High Precision Fundamental Constants using Lattice PT

> Quentin Mason. University of Cambridge HPQÇD Collaboration.

> > Lattice 2005

Strong Coupling and Light Quark Masses

HPOCD

Quentin Mason Ron Horgan Howard Trottier Matthew Nobes

G. Peter Lepage Christine Davies Junko Shigemitsu Matthew Wingate Alan Gray Kerryann Foley nf = 2 + I Asqtad

using MILC: fine, coarse, super-coarse

"Novel" use of both (NRQCD long-& short-distance QCD (ORQCD 1997)

(i) NPT input e.g. $\Upsilon' - \Upsilon \Rightarrow a$

(ii) Measure short-distance quantity

Wilson loop

• Characteristic scale $q^* \propto 1/a$

(iii) Use perturbation theory: $\langle \mathcal{O} \rangle = c_1 \alpha(q^*) + c_2 \alpha^2(q^*) + c_3 \alpha^3(q^*) + \dots$ (iv) Evolve $\alpha(q^*)$ to $\alpha_{\overline{MS}}(M_Z)$

Lattice PT is more difficult

- Same as regular QFT perturbation theory BUT:
 - Iattice Feynman Rules much larger
 - many more lattice Feynman Diagrams
 - lattice integrals non-analytic

Lattice PT is more difficult

 Same as regular QFT perturbation theory BUT:
lattice automiated larger
many automated Diagrams
mumerical brute force

Flexible, action and process agnostic approach. Highly automated construction, adaptive Monte-Carlo integration.

Printed b Owentin Maso quark imp Bckgrnd B2A2.C Page 2/435 Jul 12, 03 17:36 Juli 12, 03 17.30 Quark_imp_Dckgrnd_D2A2.c Page 2435 The second state of the second state o Lattice Regulator clisical.com / tag: ignor / tag: ignor / tag: ignor / tag: isner Unhappiness Fortunately, PT algebra can be automated, loop integrals done numerically

2/435 Friday August 08, 2003

Two-loop Diagrams

Vacuum Bubble Diagrams ∞ ∞ ∞ ∞ ∞ ∞

$\alpha_{\overline{\mathrm{MS}}}(M_Z)$ analysis

- NNLO perturbation theory
 - ▶ 8 different Wilson loops:

static potential @ 6 R's

 $W_{1\times 1}, W_{1\times 2}, \ldots, W_{2\times 3}, \qquad W_{\rm CC} =$

 $V(R) = -C_F \frac{\alpha_V(0.5614/R)}{R} \left[1 + \frac{\beta_0^2}{48} \alpha_V^2 + \dots \right] \begin{array}{c} \text{remove} \\ \text{perturbative} \\ \text{discretizations} \end{array}$

Simulations at 3 different lattice spacings:
a⁻¹ = 1.239(49), 1.596(30), 2.258(32) GeV
m_s brackets physical value, m_{u/d} ↓ ¹/₅m_s

Estimate systematic uncertainties, incl.
higher-order perturbative corrections
non-perturbative condensates

 $\log W_{RT} = \sum_{n=1}^{3+\dots} c_n \alpha_V^2 (d/a) - \frac{\pi}{36} a^4 (RT)^2 \langle \alpha_s F^2 \rangle + \dots$

• use NNNLO β_{V} evolve from one input: $\alpha_V(7.5 \text{ GeV})$

Thanks

to

three

0.208(4)

use constrained curve-fitting:

 $c_{n>4}=\mathcal{O}(1)$

 $\left\langle \frac{\alpha_s}{\pi} F^2 \right\rangle = (0.009 \pm 0.007) \text{ GeV}^4$ (Ioffe & Zyablyuk)

Error Budget

	$\log W_{11}$	$\log W_{13}/W_{22}$	$V(\sqrt{2}a) - V(a)$
a^{-1}	0.0008	0.0010	0.0008
$c_1 \dots c_3$	0.0001	0.0004	0.0006
c_n for $n \ge 4$	0.0008	0.0005	0.0006
$V \rightarrow \overline{MS} \rightarrow M_Z$	0.0001	0.0001	0.0001
condensate	0.0002	0.0001	0.0001
m_u, m_d, m_s	0.0003	0.0001	0.0001
m_c, m_b	0.0002	0.0002	0.0002
simulation errors	0.0000	0.0000	0.0001
total uncertainty	0.0012	0.0012	0.0012

Weighted average $\alpha_{\overline{MS}}(M_Z) = 0.1171(13)$

Result of new NNLO analysis

QJM, Trottier, Davies, Foley, Gray, Lepage, Nobes, Shigemitsu PRL, to appear

Strange Quark Mass

Strange Quark Mass

Strange Quark Mass

Results

 $M = m_0 \Big[1 + \alpha_L (A \log m_0 a + D) + \alpha_L^2 (B \log^2 m_0 a + C \log m_0 a + E) \Big],$

Take logs and differente wrt log(a), use the fact that the pole mass, M, is RG invariant, the beta-function and the anomalous dimension equation:

$$\frac{d\log m_0}{d\log a} \equiv \gamma_0 \alpha_L(a) + \gamma_1^L \alpha_L(a),$$
$$A = -\gamma_0, \qquad A = -\frac{3}{2\pi} C_2(R) = -\frac{2}{\pi}$$
$$B = \frac{1}{2} A^2 - A \frac{\beta_0}{4\pi}$$
$$C = -\gamma_1^L + A^2 - D\left(\frac{\beta_0}{2\pi} - A\right)$$

Deriving γ_1^{lat}

Can get this from the MS version:

$$\begin{aligned} \frac{\partial m_{\text{lat}}}{\partial a} &= \gamma_0 \alpha_{\text{lat}} + \left(\gamma_1^{\overline{\text{MS}}} + C_\alpha \gamma_0 - C_m \frac{\beta_0}{2\pi} \right) \alpha_{\text{lat}}^2 + \dots \\ \mu &= a^{-1} \\ \alpha_{\overline{\text{MS}}}(a^{-1}) &= \alpha_{\text{lat}} \left(1 + C_\alpha \alpha_{\text{lat}} + \mathcal{O}(\alpha^2) \right) \\ m_{\overline{\text{MS}}}(a^{-1}) &= m_{\text{lat}} \left(1 + C_m \alpha + \mathcal{O}(\alpha^2) \right) \\ \frac{\partial \alpha}{\partial \log a} &= \frac{2\beta_0}{4\pi} \alpha^2 + \mathcal{O}(\alpha^3) \qquad \beta \text{-function} \end{aligned}$$

Assumes that lattice is mass-independent scheme

Can now remove both log and double-log, and look for artifacts

Subtracting known logs

Lattice "comparison" for strange quark mass

Summary

Results:

- First with 2+1 flavours, chiral + continuum extrapolations
- Masses and coupling agree with PDG, smaller errors
- Multi-loop PT with highly improved actions
- PT: Light quark masses to 2nd order
 - Coupling constant value to 3rd order
 - - ► IR divergences at 2-loops by numerical brute force

Future:

 Next: assault on theory errors in CKM 2-loop leptonic & semileptonic *D*-decays
precision measurements @ CLEO-c