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Wilson fermions

? Conceptually well-founded

? Non-perturbative improvement & renormalization

? Fully worked out in qQCD

However, q/QCD simulations tend to be exceedingly “expensive”

SESAM & TχL ’98, UKQCD ’99, CP-PACS ’00, JLQCD ’03, . . .

Lattice Conference, Dublin 25–31 July 2005



With Wilson quarks we need, say,

a = 0.1 → 0.04 fm

L = 2 → 5 fm

mπ = 500 → 200 MeV

⇒ large lattices & solver iteration numbers

48 · 243, 64 · 323, 96 · 483, . . .

103 − 104 applications of D/ per source field

Algorithms should be designed to work well in this regime!
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Domain-decomposition methods

� Schwarz-preconditioned solver

� HMC on a block-decomposed lattice

M.L. ’03 [JHEP 0305 (2003) 052; CPC 156 (2004) 209; CPC 165 (2005) 199]

Del Debbio, Giusti, M.L., Petronzio & Tantalo ’05 [in preparation]

Hasenbusch acceleration

� HMC & PHMC with polynomial preconditioner

Hasenbusch ’01 [PLB 519 (2001) 177]; Hasenbusch & Jansen ’03 [NPB 659 (2003) 299];

Urbach, Jansen, Shindler & Wenger ’05 [hep-lat/0506011] → parallel talk by Urbach
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0.5 fm

Domain decomposition

In general the benefits are

? Parallel efficiency

? Scale separation

? Softer scaling behaviour
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The classical DD method is the Schwarz Alternating Procedure

Hermann Amandus Schwarz 1870:

Dirichlet problem in complicated domains

Widely used as a preconditioner in engineering (fluid dynamics etc.)

. . . and now also in lattice QCD!

see Y. Saad: Methods for Sparse Linear Systems, SIAM 2003, for example
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The properties of QCD we shall exploit are

(a) Asymptotic freedom 0.5 fml <

Dirichlet b.c. on the blocks imply

q ≥ π/l > 1 GeV

⇒ easy to simulate at all quark masses

(b) Ellipticity of the Dirac operator

x,µ a,

y,ν, b
δ2Seff

δAa
µ(x)δAb

ν(y)
= 2 tr{T aγµS(x, y)T bγνS(y, x)}

∼ |x− y|−6

⇒ blocks are approximately decoupled
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Block decomposition of the Dirac operator

black blocks: Ω

white blocks: Ω∗

exterior boundaries: ∂Ω, ∂Ω∗

D = 1
2 {γµ (∇∗µ +∇µ )−∇∗µ∇µ}+ m0

= DΩ + DΩ∗ + D∂Ω + D∂Ω∗

DΩ =
∑

blackΛ

DΛ, DΩ∗ =
∑

whiteΛ

DΛ
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H∂Ω∗: quark fields on ∂Ω∗

The quark determinant factorizes into

det D =
∏

blocksΛ

det D̂Λ × det R

↑
eo preconditioned, Dirichlet b.c.

where the block interaction is given by

R : H∂Ω∗ → H∂Ω∗

R = 1− P∂Ω∗D
−1
Ω D∂ΩD−1

Ω∗D∂Ω∗

Note that

R−1 = 1− P∂Ω∗D
−1D∂Ω∗
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For Nf = 2 flavours

Spf =
∑

blocksΛ

‖D̂−1
Λ φΛ‖2 + ‖R−1χ‖2

where χ is defined on ∂Ω∗ and φΛ on the even sites in Λ

We now

• evolve only the active link variables

in the blocks and

• translate the gauge field after each

trajectory by a random vector
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distance from ∂Λ

Fermion forces

d
dt

U(x, µ) = Π(x, µ)U(x, µ)

d
dt

Π(x, µ) = −FG(x, µ)−FΛ(x, µ)−FR(x, µ)

Example

32 · 163 lattice, 84 blocks

β = 5.3, csw = 1.9095

a ∼ 0.1 fm, m ∼ 14− 70 MeV
m
↓
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This behaviour is not unexpected since

x

(a) FΛ is protected by the b.c. (asymptotic freedom)

(b) FR is suppressed by propagators (ellipticity)

FR(x, µ) =

2Re
(
R−1χ,D−1δU

x,µDD−1D∂Ω∗χ
)
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Leap-frog integration

Sexton & Weingarten ’92; Peardon & Sexton ’02

Choose integration step-sizes ε0, ε1, ε2 such that

ε0‖FG‖ ' ε1‖FΛ‖ ' ε2‖FR‖

For example

= 5ε2 ε1= 4ε1 ε0 ,

⇒ FR is the most “expensive” but least-often computed force
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Simulations Del Debbio, Giusti, M.L., Petronzio, Tantalo [CERN – Tor Vergata]

Nf = 2, Wilson action

Trajectory length τ = 0.5 ⇒ 〈link path length〉 = 0.53

Schwarz-preconditioned solver

Residues 10−7 . . . 10−11 ⇒ reversibility |(U ′ − U)ij| < 10−9

lattice β κ ∼ m/ms block size τ/ε2 Ntraj Pacc

32 · 243 5.6 0.15750 0.93 8 · 62 · 12 5 6400 0.80

0.15800 0.48 6 9500 0.80

0.15825 0.30 10 9400 0.86

0.15835 0.17 16 5000 0.91

Simulations performed on 8 nodes (16 Xeon processors) at the ITP Bern
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Large-lattice runs

lattice β κ ∼ m/ms block size τ/ε2 Ntraj Pacc

64 · 323 5.8 0.15410 0.75 16 · 83 8 5000 0.86

0.15440 0.38 10 5050 0.89

Simulations performed on 32 + 32 nodes at the Fermi Institute

The lattice spacing is

a ∼ 0.080 fm at β = 5.6

a ∼ 0.064 fm at β = 5.8

}
L ' 2 fm

(Setting r0 = 0.5 fm at the point where r0mπ = 1.26)
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Chiral behaviour of mπ and Fπ

SU(2) ChPT predicts

m2
π = M2Rπ, M2 = 2Bm

Rπ = 1 +
M2

32π2F 2
ln(M2/Λ2

π) + . . .

where, in real-world QCD,

ln(Λ2
π/M2)

∣∣
M=140 MeV

' 2.9± 2.4

Gasser & Leutwyler ’84

⇒ Rπ ' constant = 0.956(8) in

the range M = 200− 500 MeV

32 · 243 lattice
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32 · 243 lattice

0 0.02 0.04 0.06 0.08 (amπ)2
0

0.02

0.04

0.06

aFπ

676

484
381294

Used tadpole-improved PT for ZA and

applied 1-loop ChPT finite-volume correction

For Fπ we expect

Fπ = F − M2

16π2F
ln(M2/Λ2

F ) + . . .

ln(Λ2
F/M2)

∣∣
M=140 MeV

' 4.6± 0.9

This fits the last three points

⇒ Fπ|M=140 MeV = 80(7) MeV

Within errors and up to mπ ∼ 500 MeV,

the data are compatible with 1-loop ChPT
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Large-lattice experiences

? Similar step numbers as on

the small lattices

? Runs are very stable

? Long effective-mass plateaus
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Performance figures & timings

A comparison of algorithms is non-trivial since

• their efficiency depends on the lattice parameters,

the program and the computer

• there are many tunable parameters

• it is generally difficult to determine the relevant

auto-correlation times reliably
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A purely algorithmic cost figure is

ν = 10−3 (2N2 + 3) τint[P ], N2 = τ/ε2

ν ' 5− 29 in previous HMC simulations [SESAM, UKQCD, CP-PACS, . . .]

lattice β csw am τint[P ] ν

32 · 163 5.3 1.9095 0.035 56(26) 0.84(39)
0.021 14(4) 0.27(8)
0.011 21(6) 0.40(11)
0.007 17(5) 0.39(12)

32 · 243 5.6 0.0 0.027 53(22) 0.69(29)
0.014 33(11) 0.50(17)
0.009 27(10) 0.62(23)
0.006 21(5) 0.74(18)

64 · 323 5.8 0.0 0.019 16(3) 0.30(6)
0.011 13(2) 0.30(5)

preliminary
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Timings

Accepted trajectories per

day using 8 and 32 nodes

Note that
64 · 323

32 · 243
= 4.74
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Conclusions

Numerical simulations of LQCD with light Wilson quarks

are much less “expensive” than previously estimated!

⇒ it is now possible to reach the chiral regime

on large lattices

Example

96 · 483 lattice, 122 · 82 blocks

a = 0.06 fm, am = 0.0035, mπ = 270MeV

To simulate this lattice, a (current) PC cluster with

288 nodes should be sufficient
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The Schwarz-preconditioned HMC algorithm

? works out at a ≤ 0.1 fm and on large lattices,
now also with O(a) improvement

? scales favourably & is highly parallel

? easily extends to gauge actions with 6-link
terms (Iwasaki, Symanzik)

A wide range of physics questions may now be addressed,

in a conceptually solid framework
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