Finite Fields (Coding Theory I)

Sample Exam

April 1990

Answer as many questions as you can; all carry the same number of marks.

The term 'field' means commutative field.

1. Prove that the multiplicative group $F^{\times}=F-\{0\}$ of a finite field F is cyclic.
Find all generators of $\mathbf{G F}(\mathbf{1 3})^{\times}$.
Listing the elements of $\mathbf{G F}(\mathbf{1 6})$ in any way you wish, define the addition and multiplication in this field.
2. Show that the number of elements in a finite field is necessarily a primepower p^{n}; and prove that there exists just one finite field $\mathbf{G F}\left(\mathbf{p}^{\mathbf{n}}\right)$ of each such order, up to isomorphism.
3. What is meant by saying that a polynomial over a field is prime (or irreducible)?

State and prove the Prime Factorisation Theorem for polynomials over a field.

Show that if $f(x)$ is a prime polynomial of degree d over $\mathbf{G F}\left(\mathbf{p}^{\mathbf{d}}\right)$, then

$$
f(x) \mid x^{p^{d}}-x .
$$

Hence or otherwise show that if there are $N(d, p)$ prime polynomials of degree d over $\mathbf{G F}\left(\mathbf{p}^{\mathbf{n}}\right)$ then

$$
\sum_{d \mid n} d N(d, p)=p^{n}
$$

Determine the number of prime polynomials of degree 6 over $\mathbf{G} \mathbf{F}(\mathbf{2})$, and find one of them.
4. Let F be a finite field. Define the prime subfield of F, and its characteristic; and show that the characteristic is always a prime.
Show that if F is a finite field of characteristic p then the map

$$
\pi: x \mapsto x^{p}
$$

is an automorphism of F; and show that the automorphism group of F is a finite cyclic group generated by π.

Prove that F has possesses at least one normal basis over its prime subfield, consisting of an element of F and all its conjugates (transforms under automorphisms).
5. Show that it is always possible to construct a binary (n, k) linear code with minimum distance d provided that

$$
k \leq n\left(1-H\left(\frac{d-2}{n-1}\right)\right) \quad \text { for large } n
$$

where $H(\lambda)$ is the entropy function

$$
H(\lambda)=\lambda \log _{2}(1 / \lambda)+(1-\lambda) \log _{2}(1 /(1-\lambda))
$$

6. Why has a Hamming code a length n which is odd?

Show how a Hamming code can be extended to have length $(n+1)$ and even parity, using the $(7,4)$ code as an example. How does this extension affect the minimum distance?

What are the syndromes corresponding to simple bit errors of the $(7,4)$ and $(8,4)$ codes?
7. Define a BCH code in terms of the roots of the generating polynomial, and prove its distance properties.
Give an example of a BCH code with minimal distance $d=7$. root of $\left(x^{3}+x+1\right)$ over $\left.\mathbf{G F}(\mathbf{2})\right)$. The vector $\left(1, \alpha^{2}, \alpha^{2}, \alpha^{4}, \alpha^{5}, \alpha^{5}, \alpha^{3}\right)$ was received from a communication channel. By calculating the syndromes $S_{1}, S_{2}, S_{3}, S_{4}$ and solving the equations

$$
\begin{aligned}
& S_{3}+\sigma_{1} S_{2}+\sigma_{2} S_{1}=0 \\
& S_{4}+\sigma_{1} S_{3}+\sigma_{2} S_{2}=0
\end{aligned}
$$

where $\sigma(x) \equiv x^{2}+\sigma_{1} x+\sigma_{2}$ has as roots the error locators X_{1}, X_{2}; find the locations and the values of the errors, and hence reconstruct the transmitted vector.

