Lattice QCD with light Wilson quarks

Martin Lüscher

CERN — Theory Division

Wilson fermions

- ★ Conceptually well-founded
- ★ Non-perturbative improvement & renormalization
- ★ Fully worked out in qQCD

However, $\oint QCD$ simulations tend to be exceedingly "expensive" SESAM & T_{χ}L '98, UKQCD '99, CP-PACS '00, JLQCD '03, ... With Wilson quarks we need, say,

 $a=0.1\rightarrow 0.04\,{\rm fm}$

 $L = 2 \rightarrow 5 \,\mathrm{fm}$

 $m_{\pi} = 500 \rightarrow 200 \,\mathrm{MeV}$

⇒ large lattices & solver iteration numbers

 $48 \cdot 24^3, \ 64 \cdot 32^3, \ 96 \cdot 48^3, \ \ldots$

 $10^3 - 10^4$ applications of $D \hspace{-.05cm}/$ per source field

Algorithms should be designed to work well in this regime!

Domain-decomposition methods

- Schwarz-preconditioned solver
- ♦ HMC on a block-decomposed lattice

M.L. '03 [JHEP 0305 (2003) 052; CPC 156 (2004) 209; CPC 165 (2005) 199] Del Debbio, Giusti, M.L., Petronzio & Tantalo '05 [in preparation]

Hasenbusch acceleration

◇ HMC & PHMC with polynomial preconditioner

Hasenbusch '01 [PLB 519 (2001) 177]; Hasenbusch & Jansen '03 [NPB 659 (2003) 299]; Urbach, Jansen, Shindler & Wenger '05 [hep-lat/0506011] \rightarrow parallel talk by Urbach

Domain decomposition

- In general the benefits are
- ★ Parallel efficiency
- ★ Scale separation
- ★ Softer scaling behaviour

	Γ	•	٠	٠	٠	٠	٠	•	•	٠	•	٠	•	•	•	٠	٠	٠	٠	•	٠	٠	٠	٠	(
		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	,
			•	•								•									•	•		•	
		•	•	•	•	•	•		•	•		•		•	•	•	•	•	•		•	•	•	•	
		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
		•	٠	٠	٠	٠	٠	•	•	٠	٠	٠	•	•	٠	٠	٠	٠	٠	•	•	٠	٠	٠	4
	l	•	٠	٠	٠	٠	٠	•	٠	٠	٠	٠	٠	•	٠	٠	٠	٠	٠	•	٠	٠	٠	٠	
	ſ	•	•	•	•	٠	•	•	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	٠	•	٠	•	٠	
		•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	(
		•		•	•																				
		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
		•	•	٠	•	•	•	•	٠	٠	•	٠	٠	•	•	•	•	•	•	•	٠	٠	٠	٠	
	l	•	٠	٠	٠	٠	•	•	٠	٠	٠	٠	٠	•	٠	٠	٠	٠	•	•	٠	٠	٠	٠	
	ſ	•	٠	٠	٠	٠	٠	٠	•	٠	٠	٠	٠	•	٠	٠	٠	٠	٠	•	٠	٠	٠	٠	
		•	•	•	٠	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	
		•	•	•						•								•				•		•	
			-		-								-												
		•	•	•	•	•	•		•	•	•	•		•	•	•	•	•	•		•	•	•	•	
		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
	L	•	٠	٠	٠	٠	٠	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	٠	٠	٠	٠	1
		•	٠	٠	٠	٠	•	•	•	٠	•	٠	٠	٠	٠	٠	٠	٠	•	•	٠	٠	٠	٠	1
1		•	•	•	٠	•	•	•	٠	٠	٠	•	٠	•	٠	٠	٠	•	•	•	٠	٠	•	•	
0 5 f		•	•	•	•	•	•		•	•	•	•		•	•	•	•	•	•		•	•	•	•	,
v.5 im																									
		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
	7	-	-		-		-						-				-		-						

The classical DD method is the Schwarz Alternating Procedure

Hermann Amandus Schwarz 1870:

Dirichlet problem in complicated domains

Widely used as a preconditioner in engineering (fluid dynamics etc.) ... and now also in lattice QCD!

see Y. Saad: Methods for Sparse Linear Systems, SIAM 2003, for example

The properties of QCD we shall exploit are

(a) Asymptotic freedom

Dirichlet b.c. on the blocks imply

 $q \geq \pi/l > 1\,{\rm GeV}$

 \Rightarrow easy to simulate at all quark masses

(b) Ellipticity of the Dirac operator

$$\frac{\delta^2 S_{\text{eff}}}{\delta A^a_\mu(x) \delta A^b_\nu(y)} = 2 \operatorname{tr} \{ T^a \gamma_\mu S(x, y) T^b \gamma_\nu S(y, x) \}$$
$$\sim |x - y|^{-6}$$

⇒ blocks are approximately decoupled

Block decomposition of the Dirac operator

black blocks: Ω

white blocks: Ω^*

exterior boundaries: $\partial \Omega$, $\partial \Omega^*$

 $\operatorname{black}\Lambda$

$$D = \frac{1}{2} \{ \gamma_{\mu} (\nabla_{\mu}^{*} + \nabla_{\mu}) - \nabla_{\mu}^{*} \nabla_{\mu} \} + m_{0}$$
$$= D_{\Omega} + D_{\Omega^{*}} + D_{\partial\Omega} + D_{\partial\Omega^{*}}$$
$$D_{\Omega} = \sum D_{\Lambda}, \qquad D_{\Omega^{*}} = \sum D_{\Lambda}$$

white Λ

	· · · ·											
	0	0	0	0	0	0	0	0	0	0	0	•
	0	٠	٠	٠	٠	0	•	٠	٠	٠	٠	0
	0	٠	٠	٠	٠	0	•	٠	٠	٠	٠	0
	0	•	•	•	•	0	0	٠	٠	٠	٠	•
	0	٠	٠	•	•	0	•	٠	٠	٠	٠	•
	0	0	0	0	0	0	0	٥	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0
	0	٠	٠	٠	٠	•	0	٠	٠	٠	٠	0
	•	٠	٠	٠	٠	•	0	•	•	٠	•	0
0 0	0	٠	٠	٠	•	•	0	•	•	•	•	0
0 0	•	٠	٠	٠	٠	•	0	•	•	٠	•	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	0	0	0	0	0	0	0	0	0	0	0
0 0	0	0	0	0	0	0	0	0	0	0	0	0
0 0	0	٠	٠	•	•	0	•	٠	٠	٠	٠	•
0 0	0	٠	٠	٠	•	0	•	٠	٠	٠	٠	•
0 0	0	•	•	•	•	0	0	•	٠	•	٠	•
0 0	0	•	•	•	•	0	0	•	٠	•	٠	0
0 0	0	0	0	0	0	0	0	0	0	0	0	0
• •	0	0	0	0	0	0	0	0	0	0	0	0
• •	0	٠	٠	٠	٠	•	0	•	•	•	•	0
• •	•	٠	٠	٠	٠	•	0	٠	•	٠	•	0
• •	•	•	٠	٠	•	•	0	•	•	٠	•	0
• • • • • • • • • • • • • • •	0	٠	٠	٠	٠	•	0	•	•	•	•	0
	0	0	0	0	0	٥	0	0	0	0	0	0

The quark determinant factorizes into

$$\det D = \prod_{\operatorname{blocks}\Lambda} \det \hat{D}_{\Lambda} \times \det R$$

eo preconditioned, Dirichlet b.c.

where the block interaction is given by

$$R: \mathcal{H}_{\partial\Omega^*} \to \mathcal{H}_{\partial\Omega^*}$$
$$R = 1 - P_{\partial\Omega^*} D_{\Omega}^{-1} D_{\partial\Omega} D_{\Omega^*}^{-1} D_{\partial\Omega^*}$$

Note that

$$R^{-1} = 1 - P_{\partial \Omega^*} D^{-1} D_{\partial \Omega^*}$$

 $\mathcal{H}_{\partial\Omega^*}$: quark fields on $\partial\Omega^*$

For $N_{\rm f}=2$ flavours

$$S_{\rm pf} = \sum_{\rm blocks\,\Lambda} \|\hat{D}_{\Lambda}^{-1}\phi_{\Lambda}\|^2 + \|R^{-1}\chi\|^2$$

where χ is defined on $\partial \Omega^*$ and ϕ_Λ on the even sites in Λ

We now

- evolve only the active link variables in the blocks and
- translate the gauge field after each trajectory by a random vector

Fermion forces

$$\frac{\mathrm{d}}{\mathrm{d}t}U(x,\mu) = \Pi(x,\mu)U(x,\mu)$$
$$\frac{\mathrm{d}}{\mathrm{d}t}\Pi(x,\mu) = -F_{\mathrm{G}}(x,\mu) - F_{\mathrm{A}}(x,\mu) - F_{R}(x,\mu)$$

Example

 $32\cdot 16^3$ lattice, 8^4 blocks $\beta=5.3,\ c_{\rm sw}=1.9095$ $a\sim 0.1\,{\rm fm},\ m\sim 14-70\,{\rm MeV}$

This behaviour is not unexpected since

(a) F_{Λ} is protected by the b.c. (asymptotic freedom)

(b) F_R is suppressed by propagators (*ellipticity*)

 $F_R(x,\mu) =$

$$2\operatorname{Re}\left(R^{-1}\chi, D^{-1}\delta^{U}_{x,\mu}DD^{-1}D_{\partial\Omega^{*}}\chi\right)$$

Leap-frog integration

Sexton & Weingarten '92; Peardon & Sexton '02

Choose integration step-sizes $\varepsilon_0, \varepsilon_1, \varepsilon_2$ such that

 $\varepsilon_0 \|F_{\mathcal{G}}\| \simeq \varepsilon_1 \|F_{\Lambda}\| \simeq \varepsilon_2 \|F_{R}\|$

For example

 $\mathbf{\epsilon}_1 = 4 \, \mathbf{\epsilon}_0, \quad \mathbf{\epsilon}_2 = 5 \, \mathbf{\epsilon}_1$

 \Rightarrow F_R is the most "expensive" but least-often computed force

Simulations Del Debbio, Giusti, M.L., Petronzio, Tantalo [CERN-Tor Vergata] $N_{\rm f} = 2$, Wilson action Trajectory length $\tau = 0.5$ \Rightarrow (link path length) = 0.53 Schwarz-preconditioned solver Residues $10^{-7} \dots 10^{-11}$ \Rightarrow reversibility $|(U' - U)_{ij}| < 10^{-9}$

lattice	β	κ	$\sim m/m_{\rm s}$	block size	τ/ε_2	$N_{\rm traj}$	$P_{\rm acc}$
$32 \cdot 24^3$	5.6	0.15750	0.93	$8 \cdot 6^2 \cdot 12$	5	6400	0.80
		0.15800	0.48		6	9500	0.80
		0.15825	0.30		10	9400	0.86
		0.15835	0.17		16	5000	0.91

Simulations performed on 8 nodes (16 Xeon processors) at the ITP Bern

Large-lattice runs

lattice	eta	κ	$\sim m/m_{ m s}$	block size	$ au/arepsilon_2$	$N_{ m traj}$	$P_{\rm acc}$
$64 \cdot 32^3$	5.8	0.15410	0.75	$16 \cdot 8^3$	8	5000	0.86
		0.15440	0.38		10	5050	0.89

Simulations performed on 32 + 32 nodes at the Fermi Institute

The lattice spacing is

$$\left. \begin{array}{ccc} a \sim 0.080 \, \mathrm{fm} & \text{at} & \beta = 5.6 \\ a \sim 0.064 \, \mathrm{fm} & \text{at} & \beta = 5.8 \end{array} \right\} L \simeq 2 \, \mathrm{fm}$$

(Setting $r_0 = 0.5 \,\mathrm{fm}$ at the point where $r_0 m_\pi = 1.26$)

Chiral behaviour of m_π and F_π

SU(2) ChPT predicts

$$m_\pi^2 = M^2 R_\pi, \quad M^2 = 2Bm$$

$$R_{\pi} = 1 + \frac{M^2}{32\pi^2 F^2} \ln(M^2 / \Lambda_{\pi}^2) + \dots$$

where, in real-world QCD,

$$\ln(\Lambda_{\pi}^2/M^2)\Big|_{M=140\,\mathrm{MeV}} \simeq 2.9 \pm 2.4$$

Gasser & Leutwyler '84

 $\Rightarrow R_{\pi} \simeq \text{constant} = 0.956(8) \text{ in}$ the range $M = 200 - 500 \,\text{MeV}$

Within errors and up to $m_{\pi} \sim 500 \,\mathrm{MeV}$, the data are compatible with 1-loop ChPT

Large-lattice experiences

- ★ Similar step numbers as on the small lattices
- ★ Runs are very stable
- ★ Long effective-mass plateaus

Performance figures & timings

A comparison of algorithms is non-trivial since

- their efficiency depends on the lattice parameters, the program and the computer
- there are many tunable parameters
- *it is generally difficult to determine the relevant auto-correlation times reliably*

A purely algorithmic cost figure is

$$\nu = 10^{-3} (2N_2 + 3) \tau_{\text{int}}[P], \quad N_2 = \tau/\varepsilon_2$$

 $\nu\simeq 5-29$ in previous HMC simulations [SESAM, UKQCD, CP-PACS, \ldots]

lattice	β	$c_{ m sw}$	am	$ au_{ m int}[P]$	ν	_
$32 \cdot 16^3$	5.3	1.9095	0.035	56(26)	0.84(39)	·)
			0.021	14(4)	0.27(8)	preliminary
			0.011	21(6)	0.40(11)	f preminary
			0.007	17(5)	0.39(12)	J
$32 \cdot 24^3$	5.6	0.0	0.027	53(22)	0.69(29)	
			0.014	33(11)	0.50(17)	
			0.009	27(10)	0.62(23)	
			0.006	21(5)	0.74(18)	
$64 \cdot 32^3$	5.8	0.0	0.019	16(3)	0.30(6)	
			0.011	13(2)	0.30(5)	

Timings

Accepted trajectories per day using 8 and 32 nodes

Note that
$$\frac{64 \cdot 32^3}{32 \cdot 24^3} = 4.74$$

Conclusions

Numerical simulations of LQCD with light Wilson quarks are much less "expensive" than previously estimated!

 \Rightarrow it is now possible to reach the chiral regime on large lattices

Example

 $96 \cdot 48^3$ lattice, $12^2 \cdot 8^2$ blocks

 $a = 0.06 \,\mathrm{fm}, \, am = 0.0035, \, m_{\pi} = 270 \,\mathrm{MeV}$

To simulate this lattice, a (current) PC cluster with 288 nodes should be sufficient

The Schwarz-preconditioned HMC algorithm

- ★ works out at $a \le 0.1 \, \text{fm}$ and on large lattices, now also with O(a) improvement
- ★ scales favourably & is highly parallel
- ★ easily extends to gauge actions with 6-link terms (Iwasaki, Symanzik)

A wide range of physics questions may now be addressed, in a conceptually solid framework