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• D̂ = iγµpµ +O(p2)

• Dst, Dov have no additive mass renormalization, but DW has

• γ5DW,ovγ5 = D†
W,ov and η5Dstη5 = D†

st =⇒ det(D)≥0

• spec(Dna) = spec(Dst)⊗ I2 (would be I4 in 4D)
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Controversy in a nutshell

• In 4D the staggered action yields 4 “tastes” in the continuum, and
3 of these must be excised from ones physical predictions.

• The way how this is done is (in general) different for valence and sea quarks.
• Naively, that difference should leave no trace in the continuum limit.

Question: Is QCD with Nf=2+1 staggered quarks fundamentally correct ?

[Is it physics from first principles or just a (phenomenologically successful) model of QCD ?]

– In the fundamental theory taste splitting may be suppressed through various

tricks (improved glue, filtering, RG blocking, ...).

– In the effective theory taste splitting effects may be parametrized and thus

“taken away” (approximately) for a variety of observables.

From a conceptual viewpoint either of these improvements is immaterial; if the staggered approach

is correct, it yields the right continuum limit for arbitrary observables without any of these.

⊕: Prove that QCD with Nf=2+1 staggered quarks is in the right universality class.

ª: Find a single observable where the staggered answer, after continuum extrapolation, is wrong.
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• Review: staggered action and taste representation

• Problem: rooting versus locality

• Free case: four constructions

• Interacting theory: spec(Dst) in 4D

• Interacting theory: χsca , χtop in 2D

• Correlation of det1/Nt(Dst,m) and det(Dov,m)

• Low-energy unitarity and SXPT

• Summary
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Review: staggered action

Sna =
a3

2

∑

x,µ

ψ̄(x) γµ [Uµ(x)ψ(x+µ̂)− U †µ(x−µ̂)ψ(x−µ̂)]

−→ Naive action describes 4 (2D) or 16 (4D) fermions (in general: 2d) in the continuum.

ψ(x) = γ(x)χ(x) ψ̄(x) = χ̄(x)γ(x)
†

γ(x) = γ
x1
1 γ

x2
2 γ

x3
3 γ

x4
4 ηµ(x) = (−1)

∑

µ<ν
xν

Sna/st =
a3

2

∑

x,µ

χ̄(x) ηµ(x) [Uµ(x)χ(x+µ̂)− U †µ(x−µ̂)χ(x−µ̂)]

−→ The 2 (2D) or 4 (4D) components (in general: 2d/2) decouple.

−→ Downgrade to one component, i.e. to 2 (2D) or 4 (4D) “tastes” (in general: Nt = 2d/2).

=⇒ KS procedure “thins out d.o.f.”, but distributes/intertwines spinor and taste.

χ(x)→ eiθA η5(x)χ(x) χ̄(x)→ e−iθA η5(x)χ̄(x) (m=0)

−→ Remainder of SU(2d/2)A in taste space is sufficient to forbid additive mass renormalization.

=⇒ Further (exact) “thinning” impossible, since resulting spectrum is non-degenerate.
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Review: taste representation

Nf staggered fields χ=u,d,s,... with 4 tastes each; hypercubic

decomposition χ(x, x+a1̂, ..., x+a1̂+a2̂+a3̂+a4̂)→ q(X)

collects 2d/2 tastes with 2d/2 components each in one “blocked node”.

With {X}={N}b and b=2a the free action takes the form

Sst = b
4
∑

X,µ

q̄(X) [∇µ(γµ⊗I)−
b

2
4µ(γ5⊗τµτ5)] q(X)

with (spinor⊗taste), τµ=γ∗µ,τ5=γ5 and the blocked first/second derivative

(∇µq)(X) = q(X+bµ̂)− q(X−bµ̂)
2b

(4µq)(X) = q(X+bµ̂)− 2q(X)+ q(X−bµ̂)
b2

.

=⇒ In taste basis the taste interactions stem from a dim=5 Wilson-like term.

−→ Do they go away with a→0 without any trace ? (order of limits?)
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Interacting theory:

x-space: different tastes (and individual components of each) see slightly different local gauge field.

p-space: gluons with p∼π/a may kick field from one taste to another (flavor exact with Nf fields).
−→ Identification staggered=physical flavor may work only, if taste interactions minimized/eliminated.

S.Dürr, ITP Bern Lattice 05, Dublin, July 25-30, 2005 5/32



0 1 3
-0.5

0

0.5
|q|=0

0 1 3
# smearing steps

staggered
overlap

|q|=4

0 1 3

|q|=1

0 1 3

see text

SD, C.Hoelbling, PRD 69, 034503 (2004) [hep-lat/0311002] (Schwinger model, β = 4.0, 202)
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Problem: rooting versus locality

Marinari,Parisi,Rebbi (1981):

“On the lattice the action SG−1
4tr log(Dst) will produce a violation of fundamental axioms, but we expect

the violation to disappear in the continuum limit and then recover the theory with a single fermion.”

• With any undoubled Dirac operator, e.g. D=DW, one has

Z|Nf =

∫

D[U,ψ̄,ψ] e
−SG[U ]−∑

∫

ψ̄Dψ
=

∫

D[U ] det
Nf (D) e

−SG[U ]
.

• With a 4-flavor Dirac operator like Dst, one may formally define

Z|Nf =

∫

D[U ] det
Nf/4(Dst) e

−SG[U ]

• but it is not clear whether there is a 1-taste operator Dca such that

det
1/4

(Dst) =

∫

D[ψ̄,ψ] e
−

∫

ψ̄Dcaψ .

(A) Quenched QCD: quark loops neglected

(B) Full QCD

To guarantee locality/causality of arbitrary Green’s functions (thus to discuss renormalizability and

universality) a “candidate” operator Dca should exist with K.Jansen, NPPS 129, 3 (2004) [hep-lat/0311039]

(1) det(Dca)
a↓0−→ const·det1/4(Dst)

(2) ||Dca(x, y)|| < C e−ν|x−y|/a with C, ν independent of U.
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• naive rooting of Dst

Dst is a normal operator ( [Dst, D
†
st ] = 0 ), hence Dst =

∑

λ λψ(x)ψ
†(y) = UΛU †

with U unitary (R/L-eigenvectors in columns) and Λ diagonal, thus f(Dst) = Uf(Λ)U †.

−2 −1 0 1 2 3
−2

−1

0

1

2

Re(λ)

Im
(λ

)

 
D

st
 
D

st
1/2

 
D

st
1/4

 
(D

st
+ D

st
)
ee
1/4

 

=⇒ D
1/2
st ,D

1/4
st (in 2D, 4D) unacceptable, since D̂=iγµpµ+O(p

2) violated (and non-analytic in p).
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• explicit non-locality of (D†
stDst)

1/2
ee

Measure of localization: f(r) = sup{ ||ψ(x)||2
∣

∣ ||x−y||1 = r } where
ψ(x) =

∑

Dca(x, y)η(y) with η normalized random vector at y.

−→ For local Dca one has f(r)∝e−r/rloc, ideally with rloc∝a (in any case ξphys/rloc →∞).

B.Bunk, M.DellaMorte, K.Jansen, F.Knechtli, NPB 697, 343 (2004) [hep-lat/0403022]
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Rooted operator Dca = (D†
st,mDst,m)

1/2
ee = (−D2

st+m
2)1/2ee > 0 as a first test.

−→ f(r) and rloc(r) are finite quantities; they scale even though (for a local Dca) they should not.
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−→ Bunk et al. show: rloc = fcn(r/r0)/Mπ in the interacting theory (numerically).

−→ Bunk et al. show: rloc = const/m in the free theory (analytically).

−→ In physical units rloc constant under β →∞, thus (D†
stDst)

1/2
ee is non-local.

A.Hart, E.Müller, PRD 70, 057502 (2004) [hep-lat/0406030]
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−→ Same conclusion (of course) with improved/filtered staggered quarks.

=⇒ Question: Is there one local Dca with det(Dca)=const·det1/4(Dst) or modulo cut-off effects ?
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Free case: four candidates

In the free case spec(Dst) highly degenerate, thus “thinning” of d.o.f. much easier.

• D.Adams, hep-lat/0411030

In the taste basis Dst,m = ∇µ(γµ⊗I4)− b
24µ(γ5⊗τµτ5) +m(I4⊗I4) on the blocked lattice

may be used to build an operator which is simultaneously diagonal in spinor⊗taste

D
†
st,mDst,m = [−∇2

+
b2

4
42

+m
2
](I4⊗I4) .

On the blocked lattice a free generalized Wilson operator Dca,m = ∇µγµ + b
2W +m yields

D
†
ca,mDca,m = [−∇2

+ (
b

2
W +m)

2
](I4⊗1) .

With det(D†
st,m)=det(Dst,m) and det(D

†
W,m)=det(DW,m) it follows that

b2

4
42

+m
2
= (

b

2
W +m)

2
=⇒ det

1/4
(Dst,m) = det(Dca,m) .

=⇒ Dca,m = ∇µγµ+
√

b2

442 +m2 (in the free theory, on the blocked lattice)

−→ rloc =
√

8a/m
a↓0−→ 0 (i.e. local, but requires m>0)
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• F.Maresca, M.Peardon, hep-lat/0411029

On the blocked lattice a free 1-taste operator Dca = iγµPµ+Q with local (i.e. not ultra-local) Pµ, Q

yields det(Dca) = det1/4(Dst), if D
†
caDca⊗Itaste4 = D†

stDst. With Pµ=P
†
µ, Q = Q† trivial in spinor

space and [Pµ, Q]=0 one thus requires that D†
caDca = PσPσ +Q2 (!)

= [−4+ b2

44
2 ]⊗Ispinor4 .

Ansatz:

Pµ =
∑

r≥0

∑

|d|≤r
ωrp,µ(x, y)

Q =
∑

r≥0

∑

|d|≤r
ωrq(x, y)

where ωrp,µ, ω
r
q have range r.

Solution 1:

Without further constraints, optimizing

locality of Dca yields spectrum and fall

off pattern of ωrp,µ, ω
r
q shown on the left.

Solution 2:

Ditto, but restriction to Q=−4R with
local R yields spectrum and (slower)

fall off pattern shown on the right and

{Dca, γ5} = Dca 2Rγ5Dca.

[Sol. 1 for m>0 even better localized.]
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• Y.Shamir, PRD 71, 034509 (2005), hep-lat/0412014

Main idea: Improve taste symmetry through RG blocking. Infinitely many blocking steps would achieve

Dn→D∞⊗I4, while Dca after n steps satisfies det
1/4(Dst)=det(Dca) det

1/4(T ) where T contains

only cut-off excitations and should maintain Symanzik class, i.e. det(T )=const·(1+O(a2)).

Note: If one is satisfied with a=0.4 fm for Dca (optimistic view), then original lattice with a∼ 0.1 fm

allows for 2 steps; for 5 steps original lattice must have a∼0.01 fm (cf. talk by F.Maresca).

The massless staggered action on the original lattice satisfies {D0, (γ5⊗ τ5)} = 0 or equivalently

(γ5⊗τ5)D0(γ5⊗τ5)=D†
0. After n≥1 RG steps (parameterαn) one has the generalized GW relation

{D−1n , (γ5⊗τ5)}=const·δx,y or {Dn, (γ5⊗τ5)} = Dn

2

αn
(γ5⊗τ5)Dn .

If one could establish (γ5⊗τ5)-hermiticity ofDn, one would easily obtain

Dn+D
†
n=Dn

2
αn
D†n, i.e. spectrum on a circle.

With Dn=
∑

jλjujv
†
j and v

†
iuk=δi,k, upon sandwiching v

†
i (GW)uk,

one obtains λiv
†
i (.⊗.)uk+v

†
i (.⊗.)ukλk=λiv

†
i

2
αn
(.⊗.)ukλk and
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thus for arbitrary pair (i,k) of L,R-eigenmodes v†i ,uk that v
†
i (γ5⊗τ5)uk=0 or λi+λk− 2

αn
λiλk=0 .

In particular for i=k it follows that v†j(γ5⊗τ5)uj 6=0 implies 2λj− 2
αn
λ2j=0 or λj∈{0, αn}.

• J.Giedt, hep-lat/0507002 Similar concepts – exploratory discussion of interacting case.

• H.Neuberger, PRD 70, 097504 (2004), hep-lat/0409144 Issue cast into local field-theoretical framework in 6D.
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Interacting theory: spec(Dst) in 4D

• concept of filtering

− Replace covariant derivative, e.g. Uµ(x)ψ(x+µ̂)− ψ(x) → UHYP
µ (x)ψ(x+µ̂)− ψ(x).

− Redefines (diminishes) cut-off effects without changing Symanzik class, i.e. O(a2)→ O(a2).

− Designed to render Dst “immune” against p∼π/a gluons, impact on taste “symmetry” ?

• chirality of low-lying eigenmodes

Continuum: Dψ = λψ ⇐⇒ Dγ5ψ = −λγ5ψ and ψ†γ5ψ = 0 (for λ 6= 0).

Dζ = 0 and ζ†γ5ζ = ±1 characteristic signature of zero-modes.

A.Hasenfratz, http://www.rccp.tsukuba.ac.jp/lat03/Dat/OHP/a.hasenfratz.ps

S. Dürr, ITP Bern Lattice 05, Dublin, July 25-30, 2005 14/32



• near-degeneracy of staggered quartets

Wilson glue, a'0.1 fm Symanzik glue, a'0.1 fm
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E.Follana, A.Hart, C.T.H.Davies, PRL 93, 241601 (2004) [hep-lat/0406010]

E.Follana, NPPS 140, 141 (2005) [hep-lat/0409062]

−→ Fine lattice plus filtering makes separation into near-zero modes and non-zero modes visible.

−→ Near-zero modes have chirality |ζ†γ5ζ| ' 1, non-zero modes have ψ†γ5ψ ' 0.

=⇒ Approximate index theorem for staggered fermions (once taste “symmetry” visible).
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• comparing with overlap spectrum on individual configurations

CU 0001: staggered Nt=2 simulation (β=5.7,m=0.01→ a'0.1 fm)

orig 1 APE 3 APE 1 HYP 3 HYP
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0
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0.06

0.08
CU_0001, conf_006, ρ=1.0

overlap
staggered

SD, C.Hoelbling, U.Wenger, PRD 70, 094502 (2004) [hep-lat/0406027]

−→ Filtering pushes λst out and pulls λ̂ov in (in general: drives ZS → 1).

−→ Manifest staggered quartet to single overlap mode correspondence (modulo different ZS factor).

=⇒ In particular: 4|q| staggered near-zero modes on (typical) configuration with overlap charge q.
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• cut-off dependence of taste-splitting

Matched lattices (β=5.66,5.79,6.00,6.18, L4=64,84,124,164) with V =(1.12 fm)4=1.57 fm4.
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SD, C.Hoelbling, U.Wenger, PRD 70, 094502 (2004) [hep-lat/0406027]

−→ On matched lattices taste “symmetry” (quartet near-degeneracy) improves with a→ 0.

−→ Rescaling with Zov
S /Z

st
S : quantitative agreement of staggered quartet with single overlap mode.

=⇒ Explicit tests passed by Dov (index theorem, RMT agreement, Banks-Casher, ...) transfer to Dst.
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• explicit check that 〈λi〉/〈λj〉 agrees with RMT prediction
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4/2
4/3
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7
Q=0
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4/1
3/2

4/2
4/3

|Q|=1

2/1
3/1

4/1
3/2

4/2
4/3

|Q|=2

E.Follana, A.Hart, C.T.H.Davies, PRL 93, 241601 (2004) [hep-lat/0406010]

−→ Sectoral 〈λi〉/〈λj〉 agrees with RMT prediction (up to small finite volume effects ?).
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• explicit check that CED(λmin) agrees with RMT prediction
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K.Y.Wong, R.M.Woloshyn, PRD 71, 094508 (2005) [hep-lat/0412001]

mode 1, q=0, 1, 2, 3 q=0, quartets 1,2,3,4
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E.Follana, A.Hart, C.T.H.Davies, Q.Mason, hep-lat/0507011

=⇒ On fine enough lattices (and with filtering) agreement with RMT for individual topological sectors.
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• evidence that taste-splitting is O(a2) effect
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E.Follana, A.Hart, C.T.H.Davies, Q.Mason, hep-lat/0507011

=⇒ Minimal a for taste breaking to possibly be O(a2) effect seems enlarged through filtering.
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Interacting theory: χsca , χtop in 2D

• In 2D rooting issue exists for Nf=1, 3, ..., since Dst yields 2 fermions in the continuum.

• In 2D scale may be set through fundamental coupling: [g]=[e]=1 (no UV running), β=1/(ag)2.

• Analytic Nf=1 result: limm=0〈ψ̄ψ〉/g = eγ/(2π3/2) = 0.1599...

(

anomaly induced

J.Schwinger (1962)

)

overlap fermions (ρ=1):

χovsca
g =

√
β
V

〈detNf (Dov
m )

∑ 1
λ̂+m

〉

〈detNf (Dov
m )〉

(bare)

det(Dov
m ) =

∏

((1−m
2 )λ+m)

λ̂ = 1
(1/λ−1/2) (=stereogr. proj.)

staggered fermions:

χstsca
g =

√
β

2V

〈detNf/2(Dst
m)

∑ 1
λ+m

〉

〈detNf/2(Dst
m)〉

(bare)

det(Dst
m) =

∏

(λ+m)

− Sample quenched, compute all λ [LAPACK] and build observables (variable m) in analysis program.
− In plots below theory is unitary (at least with Dov); we use msea = mval throughout.

− Details in SD, C.Hoelbling, PRD 69, 034503 (2004) [hep-lat/0311002]& PRD 71, 054501 (2005) [hep-lat/0411022].
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• χsca with Dst and Dov at β=7.2

Continuum: χsca/g ∝







g/m (Nf=0)

const (Nf=1)

m/g (Nf=2)

(in 2D not an order

parameter of SSB)
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β=7.2, 24^2, nsmear=0 ("thin link")
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 β=7.2,  24^2, nsmear=1 ("thick link")

Overlap: qualitatively correct behavior ∀Nf , and lim
m→0

χ
Nf=1

sca /g consistent with 0.1599... for β≥4.

Staggered: qualitatively wrong behavior in chiral limit for Nf=0,1, since lim
m→0

χsca/g = 0 for any β,

but filtering shifts point where staggered answer fails more chiral (rel. to taste splitting ?).
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Question: can one obtain χsca/e=0.1599... with staggered fermions, if one

first extrapolates to the continuum, taking m→ 0 afterwards ?

• χsca with Dst and Dov in the continuum

overlap (nsmear=1) staggered (nsmear=1)
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- small cut-off effects

- for m/e≤0.3 already β≥1.8

sufficient to enter scaling window

- large cut-off effects

- for small m/e ever larger β

needed to enter scaling window
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• overlap (“universal behavior”):

lima→0 limm→0
χ′ ovsca (m/e,a2)

e = eγ

2π3/2

limm→0 lima→0
χ′ ovsca (m/e,a2)

e = eγ

2π3/2

• staggered (“non-commutativity”):

lima→0 limm→0
χ′ stsca(m/e,a

2)
e = 0

limm→0 lima→0
χ′ stsca(m/e,a

2)
e = eγ

2π3/2

=⇒ Staggered fermions see chiral anomaly, but only if lima→0 is taken first and limm→0 thereafter.
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• χsca with Dst and Dov in hybrid mode
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−→ Warning for all “hybrid action” studies:

−→ Deficiencies of Dst in sea/valence sector may overwhelm good properties of Dov in other sector.

=⇒ Failure of χscal in staggered Nt=1 case cannot be attributed to sea or valence sector alone.
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• χsca with Dst and Dov in the quenched case

Reminder: χsca/e ∝
{

e/m (Nf=0)

m/e (Nf=2)
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Chiral condensate for Nf=2
β=7.2, N=24, nsmear=1, coeff. linear piece

−→ Even in the quenched theory a staggered non-commutativity (in an artificial observable) found.

Earlier paper: J.Smit, J.C.Vink, NPB 286, 485 (1987).

=⇒ Non-commutativity not genuinely tied to rooted determinant, more likely due to mismatch in

sea and valence sector; compare discussion in C.Bernard, PRD 71, 094020 (2005) [hep-lat/0412030].
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• χtop with Dst and Dov at β=4

χ
ov
top =

β

V

〈detNf (Dov
m )q2〉

〈detNf (Dov
m )〉

χ
st
top =

β

V

〈detNf/2(Dst
m)q

2〉
〈detNf/2(Dst

m)〉
q =

{

ind=−1
2tr(γ5Dov)

1
2π

∫

F12 d
2x

nsmear=0 (“thin link”) nsmear=1 (“thick link”)
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Overlap: small O(a2) effects, fairly insensitive to filtering (overlap yields good IR↔UV separation).
Staggered: large O(a2) effects, increase towards chiral limit, substantially reduced through filtering.
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• χtop with Dst and Dov in the continuum

Matched lattices: β=1.8, 3.2, 5.0, 7.2, 9.8 with L=12, 16, 20, 24, 28 yields LMη′
∣

∣

Nf=1,m=0
' 5.

staggered overlap
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−→ Staggered extrapolation much steeper than with overlap (different scales).

−→ Combined fit with several filtering levels yields cost-effective continuum extrapolation.

=⇒ Results for χ
Nf=1

top suggest universal continuum limit, in spite of det1/2(Dst).

−→ Similar agreement in other continuum extrapolated quantities, e.g. for FHQ.
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Correlation of 1
2 log det(Dst,m) and log det(Dov,m) in 2D

Determinant ratio:
λ1 λ2 ...

λ′1 λ
′
2 ...

∣

∣

ov
' γ1 γ2 ...

γ′1 γ
′
2 ...

∣

∣

st
? (γk=

√

λ2k−1λ2k geometric staggered mean)

4-6 -4 -2 0 2 -6 -4 -2 0 2 4 -6 -4 -2 0 2 4 -6 -4 -2 0 2 4

4
2
0

-2
-4
4
2
0

-2
-4
4
2
0

-2
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st0/ov0 st1/ov1 ov1/ov0 st1/st0

β=
1.

8
β=

5.
0

β=
9.

8

−→ At fixed quark mass det1/2(D1APE
st,m ) in 2D generates ensemble that is closer to the one from

det(D1APE
ov,m ) than the latter would be to det(Dnone

ov,m), and the agreement improves with β.

=⇒ Maybe, Dov,m is a “candidate” operator with det(Dca,m) = const·det1/2(Dst,m)(1+O(a
2)) .
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Low-energy unitarity and SXPT

• continuum chiral perturbation theory (XPT)

Observation: In QCD with p¿1GeV chiral symmetry constrains interactions of low-energy

degrees of freedom with each other and with heavier particles (e.g. nuclei).

Consider ππ forward

scattering (s=0,I=0)

at low momentum:
s=0

I=0

Fππ(ν) = T
I=0

[0, 2Mπ(Mπ+ν), 2Mπ(Mπ−ν)]

= −M
2
π

F 2
π

+ O(p
4
)

Mπ,p↓0
−−−→ 0

J.Gasser, H.Leutwyler, Ann.Phys. 158, 142 (1984), NPB, 250, 465 (1985)

• staggered chiral perturbation theory (SXPT)

Taste splitting makes

most d̄(γ5⊗T )u
combinations become

non-Goldstone bosons:
-

6

(a/r0)
2

(M
π
r
0
)2

p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p

p p
p p
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p p
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p

p p p
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p p p
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p p p p p p
p p p p p

p p p p p p p p p p p p p p p p p p p p p p pu

u

u

u

u

S

V

T

A

P

W.J.Lee, S.R.Sharpe, PRD 60, 114503 (1999) [hep-lat/9905023]
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Assumption: With Nf flavors of (4-taste) quark fields the pattern of SSB is

SU(4Nf)L×SU(4Nf)R → SU(4Nf)V leading to 16Nf
2−1

pseudo-Goldstone bosons, collected in the 12×12 matrix (Nf=3)

U = e
iΦ/f

Φ =





Φu π+ K+

π− Φd K0

K− K̄0 Φs



 =

9,16
∑

a,b=1

Φ
abλ

a

2
T
b

M =





muI4 0 0

0 mdI4 0

0 0 msI4





that transforms as U → VLUV
†
R under chiral rotations with unitary VL,VR.

With f'122MeV and Σ'(270MeV)3 the LO-Lagrangian (counting scheme p2∼m∼a2) reads

L =
f2

8
tr(∂µU∂µU

†
)− Σ

2
tr(MU+MU

†
) +

2m2
0

3
(Φu,TS+Φd,TS+Φs,TS) + a

2
VTB

C.Aubin, C.Bernard, PRD 68, 034014 (2003) [hep-lat/0304014] & PRD 68, 074011 (2003) [hep-lat/0306026]

and allows for systematic treatment of quantities covered by XPT, e.g. Mπ, fπ,MK, fK .

⊕ SXPT analysis includes taste breaking effects.

⊕ Overall fits with horrific covariance matrices (“fitting herds of elephants”) yield acceptable χ2/d.o.f.

⊕ Some tests [Nt=1.28(12) per flavor, SXPT logs] successful, more [e.g. Sharpe, van de Water] to come.

ª What about physical observables not covered by (S)XPT ?

ª Unphysical tastes excised from predictions, but differently in valence and sea sector (unitarity?).
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Summary

• Full QCD with Nf=2+1 staggered fermions is controversial, since the Boltzmann weight det1/4(Dst)

assumes a taste symmetry which is only approximate.

• Formally, the taste symmetry breaking is due to a dimension 5 Wilson-type term in the taste basis and
should thus go away in the continuum limit.

• Weak coupling, filtering, RG blocking reduce the taste splitting and give staggered quarks more

appealing features, but there is no guarantee that no trace is left1 in the continuum.

• One legal 1-flavor Dca with det(Dca) = const·det1/4(Dst)(1+O(a
2)) is sufficient to re-interpret

existing MILC ensembles as being generated with a local action.

• The problem of (exact) unitarity in the fundamental theory remains, unless same Dca is used in

valence sector, too. Otherwise “partially quenched” situation with unitarity restored with a→0 ?

1Caveat: at least in some theories the cases m=0 and m>0 might be different in this respect.
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