Finite Fields

Exercises on Chapter 3

Exercise 3

In questions $1-8, V$ is a vector space of dimension 3 over \mathbb{F}_{2}.

* 1. How many elements are there in V ?
** 2. How many linear maps $\alpha: V \rightarrow V$ are there?
** 3. How many of these maps are surjective?
** 4. How many vector subspaces does V have?
** 5. Is there a linear map $\alpha: V \rightarrow V$ satisfying $\alpha^{2}+I=0$?
** 6 . Which linear maps $\alpha: V \rightarrow V$ commute with every linear map $\beta: V \rightarrow V$?
** 7. How many linear maps $\alpha: V \rightarrow V$ have trace 0 and determinant 1?
*** 8. Are any two such linear maps similar?
*** 9. Show that the subsets of a set X form a ring of characteristic 2 if we set $U+V=$ $(U \backslash V) \cup(V \backslash U)$ and $U \times V=U \cap V$. What are the zero and identity elements in this ring?
*** 10. Is this ring a field for any set X ?

