 As before,

3p(x)− xp′(x) = x2 + 2x + 3,

3(x2 + 2x + 3)− p(x) = 4x + 8.

But in this case

p(−2) = −8 + 4− 2 + 1 = −1− 3− 2 + 1 = 2 6= 0.

Thus the curve is non-singular, ie it is an elliptic curve.
The quadratic residues mod7 are {0, 1, 2, 4} = {0, 1, 2,−3}.
We draw up the table for x, p(x), y:

x p(x) y
0 1 ±1
1 −3 ±3
2 1 ±1
3 −2 −
−3 1 ±1
−2 2 ±3
−1 0 0

We deduce that the curve has 12 points: (0,±1), (1,±3), (2,±1), (−3,±1), (−2,±3), (−1, 0)
and the point [0, 1, 0] at infinity.



There are 2 abelian groups of order 12, namely Z/(4)⊕Z/(3) =
Z/12 and Z/(2)⊕ Z(2)⊕ Z(3) = Z/(6)⊕ Z/(2).
The first of these has just 1 element of order 2, while the
second has 3 elements of order 2.
But if P = (x, y) then

−P = (x,−y).

It follows that P is of order 2 if and only if y = 0. Since
(−1, 0) is the only such point in this case, we deduce that

E(F3) ∼= Z/(12).

F8 The curve in this case is singular.
[More generally, the curve

y2 = f(x),

where f(x) is a cubic, is always singular in characteristic 2.
To get an elliptic curve in characteristic 2, there must be a
term in xy or y, or both, on the left. If the characteristic is
not 2 then one can complete the square on the left,

y2 + Axy + By = (y + Ax/2 + B/2)2 + g(x).]

To verify singularity in this case, we write the equation in
projective form:

F (X, Y, Z) ≡ Y 2Z + X3 + X2Z + XZ2 + Z3 = 0.

Now

∂F/∂X = X2 + Z2,

∂F/∂Y = 0,

∂F/∂Z = Y 2 + X2 + Z2.

The fact the ∂F/∂Y vanishes identically means that a singular
point can be found by solving 2 equations in 3 unkowns, which
is always possible.
In general the solution does not lie in the ground field, but in
this case it does: (1, 0) = [1, 0, 1] is a singular point on the
curve.



11. Show that a polynomial f(x) of degree n over the finite field Fp is
irreducible if and only if

gcd(f(x), xpm − x) = 1

for m = 1, 2, . . . , [n/2].

Find an irreducible polynomial p(x) of degree 6 over F2.

Show that
y2 + y = x3 + 1

defines an elliptic curve over F26 , and determine the group on this curve.

Answer:

(a) If f(x) is composite, it must have a factor g(x) of degree m ≤
[n/2].

Recall that
Um(x) = xpm − x =

∏
π(x)

where π(x) runs over all irreducible polynomials of degree d | m.

In particular
g(x) | Um(x)

and so
gcd(f(x), Um(x)) 6= 1.

Conversely, suppose

gcd(f(x), Um(x)) 6= 1.

Then some irreducible factor π(x) of Um(x) must divide f(x).
This factor has degree d ≤ m, and so is not f(x). Hence f(x)
is composite.

(b) Consider the polynomial

f(x) = x6 + x + 1

in F2[x].

Since x is not a factor of f(x), this will be irreducible if and only
if

gcd(f(x), x2m−1 − 1) = 1

for m = 2, 3.

Now
x6 ≡ 1 mod x3 − 1,



and so
f(x) ≡ x mod x3 − 1.

Hence
gcd(f(x), x3 − 1) = 1

Also
xf(x) = x7 + x2 + x ≡ x2 + x + 1 mod x7 − 1,

while

x3 − 1 = (x− 1)(x2 + x + 1) ≡ 0 mod x2 + x + 1.

Hence
x6 ≡ 1 mod x2 + x + 1,

and so
x6 + x + 1 ≡ x2 mod x2 + x + 1.

Thus
gcd(f(x), x7 − 1) = 1.

We conclude that
f(x) = x6 + x + 1

is irreducible over F2.

(c) The curve
y2 + y = x3 + 1

takes homogeneous form

F (X, Y, Z) = Y 2Z + Y Z2 + X3 + Z3.

Now

∂F/∂X = X2,

∂F/∂Y = Z2,

∂F/∂Z = Y 2 + Z2.

Thus

∂F/∂X = ∂F/∂Y = ∂F/∂Z = 0 =⇒ X = Y = Z = 0.

Hence the curve is non-singular (since [0, 0, 0] is not a point in
the projective plane).



(d) We want to determine the number of points, N say, on the curve
E(F26).

Note first that the left-hand side of the equation, y2 +y = y(y+1),
is invariant under y 7→ y + 1. Thus

(x, y) ∈ E(F26) ⇐⇒ (x, y + 1) ∈ E(F26).

[In fact, since the line x = c passing through these two points also
passes through O = [0, 1, 0], these points are the negatives of each
other:

−(x, y) = (x, y + 1).]

On adding the point [0, 1, 0] at infinity on the curve, it follows that
N is odd.

The points defined over F2, F22 , F23 give subgroups of E(F26:

E(F2) ⊂ E(F22) ⊂ E(F26), E(F2) ⊂ E(F23) ⊂ E(F26).

We start by looking at the smaller groups, since this will probably
give useful information about the large group.

F2 By inspection the curve E(F2) contains the points (1, 0), (1, 1),
together with the point at infinity. Thus

E(F2) = Z/(3).

F22 If x = 0 the equation becomes

y2 + y + 1 = 0.

This polynomial is irreducible over F2, but has two roots in
F22, since we could take

F22 = F2[x]/(x2 + x + 1).

We know that the number of points on the curve is divisible
by 3 (since E(F2) = Z/(3) is a subgroup). So there is at least
one more point, with x ∈ F22 \ F2.
But in fact, as we have seen, if there is one such point for a
given x then there are two.
This implies that both values of x must provide 2 new points,
giving 9 points in all.
[Concretely, the elements of F22 \ F2 are the roots of

x2 + x + 1 = 0.



If one root is ω then the other is ω2.
The 9 points on the curve are:

(0, ω), (0, ω2), (1, 0), (1, 1), (ω, 0), (ω, 1), (ω2, 0), (ω2, 1),

together with the point [0, 1, 0] at infinity.]
It follows that

E(F22) = Z/(9) or Z/(3)⊕ Z/(3).

To distinguish between these, we use a little geometry to iden-
tify the points of order 3 on the curve.
A point P on an elliptic curve has order 3 if and only if it is
a point of inflexion, ie the tangent at P meets the curve in 3
points P, P, P . For 2P = −Q, where Q is the point where the
tangent meets the curve again. Thus

3P = 0 ⇐⇒ 2P = −P ⇐⇒ Q = P,

ie the tangent meets the curve again at P .
The tangent at P = (x, y) is

y = mx + c,

where m = dy/dx. In our case

(2y + 1)
dy

dx
= 3x2,

ie

m = x2.

This meets the curve where

(mx + c)2 + (mx + c) = x3 + 1.

If the roots of this cubic are x1, x2, x3 then

x1 + x2 + x3 = m2.

Thus

3P = 0 ⇐⇒ 3x = m2

⇐⇒ x = x4

⇐⇒ x3 = 1,



if we ignore the case x = 0 (which we know from E(F2) does
actually give 2 points of order 3).
But we know (from Lagrange’s Theorem) that

x ∈ F×23 =⇒ x3 = 1.

We conclude that all the points on E(F22) are of order 3, and
so

E(F22) = Z/(3)⊕ Z(3).

F23 The map
θ : x 7→ x3 : F23 → F23

has ker θ = {1} (since the group has order 8). Thus each
element of F23 has a unique cube root.
It follows that the equation, which can be written

x3 = y2 + y + 1,

has a unique solution for each y. Thus there are 8 + 1 = 9
points on the curve; and so

E(F23) = Z/(9) or Z/(3)⊕ Z/(3).

But as we saw in the case F22, the point P = (x, y) is of order
3 if and only if x = 0 or x3 = 1.
As we just saw, if x ∈ F×23 then

x3 = 1 =⇒ x = 1 =⇒ y = 0 or 1.

Thus there are just 2 points of order 3 on E(F23), namely
E(F2) \O, and so

E(F23) = Z/(9).

Now let us turn to E(F26). Since

E(F22) ∩ E(F22) = E(F2)

it follows that the subgroup

E(F22) + E(F22) = Z/(3)⊕ Z/(9).

(This is the only one of the 3 abelian groups of order 33 with
subgroups Z/(9) and Z/(3)⊕ Z/(3)).

In particular, if E(F26 has N points then

27 | N.



Also, by Hasse’s theorem,

|N − 65| ≤ 2
√

64 = 16,

49 ≤ N ≤ 81.

ie

Since N is odd, it follows that

N = 81 = 34.

There are three possibilities:

E(F26) = Z/(27)⊕Z/(3) or Z/(9)⊕Z/(9) or Z/(9)⊕Z/(3)⊕Z/(3).

The first two of these groups have 32−1 elements of order 3, while
the last has 33 − 1 = 26.

As we have seen, if P = (x, y) then

3P = 0 ⇐⇒ x = 0 or x3 = 1.

Thus the only points of order 3 are the 8 in E(F22), ruling out the
third group.

To distinguish between the first 2 cases, let us determine the num-
ber of points of order 9.

We have seen that if P = (x, y) ∈ E(F26) then

2P = (x4, y1) =⇒ 4P = (x16, y2)

=⇒ 8P = (x64, y3).

But
x64 = x

for all x ∈ F26. Hence
8P = ±P

for all points on the curve. Now

8P = P =⇒ 7P = 0

is impossible (since the group has order 34). We conclude that

9P = 0

for all P ∈ E(F25).

Hence
E(F26) = Z/(9)⊕ Z/(9).

[That was much more difficult than intended!]


