Theoretical issues with staggered fermion simulations

Stephan Dürr

based on work together with

Christian Hoelbling (Wuppertal) Urs Wenger (DESY Zeuthen)

Lattice 05, Dublin, July 25-30, 2005

- $\hat{D} = \mathrm{i}\gamma_{\mu}p_{\mu} + O(p^2)$
- $D_{
 m st}, D_{
 m ov}$ have no additive mass renormalization, but $D_{
 m W}$ has
- $\gamma_5 D_{\mathrm{W,ov}} \gamma_5 = D_{\mathrm{W,ov}}^{\dagger}$ and $\eta_5 D_{\mathrm{st}} \eta_5 = D_{\mathrm{st}}^{\dagger} \Longrightarrow \det(D) \ge 0$
- $\operatorname{spec}(D_{\operatorname{na}}) = \operatorname{spec}(D_{\operatorname{st}}) \otimes I_2$ (would be I_4 in 4D)

Controversy in a nutshell

- In 4D the staggered action yields 4 "tastes" in the continuum, and 3 of these must be excised from ones physical predictions.
- The way how this is done is (in general) different for valence and sea quarks.
- Naively, that difference should leave no trace in the continuum limit.

Question: Is QCD with $N_f = 2+1$ staggered quarks fundamentally correct ? [Is it physics from first principles or just a (phenomenologically successful) model of QCD ?]

- In the fundamental theory taste splitting may be suppressed through various tricks (improved glue, filtering, RG blocking, ...).
- In the effective theory taste splitting effects may be parametrized and thus "taken away" (approximately) for a variety of observables.

From a conceptual viewpoint either of these improvements is immaterial; if the staggered approach is correct, it yields the right continuum limit for arbitrary observables without any of these.

- \oplus : Prove that QCD with $N_f = 2 + 1$ staggered quarks is in the right universality class.
- \ominus : Find a single observable where the staggered answer, after continuum extrapolation, is wrong.

- Review: staggered action and taste representation
- Problem: rooting versus locality
- Free case: four constructions
- Interacting theory: $spec(D_{st})$ in 4D
- Interacting theory: χ_{sca}, χ_{top} in 2D
- Correlation of $det^{1/N_t}(D_{st,m})$ and $det(D_{ov,m})$
- Low-energy unitarity and SXPT
- Summary

Review: staggered action

$$S_{\rm na} = rac{a^3}{2} \sum_{x,\mu} \, ar{\psi}(x) \, \gamma_\mu \left[U_\mu(x) \psi(x + \hat{\mu}) - U^\dagger_\mu(x - \hat{\mu}) \psi(x - \hat{\mu})
ight]$$

 \longrightarrow Naive action describes 4 (2D) or 16 (4D) fermions (in general: 2^d) in the continuum.

$$\psi(x) = \gamma(x)\chi(x) \qquad \bar{\psi}(x) = \bar{\chi}(x)\gamma(x)^{\dagger} \qquad \gamma(x) = \gamma_1^{x_1}\gamma_2^{x_2}\gamma_3^{x_3}\gamma_4^{x_4} \qquad \eta_{\mu}(x) = (-1)^{\mu < \nu}$$

$$S_{\rm na/st} = \frac{a^3}{2} \sum_{x,\mu} \bar{\chi}(x) \eta_{\mu}(x) \left[U_{\mu}(x)\chi(x+\hat{\mu}) - U_{\mu}^{\dagger}(x-\hat{\mu})\chi(x-\hat{\mu}) \right]$$

 \longrightarrow The 2 (2D) or 4 (4D) components (in general: $2^{d/2}$) decouple.

 \longrightarrow Downgrade to one component, i.e. to 2 (2D) or 4 (4D) "tastes" (in general: $N_t = 2^{d/2}$).

 \implies KS procedure "thins out d.o.f.", but distributes/intertwines spinor and taste.

$$\chi(x) \to e^{\mathrm{i}\theta_A \eta_5(x)} \chi(x) \qquad \bar{\chi}(x) \to e^{-\mathrm{i}\theta_A \eta_5(x)} \bar{\chi}(x) \qquad (m = 0)$$

 \longrightarrow Remainder of $SU(2^{d/2})_A$ in taste space is sufficient to forbid additive mass renormalization. \implies Further (exact) "thinning" impossible, since resulting spectrum is non-degenerate.

-

Review: taste representation

 N_f staggered fields $\chi = u, d, s, ...$ with 4 tastes each; hypercubic decomposition $\chi(x, x+a\hat{1}, ..., x+a\hat{1}+a\hat{2}+a\hat{3}+a\hat{4}) \rightarrow q(X)$ collects $2^{d/2}$ tastes with $2^{d/2}$ components each in one "blocked node".

With $\{X\} = \{N\}b$ and b = 2a the free action takes the form

$$S_{
m st} = b^4 \sum_{X,\mu} \bar{q}(X) \left[
abla_{\mu}(\gamma_{\mu} \otimes I) - rac{b}{2} riangle_{\mu}(\gamma_5 \otimes au_{\mu} au_5)
ight] q(X)$$

with (spinor \otimes taste), $\tau_\mu\!=\!\gamma_\mu^*,\!\tau_5\!=\!\gamma_5$ and the blocked first/second derivative

$$(\nabla_{\mu}q)(X) = \frac{q(X+b\hat{\mu}) - q(X-b\hat{\mu})}{2b}$$
$$(\triangle_{\mu}q)(X) = \frac{q(X+b\hat{\mu}) - 2q(X) + q(X-b\hat{\mu})}{b^2}$$

→ In taste basis the <u>taste interactions</u> stem from a dim=5 Wilson-like term. → Do they go away with $a \rightarrow 0$ without any trace ? (order of limits?)

Interacting theory:

x-space: different tastes (and individual components of each) see <u>slightly different local gauge field</u>. *p*-space: gluons with $p \sim \pi/a$ may kick field from one taste to another (flavor exact with N_f fields). \longrightarrow Identification staggered=physical flavor may work only, if taste interactions minimized/eliminated.

SD, C.Hoelbling, PRD 69, 034503 (2004) [hep-lat/0311002]

Problem: rooting versus locality

Marinari, Parisi, Rebbi (1981):

"On the lattice the action $S_G - \frac{1}{4} \operatorname{tr} \log(D_{st})$ will produce a violation of fundamental axioms, but we expect the violation to disappear in the continuum limit and then recover the theory with a single fermion."

• With any undoubled Dirac operator, e.g. $D = D_{\rm W}$, one has

$$Z|_{N_{f}} = \int D[U, \bar{\psi}, \psi] \ e^{-S_{G}[U] - \sum \int \bar{\psi} D\psi} = \int D[U] \ \det^{N_{f}}(D) \ e^{-S_{G}[U]}$$

• With a 4-flavor Dirac operator like $D_{\rm st}$, one may formally define

$$Z|_{N_{\!f}} = \int\!\! D[U] \, \det^{N_{\!f}/4}(D_{
m st}) \, e^{-S_G[U]}$$

but it is not clear whether there is a 1-taste operator D_{ca} such that

$${
m det}^{1/4}(D_{
m st}) = \int\!\! D[ar{\psi},\!\psi] \; e^{-\int\!ar{\psi} D_{
m ca}\psi}$$

(B) Full QCD

To guarantee locality/causality of arbitrary Green's functions (thus to discuss renormalizability and universality) a "candidate" operator D_{ca} should exist with K.Jansen, NPPS 129, 3 (2004) [hep-lat/0311039]

(1)
$$\det(D_{ca}) \xrightarrow{a\downarrow 0} \operatorname{const} \cdot \det^{1/4}(D_{st})$$

(2) $||D_{ca}(x,y)|| < C e^{-\nu |x-y|/a}$ with C, ν independent of U .

• naive rooting of $D_{ m st}$

 $D_{\rm st}$ is a normal operator ($[D_{\rm st}, D_{\rm st}^{\dagger}] = 0$), hence $D_{\rm st} = \sum_{\lambda} \lambda \psi(x) \psi^{\dagger}(y) = U \Lambda U^{\dagger}$ with U unitary (R/L-eigenvectors in columns) and Λ diagonal, thus $f(D_{\rm st}) = U f(\Lambda) U^{\dagger}$.

 $\implies D_{\rm st}^{1/2}, D_{\rm st}^{1/4}$ (in 2D, 4D) unacceptable, since $\hat{D} = i\gamma_{\mu}p_{\mu} + O(p^2)$ violated (and non-analytic in p).

• explicit non-locality of $(D_{ m st}^{\dagger}D_{ m st})_{ m ee}^{1/2}$

Measure of localization: $f(r) = \sup\{ ||\psi(x)||_2 | ||x-y||_1 = r \}$ where $\psi(x) = \sum D_{ca}(x, y)\eta(y)$ with η normalized random vector at y.

 \longrightarrow For <u>local</u> D_{ca} one has $f(r) \propto e^{-r/r_{loc}}$, ideally with $r_{loc} \propto a$ (in any case $\xi_{phys}/r_{loc} \rightarrow \infty$).

B.Bunk, M.DellaMorte, K.Jansen, F.Knechtli, NPB 697, 343 (2004) [hep-lat/0403022]

Rooted operator $D_{ca} = (D_{st,m}^{\dagger} D_{st,m})_{ee}^{1/2} = (-D_{st}^2 + m^2)_{ee}^{1/2} > 0$ as a first test.

 $\longrightarrow f(r)$ and $r_{\rm loc}(r)$ are finite quantities; they scale even though (for a local $D_{\rm ca}$) they should not.

 \longrightarrow Bunk et al. show: $r_{\rm loc} = fcn(r/r_0)/M_{\pi}$ in the interacting theory (numerically).

- \longrightarrow Bunk et al. show: $r_{\rm loc} = {\rm const}/m$ in the free theory (analytically).
- \longrightarrow In physical units $r_{\rm loc}$ constant under $\beta \to \infty$, thus $(D_{\rm st}^{\dagger}D_{\rm st})_{\rm ee}^{1/2}$ is <u>non-local</u>.

A.Hart, E.Müller, PRD 70, 057502 (2004) [hep-lat/0406030]

 \longrightarrow Same conclusion (of course) with improved/filtered staggered quarks.

 \implies Question: Is there <u>one</u> local D_{ca} with $det(D_{ca}) = const \cdot det^{1/4}(D_{st})$ or modulo cut-off effects ?

Free case: four candidates

In the free case $\operatorname{spec}(D_{\mathrm{st}})$ highly degenerate, thus "thinning" of d.o.f. much easier.

• D.Adams, hep-lat/0411030

In the taste basis $D_{\text{st},m} = \nabla_{\mu}(\gamma_{\mu} \otimes I_4) - \frac{b}{2} \triangle_{\mu}(\gamma_5 \otimes \tau_{\mu}\tau_5) + m(I_4 \otimes I_4)$ on the blocked lattice may be used to build an operator which is simultaneously diagonal in spinor \otimes taste

$$D_{\mathrm{st},m}^\dagger D_{\mathrm{st},m} = [-
abla^2 + rac{b^2}{4} riangle^2 + m^2](I_4 \otimes I_4) \; .$$

On the blocked lattice a free generalized Wilson operator $D_{{
m ca},m}=
abla_{\mu}\gamma_{\mu}+rac{b}{2}W+m$ yields

$$D_{\mathrm{ca},m}^{\dagger}D_{\mathrm{ca},m}=[-
abla^2+\left(rac{b}{2}W+m
ight)^2
ight](I_4\!\otimes\!1)\;.$$

With $\det(D_{\mathrm{st},m}^{\dagger}) = \det(D_{\mathrm{st},m})$ and $\det(D_{\mathrm{W},m}^{\dagger}) = \det(D_{\mathrm{W},m})$ it follows that

$$\frac{b^2}{4}\Delta^2 + m^2 = \left(\frac{b}{2}W + m\right)^2 \implies \det^{1/4}(D_{\mathrm{st},m}) = \det(D_{\mathrm{ca},m}) \ .$$

 $\implies D_{\mathrm{ca},m} = \nabla_{\mu}\gamma_{\mu} + \sqrt{\frac{b^2}{4}\Delta^2 + m^2} \quad \text{(in the free theory, on the <u>blocked</u> lattice)}$ $\longrightarrow \quad r_{\mathrm{loc}} = \sqrt{\frac{8a}{m}} \xrightarrow{a\downarrow 0} 0 \quad \text{(i.e. <u>local</u>, but requires <math>m > 0$)}

F.Maresca, M.Peardon, hep-lat/0411029

On the blocked lattice a free 1-taste operator $D_{ca} = i\gamma_{\mu}P_{\mu} + Q$ with local (i.e. not ultra-local) P_{μ}, Q yields $\det(D_{ca}) = \det^{1/4}(D_{st})$, if $D_{ca}^{\dagger}D_{ca} \otimes I_{4}^{taste} = D_{st}^{\dagger}D_{st}$. With $P_{\mu} = P_{\mu}^{\dagger}, Q = Q^{\dagger}$ trivial in spinor space and $[P_{\mu}, Q] = 0$ one thus requires that $D_{ca}^{\dagger}D_{ca} = P_{\sigma}P_{\sigma} + Q^{2} \stackrel{(!)}{=} [-\Delta + \frac{b^{2}}{4}\Delta^{2}] \otimes I_{4}^{spinor}$.

Ansatz:

$$egin{aligned} P_{\mu} &= \sum\limits_{r\geq 0}\sum\limits_{|d|\leq r}\omega_{p,\mu}^{r}(x,y)\ Q &= \sum\limits_{r\geq 0}\sum\limits_{|d|\leq r}\omega_{q}^{r}(x,y)\ ext{where }\omega_{p,\mu}^{r},\omega_{q}^{r} ext{ have range }r. \end{aligned}$$

Solution 1:

Without further constraints, optimizing locality of $D_{\rm ca}$ yields spectrum and fall off pattern of $\omega_{p,\mu}^r, \omega_q^r$ shown on the left.

Solution 2:

Ditto, but restriction to $Q = -\triangle R$ with local R yields spectrum and (slower) fall off pattern shown on the right and

 $\{D_{\rm ca}, \gamma_5\} = D_{\rm ca} \, 2R\gamma_5 \, D_{\rm ca}.$

[Sol. 1 for m > 0 even better localized.]

• Y.Shamir, PRD 71, 034509 (2005), hep-lat/0412014

Main idea: Improve taste symmetry through RG blocking. Infinitely many blocking steps would achieve $D_n \rightarrow D_\infty \otimes I_4$, while D_{ca} after n steps satisfies $\det^{1/4}(D_{st}) = \det(D_{ca}) \det^{1/4}(T)$ where T contains only cut-off excitations and should maintain Symanzik class, i.e. $\det(T) = \operatorname{const} \cdot (1+O(a^2))$.

Note: If one is satisfied with a = 0.4 fm for D_{ca} (optimistic view), then original lattice with $a \sim 0.1 \text{ fm}$ allows for 2 steps; for 5 steps original lattice must have $a \sim 0.01 \text{ fm}$ (cf. talk by F. Maresca).

The massless staggered action on the original lattice satisfies $\{D_0, (\gamma_5 \otimes \tau_5)\} = 0$ or equivalently $(\gamma_5 \otimes \tau_5) D_0(\gamma_5 \otimes \tau_5) = D_0^{\dagger}$. After $n \ge 1$ RG steps (parameter α_n) one has the generalized GW relation

$$\{D_n^{-1}, (\gamma_5 \otimes \tau_5)\} = \operatorname{const} \cdot \delta_{x,y}$$
 or $\{D_n, (\gamma_5 \otimes \tau_5)\} = D_n \frac{2}{\alpha_n} (\gamma_5 \otimes \tau_5) D_n$.

If one could establish $(\gamma_5 \otimes \tau_5)$ -hermiticity of D_n , one would easily obtain $D_n + D_n^{\dagger} = D_n \frac{2}{\alpha_n} D_n^{\dagger}$, i.e. spectrum on a circle. With $D_n = \sum_j \lambda_j u_j v_j^{\dagger}$ and $v_i^{\dagger} u_k = \delta_{i,k}$, upon sandwiching $v_i^{\dagger} (\text{GW}) u_k$, one obtains $\lambda_i v_i^{\dagger} (. \otimes .) u_k + v_i^{\dagger} (. \otimes .) u_k \lambda_k = \lambda_i v_i^{\dagger} \frac{2}{\alpha_n} (. \otimes .) u_k \lambda_k$ and thus for arbitrary pair (i,k) of L,R-eigenmodes v_i^{\dagger}, u_k that $v_i^{\dagger} (\gamma_5 \otimes \tau_5) u_k = 0$ or $\lambda_i + \lambda_k - \frac{2}{\alpha_n} \lambda_i \lambda_k = 0$. In particular for i = k it follows that $v_j^{\dagger} (\gamma_5 \otimes \tau_5) u_j \neq 0$ implies $2\lambda_j - \frac{2}{\alpha_n} \lambda_j^2 = 0$ or $\lambda_j \in \{0, \alpha_n\}$.

- J.Giedt, hep-lat/0507002 Similar concepts exploratory discussion of interacting case.
- H.Neuberger, PRD 70, 097504 (2004), hep-lat/0409144 Issue cast into local field-theoretical framework in 6D.

concept of filtering

- Replace covariant derivative, e.g. $U_{\mu}(x)\psi(x+\hat{\mu}) \psi(x) \rightarrow U_{\mu}^{\text{HYP}}(x)\psi(x+\hat{\mu}) \psi(x)$.
- Redefines (diminishes) cut-off effects without changing Symanzik class, i.e. $O(a^2) \rightarrow O(a^2)$.
- Designed to render $D_{
 m st}$ "immune" against $p\,{\sim}\,\pi/a$ gluons, impact on taste "symmetry" ?
- chirality of low-lying eigenmodes

 $A. Has enfratz, \ http://www.rccp.tsukuba.ac.jp/lat03/Dat/OHP/a. has enfratz.ps$

near-degeneracy of staggered quartets

E.Follana, NPPS 140, 141 (2005) [hep-lat/0409062]

- \longrightarrow Near-zero modes have chirality $|\zeta^{\dagger}\gamma_5\zeta| \simeq 1$, non-zero modes have $\psi^{\dagger}\gamma_5\psi \simeq 0$.
- → Approximate index theorem for staggered fermions (once taste "symmetry" visible).

comparing with overlap spectrum on individual configurations

SD, C.Hoelbling, U.Wenger, PRD 70, 094502 (2004) [hep-lat/0406027]

 \longrightarrow Filtering pushes λ_{st} out and pulls $\hat{\lambda}_{ov}$ in (in general: drives $Z_S \rightarrow 1$).

- \longrightarrow Manifest staggered quartet to single overlap mode correspondence (modulo different Z_S factor).
- \implies In particular: 4|q| staggered near-zero modes on (typical) configuration with overlap charge q.

cut-off dependence of taste-splitting

SD, C.Hoelbling, U.Wenger, PRD 70, 094502 (2004) [hep-lat/0406027]

→ On matched lattices taste "symmetry" (quartet near-degeneracy) improves with $a \rightarrow 0$. → Rescaling with Z_S^{ov}/Z_S^{st} : quantitative agreement of staggered quartet with single overlap mode. ⇒ Explicit tests passed by D_{ov} (index theorem, RMT agreement, Banks-Casher, ...) transfer to D_{st} .

• explicit check that $\langle \lambda_i \rangle / \langle \lambda_j \rangle$ agrees with RMT prediction

E.Follana, A.Hart, C.T.H.Davies, PRL 93, 241601 (2004) [hep-lat/0406010]

 \longrightarrow Sectoral $\langle \lambda_i \rangle / \langle \lambda_j \rangle$ agrees with RMT prediction (up to small finite volume effects ?).

• explicit check that $\mathsf{CED}(\lambda_{\min})$ agrees with RMT prediction

→ On fine enough lattices (and with filtering) agreement with RMT for individual topological sectors.

• evidence that taste-splitting is $O(a^2)$ effect

E.Follana, A.Hart, C.T.H.Davies, Q.Mason, hep-lat/0507011

 \implies Minimal a for taste breaking to possibly be $O(a^2)$ effect seems enlarged through filtering.

Interacting theory: χ_{sca}, χ_{top} in 2D

- In 2D rooting issue exists for $N_f = 1, 3, ...$, since D_{st} yields 2 fermions in the continuum.
- In 2D scale may be set through fundamental coupling: [g] = [e] = 1 (no UV running), $\beta = 1/(ag)^2$.
- Analytic $N_f = 1$ result: $\lim_{m=0} \langle \bar{\psi}\psi \rangle / g = e^{\gamma} / (2\pi^{3/2}) = 0.1599...$ $\begin{pmatrix} \text{anomaly induced} \\ J.Schwinger (1962) \end{pmatrix}$

overlap fermions
$$(\rho = 1)$$
:staggered fermions: $\frac{\chi_{\text{sca}}^{\text{ov}}}{g} = \frac{\sqrt{\beta}}{V} \frac{\langle \det^{N_f}(D_m^{\text{ov}}) \sum \frac{1}{\hat{\lambda} + m} \rangle}{\langle \det^{N_f}(D_m^{\text{ov}}) \rangle}$ (bare) $\frac{\chi_{\text{sca}}^{\text{st}}}{g} = \frac{\sqrt{\beta}}{2V} \frac{\langle \det^{N_f/2}(D_m^{\text{st}}) \sum \frac{1}{\hat{\lambda} + m} \rangle}{\langle \det^{N_f/2}(D_m^{\text{st}}) \rangle}$ (bare) $\det(D_m^{\text{ov}}) = \prod ((1 - \frac{m}{2})\lambda + m)$ $\det(D_m^{\text{st}}) = \prod (\lambda + m)$ $\hat{\lambda} = \frac{1}{(1/\lambda - 1/2)}$ (=stereogr. proj.)

- Sample quenched, compute all λ [LAPACK] and build observables (variable m) in analysis program.

- In plots below theory is unitary (at least with $D_{\rm ov}$); we use $m_{\rm sea} = m_{\rm val}$ throughout. —
- Details in SD, C.Hoelbling, PRD 69, 034503 (2004) [hep-lat/0311002] & PRD 71, 054501 (2005) [hep-lat/0411022]. —

Overlap: qualitatively correct behavior $\forall N_f$, and $\lim_{m \to 0} \chi_{\text{sca}}^{N_f=1}/g$ consistent with 0.1599... for $\beta \ge 4$. Staggered: qualitatively wrong behavior in chiral limit for $N_f = 0,1$, since $\lim_{m \to 0} \chi_{\text{sca}}/g = 0$ for any β , but filtering shifts point where staggered answer fails more chiral (rel. to taste splitting ?).

Question: can one obtain $\chi_{sca}/e = 0.1599...$ with staggered fermions, if one first extrapolates to the continuum, taking $m \rightarrow 0$ afterwards ?

• $\chi_{ m sca}$ with $D_{ m st}$ and $D_{ m ov}$ in the continuum

 \implies Staggered fermions see chiral anomaly, but only if $\lim_{a\to 0}$ is taken first and $\lim_{m\to 0}$ thereafter.

• $\chi_{
m sca}$ with $D_{
m st}$ and $D_{
m ov}$ in hybrid mode

→ Warning for all "hybrid action" studies:

Deficiencies of $D_{\rm st}$ in sea/valence sector may overwhelm good properties of $D_{\rm ov}$ in other sector.

 \implies Failure of χ_{scal} in staggered $N_t = 1$ case <u>cannot be attributed to sea or valence sector alone</u>.

• $\chi_{ m sca}$ with $D_{ m st}$ and $D_{ m ov}$ in the quenched case

Reminder:
$$\chi_{\rm sca}/e \propto \begin{cases} e/m & (N_f=0) \\ m/e & (N_f=2) \end{cases}$$

→ Even in the quenched theory a staggered non-commutativity (in an artificial observable) found. Earlier paper: J.Smit, J.C.Vink, NPB 286, 485 (1987).

>> Non-commutativity not genuinely tied to rooted determinant, more likely due to mismatch in sea and valence sector; compare discussion in C.Bernard, PRD 71, 094020 (2005) [hep-lat/0412030].

•
$$\chi_{
m top}$$
 with $D_{
m st}$ and $D_{
m ov}$ at $eta\!=\!4$

$$\chi_{\rm top}^{\rm ov} = \frac{\beta}{V} \frac{\langle \det^{N_f}(D_m^{\rm ov})q^2 \rangle}{\langle \det^{N_f}(D_m^{\rm ov}) \rangle} \qquad \chi_{\rm top}^{\rm st} = \frac{\beta}{V} \frac{\langle \det^{N_f/2}(D_m^{\rm st})q^2 \rangle}{\langle \det^{N_f/2}(D_m^{\rm st}) \rangle} \qquad q = \begin{cases} \text{ ind} = -\frac{1}{2} \text{tr}(\gamma_5 D_{\rm ov}) \\ \frac{1}{2\pi} \int F_{12} d^2 x \end{cases}$$

Overlap: <u>small</u> $O(a^2)$ effects, fairly insensitive to filtering (overlap yields good IR \leftrightarrow UV separation). Staggered: <u>large</u> $O(a^2)$ effects, increase towards chiral limit, substantially reduced through filtering.

• $\chi_{
m top}$ with $D_{
m st}$ and $D_{
m ov}$ in the continuum

 $\text{Matched lattices: } \beta = 1.8, 3.2, 5.0, 7.2, 9.8 \text{ with } L = 12, 16, 20, 24, 28 \text{ yields } LM_{\eta'} \big|_{N_{\!f}\!=\!1,m\!=\!0} \simeq 5.$

 \rightarrow Staggered extrapolation much steeper than with overlap (different scales).

- ----- Combined fit with several filtering levels yields cost-effective continuum extrapolation.
- \implies Results for $\chi_{\text{top}}^{N_f=1}$ suggest <u>universal continuum limit</u>, in spite of $\det^{1/2}(D_{\text{st}})$.
- \longrightarrow Similar agreement in other continuum extrapolated quantities, e.g. for $F_{\rm HQ}$.

Correlation of $\frac{1}{2}\log \det(D_{\mathrm{st},m})$ and $\log \det(D_{\mathrm{ov},m})$ in 2D

Determinant ratio: $\frac{\lambda_1 \lambda_2 \dots}{\lambda'_1 \lambda'_2 \dots} \Big|_{\text{ov}} \simeq \frac{\gamma_1 \gamma_2 \dots}{\gamma'_1 \gamma'_2 \dots} \Big|_{\text{st}}$? ($\gamma_k = \sqrt{\lambda_{2k-1} \lambda_{2k}}$ geometric staggered mean)

 \rightarrow At fixed quark mass $\det^{1/2}(D_{\text{st},m}^{1\text{APE}})$ in 2D generates ensemble that is <u>closer</u> to the one from $\det(D_{\text{ov},m}^{1\text{APE}})$ than the latter would be to $\det(D_{\text{ov},m}^{\text{none}})$, and the agreement improves with β . \implies Maybe, $D_{\text{ov},m}$ is a "candidate" operator with $\det(D_{\text{ca},m}) = \text{const} \cdot \det^{1/2}(D_{\text{st},m})(1+O(a^2))$.

Low-energy unitarity and SXPT

continuum chiral perturbation theory (XPT)

Observation: In QCD with $p \ll 1 \, \text{GeV}$ chiral symmetry constrains interactions of low-energy degrees of freedom with each other and with heavier particles (e.g. nuclei).

Consider $\pi\pi$ forward scattering (s=0, I=0)at low momentum:

J.Gasser, H.Leutwyler, Ann.Phys. 158, 142 (1984), NPB, 250, 465 (1985)

staggered chiral perturbation theory (SXPT)

Taste splitting makes most $d(\gamma_5 \otimes T)u$ combinations become non-Goldstone bosons:

W.J.Lee, S.R.Sharpe, PRD 60, 114503 (1999) [hep-lat/9905023]

Assumption: With N_f flavors of (4-taste) quark fields the pattern of SSB is $SU(4N_f)_L \times SU(4N_f)_R \rightarrow SU(4N_f)_V$ leading to $16N_f^2 - 1$ pseudo-Goldstone bosons, collected in the 12×12 matrix ($N_f = 3$)

$$U = e^{i\Phi/f} \qquad \Phi = \begin{pmatrix} \Phi_u & \pi^+ & K^+ \\ \pi^- & \Phi_d & K^0 \\ K^- & \bar{K}^0 & \Phi_s \end{pmatrix} = \sum_{a,b=1}^{9,16} \Phi^{ab} \frac{\lambda^a}{2} T^b \qquad M = \begin{pmatrix} m_u I_4 & 0 & 0 \\ 0 & m_d I_4 & 0 \\ 0 & 0 & m_s I_4 \end{pmatrix}$$

that transforms as $U
ightarrow V_L U V_R^\dagger$ under chiral rotations with unitary V_L, V_R .

With $f \simeq 122 \text{ MeV}$ and $\Sigma \simeq (270 \text{ MeV})^3$ the LO-Lagrangian (counting scheme $p^2 \sim m \sim a^2$) reads

$$L = \frac{f^2}{8} \operatorname{tr}(\partial_{\mu}U\partial_{\mu}U^{\dagger}) - \frac{\Sigma}{2} \operatorname{tr}(MU + MU^{\dagger}) + \frac{2m_0^2}{3}(\Phi_{u,\mathrm{TS}} + \Phi_{d,\mathrm{TS}} + \Phi_{s,\mathrm{TS}}) + a^2 V_{\mathrm{TB}}$$

C.Aubin, C.Bernard, PRD 68, 034014 (2003) [hep-lat/0304014] & PRD 68, 074011 (2003) [hep-lat/0306026] and allows for systematic treatment of quantities covered by XPT, e.g. $M_{\pi}, f_{\pi}, M_{K}, f_{K}$.

\oplus SXPT analysis includes taste breaking effects.

- \oplus Overall fits with horrific covariance matrices ("fitting herds of elephants") yield acceptable χ^2 /d.o.f.
- \oplus Some tests [$N_t = 1.28(12)$ per flavor, SXPT logs] successful, more [e.g. Sharpe, van de Water] to come.
- \ominus What about physical observables not covered by (S)XPT ?
- ⊖ Unphysical tastes excised from predictions, but differently in valence and sea sector (unitarity?).

Summary

- Full QCD with $N_f = 2+1$ staggered fermions is controversial, since the Boltzmann weight $\det^{1/4}(D_{st})$ assumes a taste symmetry which is only approximate.
- Formally, the taste symmetry breaking is due to a dimension 5 Wilson-type term in the taste basis and should thus go away in the continuum limit.
- Weak coupling, filtering, RG blocking reduce the taste splitting and give staggered quarks more appealing features, but there is no guarantee that <u>no trace is left¹</u> in the continuum.
- One legal 1-flavor D_{ca} with $\det(D_{ca}) = \operatorname{const} \cdot \det^{1/4}(D_{st})(1+O(a^2))$ is sufficient to re-interpret existing MILC ensembles as being generated with a **local** action.
- The problem of (exact) **unitarity** in the fundamental theory remains, unless same D_{ca} is used in valence sector, too. Otherwise "partially quenched" situation with unitarity restored with $a \rightarrow 0$?

¹Caveat: at least in some theories the cases m=0 and m>0 might be different in this respect.