Progress in Kaon Phenomenology from Lattice QCD

Chris Dawson, RIKEN/BNL Research Center

[Lattice 2005]

Introduction

Plan:

- 1. $K \rightarrow l$ 3
 - Three new results
- 2. Twisted Boundary Conditions
- 3. B_K
 - Summary of quenched results
 - Dynamical results
 - Theoretical work.
- 4. $K \rightarrow \pi\pi$
 - Twisted mass
 - Two pion final states
 - \bullet ϵ -regime.

KI3

K_{l3} Decay

$$K^{0} \to \pi^{-}L^{+}\nu_{l} ; K^{+} \to \pi^{0}L^{+}\nu_{l}$$

where $l \in \{e, \mu\}$.

• $\Gamma_{K_{l3}} \propto |V_{us}|^2 |f_{+}(0)|^2$

$$\langle \pi(p_f) | \overline{s} \gamma_{\mu} u | K(p_i) \rangle = (p_i + p_f)_{\mu} f_+(q) + q_{\mu} f_-(q) ; q = p_i - p_f$$

ullet The most precise determination of $|V_{us}|$.

K_{l3} Decay

Calculating $f_+(0)$

• Ademollo-Gatto theorem: $f_{+}(0) = 1 - O((m_s - m_u)^2)$

Expand the form factors in Chiral Perturbation Theory:

$$f_+(q^2) = 1 + f_2 + f_4 + \cdots$$

with f_i of $O(M^i/f^i)$ in ChiPT

- \bullet f_2 :
 - f_2 depends on no new low energy constants. Can be worked out from M_K , M_π and f_π .
 - -0.023 using values from experiment.
- \bullet f_4 :
 - Calculated in Chiral Perturbation Theory by Bijnens and Talavera. In *principle*, can be constrained by the experimentally measured slope of $f_0(q^2)$, but needs better experimental resolution.
 - -0.016(8) from quark model [Leutwyler and Roos, 1984]

Calculating
$$f_+(0)$$
...

Need the error on $f_{+}(0)$ to be < 1% to be interesting.

The calculation of f_2 from ChiPT/Experiment means that theoretical approaches usually concentrate on calculating

$$\Delta f = f - 1 - f_2$$

$f_{+}(0)$ from the Lattice

First calculation: [Becirevic et al, hep-lat/0403217].

- This was a quenched calculation at a single volume and lattice spacing
- result:

$$- f_{+} = 0.960 \pm 0.005 \pm 0.007$$

- to be compared with the currently used [Leutwyler and Roos] number of
 - $-f_{+}=0.961(8)$
- I'll cover three new dynamical numbers; all applying the same approach.

$$f_{+}(0)$$
 from the Lattice...

The double ratio method

Rather than work with the three-point function of interest directly, the double ratio is used. (c.f. [Hashimito et al, 2000]).

$$\frac{\langle \pi | \overline{s} \gamma_0 u | K \rangle \langle K | \overline{u} \gamma_0 s | \pi \rangle}{\langle \pi | \overline{u} \gamma_0 u | \pi \rangle \langle K | \overline{s} \gamma_0 s | K \rangle} = \left[f_0 \left(q_{max}^2 \right) \right]^2 \frac{(M_K + M_\pi)^2}{4M_K M_\pi} \; ; \; q_{max}^2 = (M_K - M_\pi)^2$$

$$f_0(q^2) = f_+(q^2) + \frac{q^2}{M_K^2 - M_\pi^2} f_-(q^2)$$

Scalar form factor:

$$f_0(0, M_\pi, M_K) = f_+(0, M_\pi, M_K)$$

This approach has several advantages:

- Small statistical error (< 0.1%)
- Exactly unity, and exactly $f_{+}(0)$, on the lattice in SU(3) limit.
 - 1% error not as hard as it sounds

The double ratio method...

This just gives $f_0(q^2, M_\pi, M_K)$. Need to

- 1. Extrapolate, in q^2 , to $f_0(0) = f_+(0)$ at a fixed (non-physical) mass.
- 2. Extrapolate to physical masses.

For 1) lattice data with explicit insertion of momenta is needed.

- [Becirevic et al, hep-lat/0403217] show how to use various ratios to allow an extraction with a small enough error-bar to be useful.
 - requires some anzatz to fit to:

*
$$f_0(q^2) = f_0(0)/(1 - \lambda^{(pol)}q^2)$$

*
$$f_0(q^2) = f_0(0)(1 + \lambda^{(1)}q^2)$$

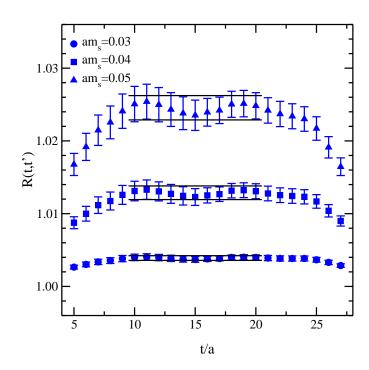
*
$$f_0(q^2) = f_0(0)(1 + \lambda^{(2)}q^2 + cq^4)$$

For 2), it's also usual to use an anzatz for the extrapolation (more later)

RBC

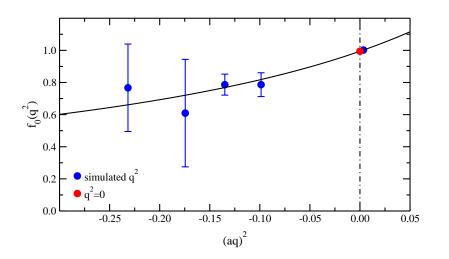
See poster by Takashi Keneko

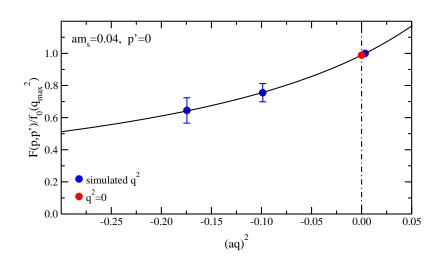
- Uses RBC $N_F = 2$ domain wall fermions lattices
 - single lattice spacing: $a^{-1} \sim 1.7 \text{GeV}$
 - small volume : $16^3 \times 32$.
 - sea quark mass = 0.02 ($\sim m_s/2$).
 - 94 configurations.



• This is the double ratio, with no momentum insertion, versus valence quark mass.

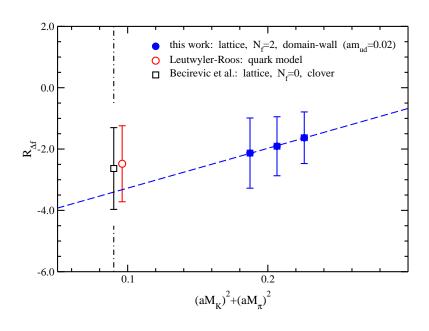
RBC...





- \bullet Comparison of the two different approaches to fitting the q^2 .
 - left: standard; right CP-PACS (see talk by Naoto Tsutsui)
- Note: a large error in the slope can be tolerated because of the point with no momentum injection, which is very close to $q^2 = 0$.
- But not the physical mass point!

RBC...



The ratio

$$R = \frac{\Delta f}{M_K^2 - M_\pi^2}$$

is assumed to have some smooth dependence on the meson masses

• Note: valence extrapolation

•
$$\Delta f = (A + B(M_K^2 + M_\pi^2))(M_K^2 - M_\pi^2)^2 : f_+(0) = 0.955(12)$$

•
$$\Delta f = (A + Bm_s)(M_K^2 - M_\pi^2)^2$$
: $f_+(0) = 0.966(6)$

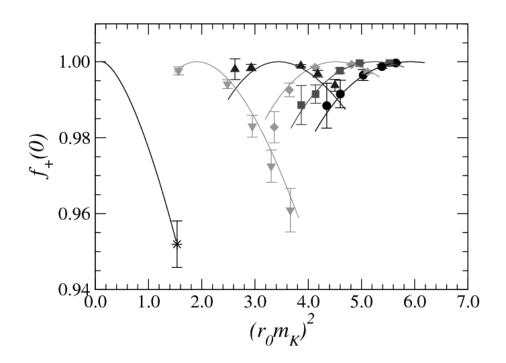
CP-PACS

See talk of Naoto Tsutsui.

- JLQCD, $N_f = 2$ ensemble
- Non-perturbatively O(a) improved Wilson quarks.
- $20^3 \times 48$, $\beta = 5.2$
- 5 quark masses: pion 500 MeV → 1000 MeV
- 1,200 configs (10 trajectory seperation)
- As mentioned before: alternative way of fitting ratios for q^2 dependence.
- Need to O(a) improve vector density when transfering momenta.

CP-PACS

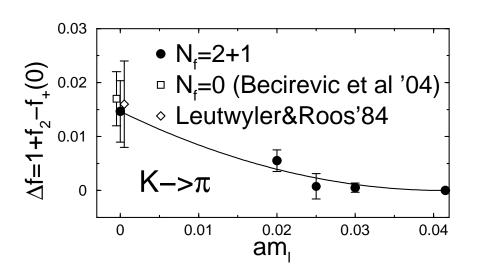
- Two different forms of the mass extrapolation tried:
 - 1. Including the f_2 log term + polynomial in masses
 - 2. No f_2 term + polynomial in masses "Quadratic"



Quadratic: 0.967(6)ChPT: 0.952(6)

Fermi-lab/HPQCD

See Okomoto, hep-lat/0412044

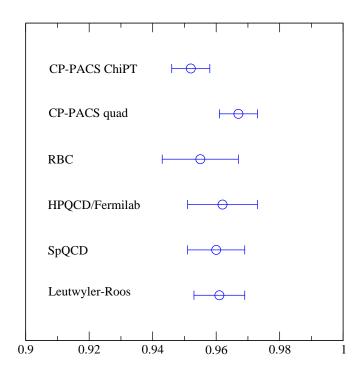


- Gauge ensemble: 2+1 flavours of Staggered quarks
- s-quark using clover improved wilson fermions, naive staggered u and d quarks.

- No data for finite momentum
 - extrapolate to $q^2=0$ using pole form and experimental result for coefficient
 - $-\lambda_{+} = 0.0278(7) \text{ (PDG)}; 0.026(2) \text{ (Becirevic)}; 0.021(2) \text{ (CP-PACS)}$
- Extrapolation to physical masses with $\Delta f = (A + Bm_l)(m_s m_l)^2$
- final answer: $f_{+}(0) = 0.962(6)(9)$

Summary of Results

- All these new lattice numbers should be considered as preliminary for various reasons.
- Quenched, $N_f = 2$, and $N_f = 2 + 1$ all agree.
 - also with the Leutwyler-Roos
- Chiral extrapolation for all measurements is over a large range.
- Lattice spacing, Volume effects small?



• Double edged sword: as you get closer to the physical masses, the momentum extrapolation gets larger.

Twisted Boundary Conditions

See talks of C. Sachrajda, A. Juttner.

• Simple to "twist" the boundary conditions for a quark

$$\psi(x_i + L) = e^{i\theta}\psi(x_i)$$

and introduce a minimum momenta for the quark ($\theta=\pi$; anti-periodic boundary conditions; minimum momenta π/L)

- Giving a minimum momentum to a pion slightly more complicated:
 - Break flavour symmetry at the boundary: different twist for different flavours (or $\overline{u}\gamma_5 d$ wouldn't change)
 - This is just a change in the boundary conditions. Finite volume effect? (More precisely: is it exponentially supressed with volume).
- Sachrajda and Villaro, hep-lat/0411033 studied twisted boundary conditions in chiral perturbation theory and found
 - 1. For physical quantities without final state interactions the flavour symmetry breaking effects are exponentially supressed with volume
 - 2. With final state interactions $(K \to \pi\pi)$ it is not generally possible.

! works partially twisted (Numerical Study Flynn, et al, hep-lat/0506016)

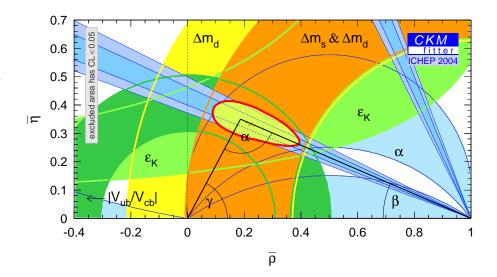
B_K : 2004 numbers

 B_K is the low energy matrix element relevant to indirect CP-violation in the $K^0 - \overline{K^0}$ system

$$|\epsilon_K| = C_{\epsilon} A^2 \lambda^6 \overline{\eta} \left[-\eta_1 S(x_c) + \eta_2 S(x_t) (A^2 \lambda^4 (1 - \overline{\rho}) + \eta_3 S(x_c, x_t)) \right] \hat{B}_K$$

 This is the CKMfitter group's plot from ICHEP 2004. The input used was

$$\hat{B}_K = 0.86 \pm 0.06 \pm 0.14$$



- PDG : $\hat{B}_K = 0.68 1.06$
- For both these results, the value quoted is the result of lattice calculations; the main error is from the use of the quenched approximation.

B_K definition

In the continuum there is one operator that contributes to B_K It if of the form:

$$O_{\Gamma} = \overline{s} \Gamma_i d \ \overline{s} \Gamma_i d$$

with the gamma structure:

$$VV + AA \equiv \gamma_{\mu} \otimes \gamma_{\mu} + \gamma_{\mu}\gamma_{5} \otimes \gamma_{\mu}\gamma_{5}$$
;

which is simply the parity conserving part of

$$(V-A)\otimes (V-A)$$

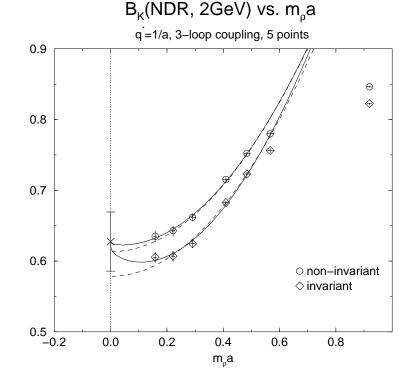
 B_K itself is defined as

$$B_K = \frac{\langle \overline{K}^0 | O_{VV+AA} | K^0 \rangle}{\frac{8}{3} m_K^2 f_K^2}$$
$$= \frac{\langle \overline{K}^0 | O_{VV+AA} | K^0 \rangle}{\frac{8}{3} \langle \overline{K}^0 | A_\mu | 0 \rangle \langle 0 | A_\mu | K^0 \rangle}$$

and is most often quoted either renormalised in the NDR, \overline{MS} scheme at 2 GeV, or as, the renormalisation group invariant, \hat{B}_K . ($\hat{B}_K \sim 1.4 B_K^{NDR,\overline{MS}}$)

Benchmark Calculation

- JLQCD (Aoki et al, 1997)
 - staggered fermions
 - 7 lattice spacings $a \sim 0.24 0.04$ fm
 - $La \sim$ 2.3 2.5fm generally volume dependance studies at two lattice spacings; $La \sim$ 1.8 3.1fm



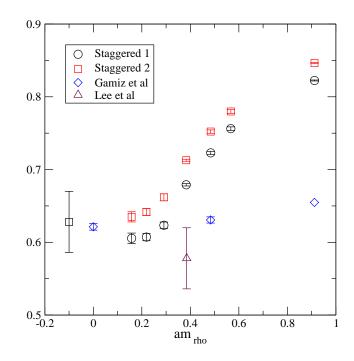
- Two lines values are from differen't operator definitions; should be same to order in perturbation theory and lattice spacing they worked...
 - $O(a^2)$ (lattice spacing errors) and $O(\alpha^2)$ (mixing errors) terms included in the fit
 - * Discretisation errors large; $O(\alpha^2)$ also large and badly constrained.

Operator Mixing and B_K : Staggered Fermions

- Mixing between different tastes causes allows many other operators to mix with the naive continuum operator.
- Standard (one-loop) mixing calculation works with four different operators which contribute the
 - VV, one colour-trace, two colour-trace
 - AA, one colour-trace, two colour-trace constructions to the matrix element, with mixing resolved to $O(\alpha)$
- This list ignores taste breaking operators, a point I'll come back to briefly – later.

Improved Staggered Results

- Two groups:
 - Gamiz et al, hep-lat/0409049
 - * Hyp smeared fermion action
 - * "Thin-link" operators
 - * statistical error only
 - W. Lee et al, hep-lat/0409047:
 - * Hyp smeared fermion action
 - * One-loop perturbation theory
 - * Error dominated by estimate of neglected $O(\alpha^2)$ terms.



- Evidence of good scaling
- Large error-bar on renormalised value, estimate of error due to neglected $O(\alpha^2)$ terms in mixing calculation.

Improved Staggered Results...

• The final result from W. Lee et al is

$$B_K(\overline{MS}, 2 \text{ GeV}) = 0.578 \pm 0.018 \pm 0.042$$

- First error: statistics + chiral extrapolation
- Second error: using one-loop renormalisation factors.
- Worth understanding the (large) size of this last error:
 - The perturbative calculation used

$$\alpha_s(q^* = 1/a) = 0.192$$

Simply estimating the truncation error to be of order $\pm 1 \times (\alpha_s(q^*))^2$ gives a $\sim 4\%$ error.

- The actual error quoted is around a factor of two larger, due to taking the largest deviation due to seperately varying the coeffcient of the four different operators by terms of order $\pm 1 \times (\alpha_s(q^*))^2$.

Operator Mixing and B_K : Broken Chiral Symmetry

 If chiral symmetry is broken, four other operators can mix (the four other possible gamma matrix structures)

$$\langle \overline{K}^0|O_{VV+AA}|K^0
angle_{\mathsf{latt}} \propto \langle \overline{K}^0|O_{VV+AA}|K^0
angle_{\mathsf{ren}} + \sum_{i\geq 2} c_i \langle \overline{K}^0|O_{MIX,i}|K^0
angle_{\mathsf{ren}}$$

These operators, of course, have a different chiral structure.

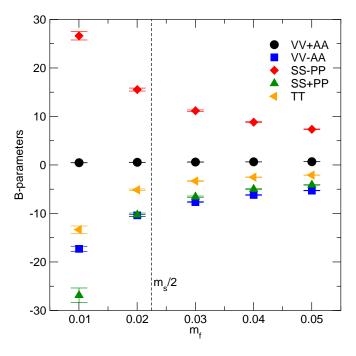
Mixing is hard to control using perturbation theory; First order chiral perturbation theory predicts that

$$\langle \overline{K}^0 | O_{VV+AA} | K^0 \rangle \propto M_k^2$$

and,

$$\langle \overline{K}^0 | O_{\rm THE~REST} | K^0 \rangle \propto {\rm constant}$$

small enough mass, wrong chirality operators will dominate.

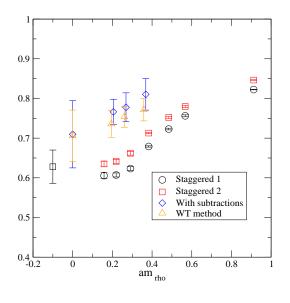


Wilson Fermions

- 1. Subtract the other operators using (non-perturbatively extracted) mixing coefficients
- 2. Use Chiral Ward-Takahashi identities to relate the matrix element of interest to that it's parity partner

$$2\langle KO_{VV+AA}K\rangle = 2m \int d^4x \langle P_5(x)KO_{VA+AV}K\rangle + O(a) + \cdots$$

 \bullet O_{VA+AV} renormalises multiplicatively (discrete symmetries).



- ← Becirevic *et al*, hep-lat/0005013, hep-lat/0407004
 - Both methods have large error-bars
 - variant of the latter: twisted mass...

Twisted Mass: Maximal Twist

Frezzotti et al, hep-lat/0101001

 \bullet Twisted u and d quarks, standard (Wilson) s:

$$\mathcal{L}_{f} = \overline{\psi} \left(\mathcal{D} + m + i \mu_{q} \gamma_{5} \tau^{3} \right) \psi + \overline{s} \left(\mathcal{D} + m_{s} \right) s$$

$$\psi = (u, d)$$

• In terms of twisted fields, $\Psi'=e^{i\alpha\gamma_5\tau^3/2}\psi$

$$O'_{VV+AA} = cos(\alpha)O_{VV+AA} - isin(\alpha)O_{VA+AV}$$

– For $\alpha = \frac{\pi}{2}$ (maximal twist),

$$O'_{VV+AA} = -iO_{VA+AV}$$

- * multiplicatively renormalisable
- * u,d lattice spacing errors cancel; errors still start at O(a) (strange).
- * non-degenerate easy, but can't take strange quark mass too low

Twisted Mass : $\alpha = \pi/4$

Twisted s and d quarks:

$$O'_{VV+AA} = \cos(2\alpha)O_{VV+AA} - i\sin(2\alpha)O_{VA+AV}$$

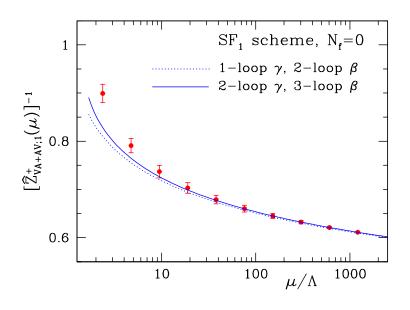
- Take $\alpha = \pi/4$ for multiplicative renormalisation
 - not at maximal twist : no "magic" cancellation of O(a) errors
 - no exeptional configurations
 - -s, d degenerate (not a problem in quenched).

Frezzotti and Rossi, hep-lat/0407002 and talk of Frezzotti

Although I wont show any results for it, it is possible to calculate B_K with full O(a) improvement using twisted mass

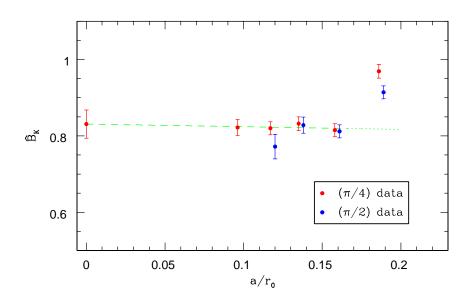
Twisted Mass Renormalisation (Alpha Collaboration)

Non-perturbative renormalisation calculation using the schrodinger functional technique. Guagnelli *et al*, hep-lat/0505002, hep-lat/0505003 and talk by Stefan Sint.



- Gauge invariant
 - don't have to worry about gribov copies
- uses finite volume scheme; $\mu = 1/L$
- Matched in perturbation theory to the continuum at large μ .
- work in massesless limit.
 - dirichlet boundary conditions in time direction.

Twisted Mass Results (Alpha Collaboration)

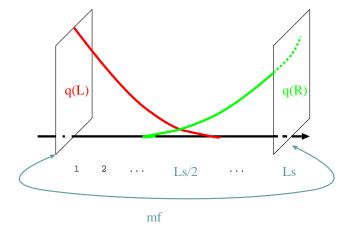


- Wilson gauge: $\beta = 6 6.45$
- Zero/Small extrapolation to physical mass
- $16^3 \times 32 32^3 \times 72$ Volume effects checked at $16^3 \times 32$.
- continuum extrapolation linear in a

- Strange jump for $\beta = 6.0$
- Preliminary number: $B_K(\overline{MS}, 2 \text{ GeV}) = 0.604(27)$

Domain Wall

- Domain Wall Fermions "almost" preserve chiral symmetry.
 - "almost" no mixing with the wrong chirality operators



- wrong chirality matrix elements O(10) times larger than signal at masses of interest.
- How much chiral symmetry is enough?
 Simple model:
 - One trip through the bulk : supression factor of $O(am_{res})$
 - Operator of interest is $(V-A)^2$: four left-handed fields. wrong chirality operators: two left-handed, two right-handed

$$\rightarrow O((am_{\rm res})^2) \sim 10^{-6}$$

Domain Wall...

Not so simple... (Golterman and Shamir, hep-lat/0411007)

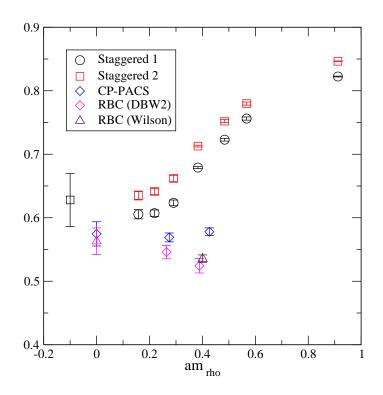
 Chiral symmetry breaking best understood in terms of the transfer matrix in the fifth dimension

$$T = \frac{1 - H}{1 + H}$$

- Two types of contribution to chiral symmetry breaking:
 - 1. Extended modes: fall-off $\propto \exp(-\lambda_C L_s)$ (λ_C mobility edge)
 - 2. Localized modes: includes zero modes of \boldsymbol{H} : unsupressed propagation in fifth dimension.
 - strongly supressed in continuum limit, and by improved actions
- ullet Can estimate the relative size of these two contributions by looking a $m_{\rm res}$ versus L_s , or eigenspectrum of H
 - See talk of Peter Boyle
- Can still estimate size of wrong chirality mixing : rough estimate is the $m_{\rm res}$ gained with $2L_s$. (See talk of Norman Christ).

Domain Wall

- Two groups:
 - CP-PACS collaboration (Ali Khan et al)
 - * Perturbative renormalisation factors
 - * Finite volume study
 - * Iwasaki Gauge action
 - * Finite L_s study
 - RBC collaboration (Blum et al)
 - * Non-perturbative renormalisation
 - * DBW2 gauge action (One Wilson point)



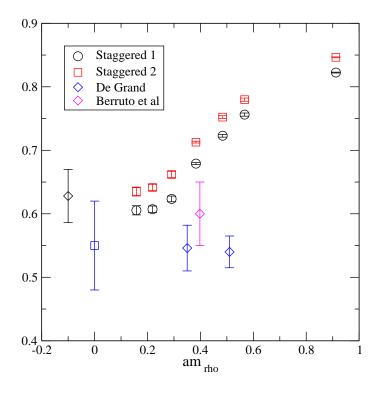
Both have small time-extents: may have systematic error due to this.

Overlap

- Don't have to worry about any mixing, but expensive.
- Large error-bars simply due to low statistics

Two Groups:

- 1. DeGrand et al, hep-lat/0309026
 - Perturbative Renormalisation
- 2. Berruto et al, hep-lat/0409131
 - NPR



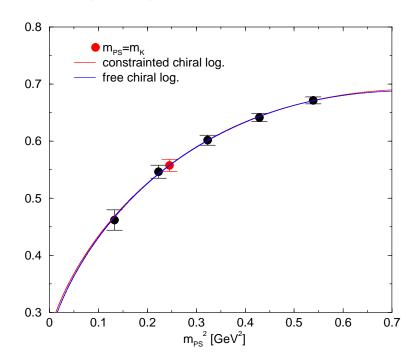
Chiral PT fits

Predicted NLO ChiPT:

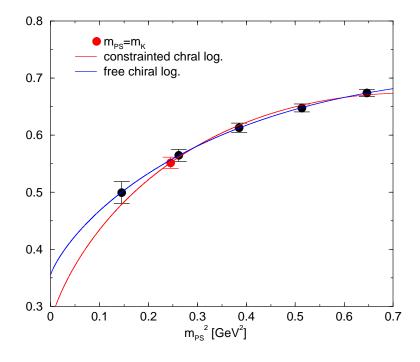
$$B_K = b_0 \left(1 - \frac{6}{(4\pi f)^2} M_K^2 \ln \left[\frac{M_K^2}{(4\pi f)^2} \right] \right) + b_1 M_K^2$$

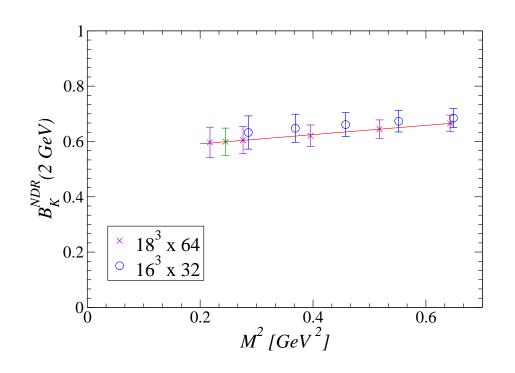
Some groups able to fit to this:

$$DWF(RBC) a^{-1} = 2GeV$$



$$\mathsf{DWF}(\mathsf{RBC})\ a^{-1} = 3\mathsf{GeV}$$

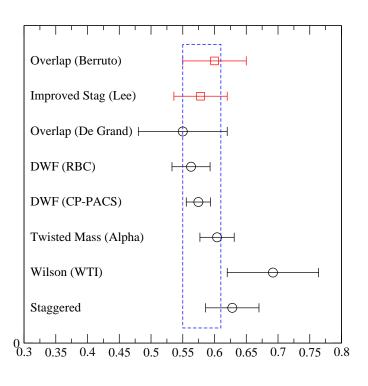




Plot stolen from hep-lat/0409131
 Berruto et al, Overlap Fermions

- Discretisation Error?
- Since in the quenched approximation we are able to either interpolate to the physical point, this difference is not a large effect on the final number.

Quenched Summary



Treat all the errors as statistical: all (continuum extrapolated) combined give

$$B_K^{NDR}(2\text{GeV}) = 0.587(13)$$

All a^2 extrapolated, published gives

$$B_K^{NDR}(2\text{GeV}) = 0.582(17)$$

- both with good χ^2/dof

Errors not all statistical

$$B_K^{NDR}(2\text{GeV}) = 0.58(3)$$

c.f $B_K^{NDR}(2\text{GeV}) = 0.58(4)$ [Shoji Hashimoto (ICHEP 2004)]

Dynamical Work

- As mentioned before: dominant error on the accepted number a guess of the size of the quenching ambiguity
- Recent work using dynamical fermions:
 - 1. Wilson fermions, UKQCD $N_f = 2$ (very heavy masses)
 - 2. Domain Wall Fermions, RBC $N_f = 2$ (non-degenerate masses)
 - 3. Domain Wall Fermions, RBC $N_f = 2 + 1$
 - 4. Improved Staggered $N_f = 2 + 1$ (underway by two groups)
- Number quoted by RBC is $B_K^{NDR}(2\text{GeV}) = 0.495(18)$, where the last number is a *statistical* error. Various systematics:
 - single lattice spacing
 - fairly heavy dynamical masses
 - * $0.5m_s \rightarrow m_s$
 - single (small) volume
 - "less quenched" approximation.

Degenerate fit

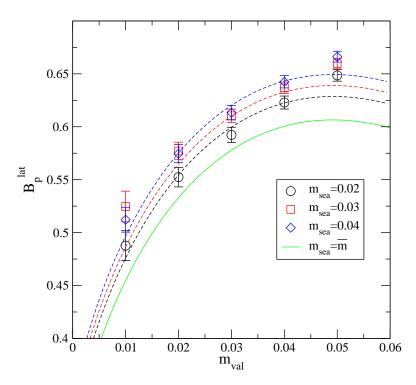
In quenched work ChiPT was used to interpolate; here we use it to extrapolate.

 relying much more on the convergence of ChiPT (known to be bad for other quantities at these masses)

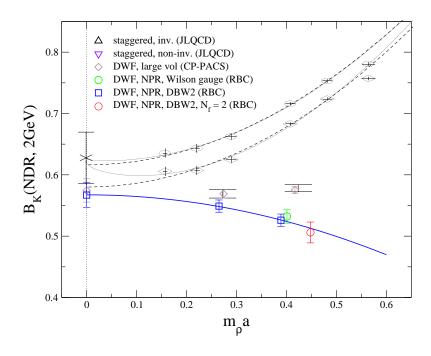
 m_{sea} dependence not well resolved between $m_{sea}=0.03,\ 0.04$.

 $m_{sea}=0.02$ is clearly lower: relevant ChiPT coefficient $\sim 2\sigma$

lighest/heaviest valence points aren't fit well



Lattice Spacing

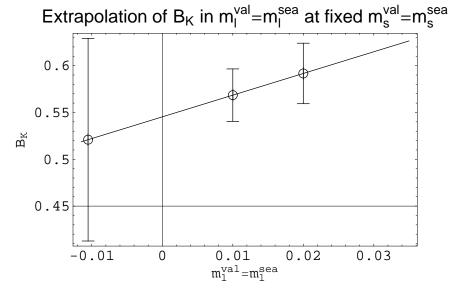


- "Suggestive" graph with the quenched and dynamical DWF results on, with the a^2 extrapolation on it.
 - Not a very sensible thing to plot
- Our dynamical result is only 3% lower than the quenched results closest in lattice spacing.
 - does (probably) reduce as we reduce the dynamical mass.

2 + 1f Calculations

Saul Cohen will talk about preliminary results with 2+1f of dynamical domain wall fermions

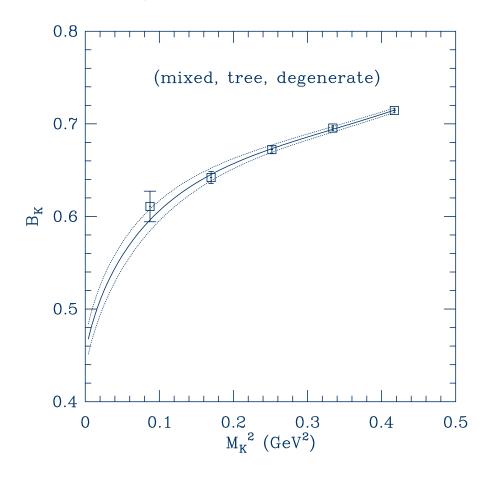
- Still early days (low statistics)
- $16^3 \times 32 \times 8$
- Coarse lattices, large m_{res}
 will study larger valence L_s
- Non-degenerate dynamical extrapolation



- currently with estimate for the overall renormalisation factor of $\frac{1}{Z_A^2}$ (far from the leading systematic).
- Warm up for
 - $-24^3 \times 64 \times 16$, Iwasaki ensembles currently being generated by RBC/UK

2 + 1f Calculations

Taegil Bae, Jongjeong Kim, and Weonjong Lee will present posters on the calculation of B_K using the MILC 2+1f ensembles, using a mixing action approach: (HYP-smeared operators; a^2 -tad background.

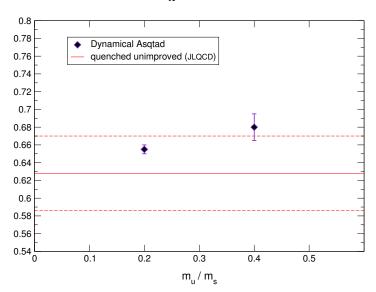


- Calculation underway
 - Only tree level matching so far
- $20^3 \times 32$, 1/a = 1.588(19)GeV
 - Two dynamical masses 0.01,0.02
 - Five valence quark masses 0.01 –
 0.05 .
- See deviation from predicted continuum chiral log (I'll mention this again later)

2 + 1f Calculations

See talk of Elvira Gamiz

Gauge invariant $B_K^{NDR}(2\text{GeV})$: dynamical vs. quenched



- Coarse set of MILC configurations : $a \sim 0.125 \mathrm{fm}$
- ullet Two different dynamical masses: $m_s/2$, $m_s/4$
- One-loop matching $(a^2 tad)$
- Degenerate valance quark masses.

$$B_K(2 \text{ GeV}) = 0.630(18)(15)(30)(130)$$

- Errors: statistics, chiral fit, discretisation errors (quenched), matching...
 - course lattice/dynamical : $\alpha_V(1/a)$ simply larger
 - * doesn't take into account operator mixing
- Need two-loop / non-perturbative matching (finer lattices)

New Chiral Perturbation Theory Results

See talk of Ruth Van de Water and Van de Water and Sharpe, hep-lat/0507012.

- \bullet NLO calculation of B_K in staggered chiral perturbation theory
- Need a power counting scheme to decide which operators to include

$$p^2 \sim m \sim a^2 \sim a_\alpha^2 \sim \alpha/4\pi \sim \alpha^2$$

- $-a_{\alpha}^2 = a^2 \alpha_V (\pi/a)^2$ is estimate of the size of taste breaking discretisation effect (seen large numerically) [Standard power counting]
- existing one-loop calculations are $1+O(1\times\frac{\alpha}{4\pi})$; estimating next order as $O(\alpha^2)$.
- the $O(\alpha/4\pi)$ terms are those left out of the matching.
- Upshot:
 - 13 chiral operators (4 in continuum), some with multiple independent coefficients (different orders in a , α).
 - * when fitting different lattice spacings: 37 free parameters.

Approach

37 parameters is... daunting.

- Obvious things:
 - add in $O(\alpha/4\pi)$ and $O(\alpha^2)$ terms to matching.
- Approach suggested by Van de Water and Sharpe
 - 1. Initially work at a single lattice spacing \rightarrow 16
 - 2. for degenerate quarks \rightarrow 9
 - 3. perform auxiliary calculations with different states on external legs to isolate some of the coefficients \rightarrow 4
 - 4. fit degenerate (maybe add back in non-degenerate); remove any coefficient that is "purely an error"
 - 5. final -4 parameter fit to the lattice spacing dependence
- Also noted in paper that the as the log are averaged over the different taste pions, the curvature is much reduced : Weonjong Lee's results.

B_K Conclusions

- Good agreement in the quenched case between various groups/actions
- Preliminary dynamical work underway
- Systematic error due to quenching? (black art)
 - Follow Steve Sharpe (1996): Compare change between quenched and dynamical at same lattice spacing, give error based on size of discretisation effects. Discretisation error (a little) smaller: $15\% \rightarrow 10\%$
 - Previous estimate of SU(3) breaking $\sim 5\%$ (we see 3%)
 - Add in quadrature: $16\% \rightarrow 11\%$
 - Could be more sophisticated and fold in the direction of change we have seen (+5% -11% ?) just wait until dynamical results are here.

0.58(3)(6)

$$K \to \pi\pi$$

The calculation of $K \to \pi\pi$ decays has long been a goal of lattice QCD.

Interested in:

$$\mathcal{A} (K^{+} \to \pi^{+} \pi^{0}) = \sqrt{3/2} A_{2} e^{i\delta_{2}}
\mathcal{A} (K^{0} \to \pi^{+} \pi^{-}) = \sqrt{2/3} A_{0} e^{i\delta_{2}} + \sqrt{1/3} A_{2} e^{i\delta_{2}}
\mathcal{A} (K^{0} \to \pi^{0} \pi^{0}) = \sqrt{2/3} A_{0} e^{i\delta_{0}} + \sqrt{4/3} A_{2} e^{i\delta_{2}}$$

Where the final state has been decomposed into contributions of isospin 0 and 2

- $\frac{\text{Re}A_0}{\text{Re}A_2} = 1/\omega \sim 22$: the $\Delta I = 1/2$ rule.
- \bullet ϵ'/ϵ

 $K o \pi\pi$

Very difficult problem:

- Two particles in the final state.
 - use ChiPT to work out from $K \to \pi$ and $K \to 0$.
 - face Maini-Testa theorem : Lellouch-Luscher
- Use OPE to give effective hamiltonian in terms of four-quark operators. Operator mixing problem:
 - 7 dimension 6 operators to consider (below charm).
 - some operators ($\Delta I = 1/2$) mix with lower dimension operator
 - * can be power divergent in a: need non-perturbative subtraction

Operator Mixing/Twisted Mass

A major problem with renormalising the $\Delta S=1$ hamiltonian is the power-divergent mixing with the operator

$$(m_s + m_s) \, \overline{s}d + (m_s - m_d) \overline{s}\gamma_5 d$$

- Above form requires chiral symmetry. Without chiral symmetry, factor of $m_s + m_d$ lost, $m_s m_d$ enforced by discrete symmetries.
- When charm is included, the GIM mechanism gives a extra factor of

$$(m_c^2 - m_u^2)$$

contribution of operator \rightarrow finite: $m_c - m_u$ without chiral symmetry.

Frezzotti and Rossi, hep-lat/0407002 and talk of Frezzotti

Use four flavours of quark, can construct scheme that uses maximal twisting (no O(a) terms) to kill all the power divergent mixings for either parity: have discrete symmetries that enforce a factor of

$$(m_c^2 - m_u^2)(m_s - m_d)$$

- Have four twisted dynamical quarks
- Can even make them non-degenerate (bound!)

Older Calculations

Without these discrete symmetries, chiral symmetry is clearly vital:

- Both the RBC and CP-PACS have used Domain WallFermions
 - need to be careful to avoid power-divergent systematics, but possible.
 - biggest systematics of the RBC/CP-PACS calculations:
 - * Quenched Approximation (Extra operators!)
 - * Using Chiral PT to move between $K\to 0$, $K\to \pi$ to physical $K\to \pi\pi$ Only works at LO. For NLO need some information from $K\to \pi\pi$.

Ways to improve...

Dynamical Quarks:

– Jun Noaki will talk about results for the electroweak penguin operators using $N_f=2$ dynamical DWF . Sorry Jun...

$K \to \pi\pi$ direct:

Need to deal with two pions in the final state...

ϵ -regime:

— Fit chiral coefficients in the ϵ -regime...

Two Pions in final state: Finite Volume Methods

Miani-Testa no-go theorem: two pion operator has ground state of two pions at rest.

- not the physical decay for $K \to \pi\pi$
 - want $\pi(-p)$ $\pi(p)$, $\pi(0)$ $\pi(0)$ has lower energy

Luscher, 1986, 1991 × 2

Can extract the scattering length by looking at the volume dependence.

Lellouch and Luscher, hep-lat/0003023

• On the lattice have discretised energy levels for the two pion states

$$E_{\pi\pi} = 2\sqrt{m_{\pi}^2 + 2\pi n/L}$$
; $n = 0, 1, \cdots$

doesn't matter that the physical decay isn't the lowest state: do an exited state fit.

• Formula relating the decay in the centre of mass frame (P = 0) in finite volume to the infinite volume result.

$$|\langle \pi(p)\pi(-p)|H_W|K\rangle_V| \to |\langle \pi(p)\pi(-p)|H_W|K\rangle|$$

$$\Delta I = 3/2$$

Simpler than $\Delta I = 1/2$, good place to start: Bouchard *et al*, hep-lat/0412029

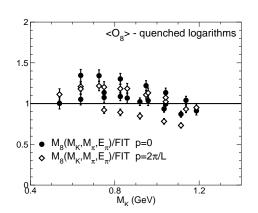
- ullet Calculate the $K o \pi\pi$ directly, but with unphysical kinematics
 - Kaon and one pion a rest, other pion at finite spatial momenta
 - No longer the center of mass frame.
 - is lowest energy state
- Can in principle extract all the free parameters at NLO in ChiPT.
- Quenched, Wilson 2 Gev, $24^3 \times 48$, NPR

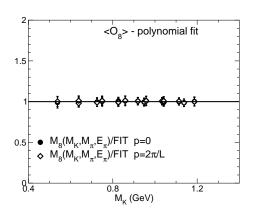
Plots show the data/fit for the NLO ChiPT and a simple polynomial fit.

ullet bad convergence (lightest $M_\pi \sim 500 {
m MeV}$)

Can still extract values by using hybrid ChiPT, polynomial fit; Lellouch-Luscher formula (wrong frame)

Need smaller masses, lab-frame formula...





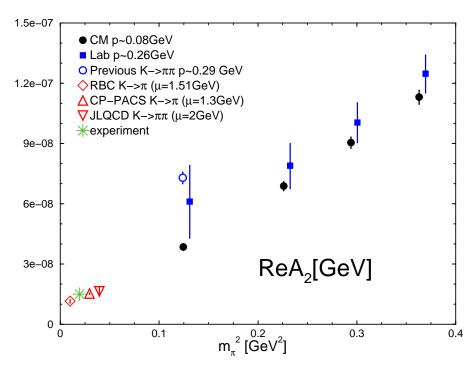
Generalising the Lellouch-Luscher Formula

Would be good to extend the Lellouch-Luscher formalism out of the center of mass frame (total P=0) to lab frame:

- Two groups: Christ et al, hep-lat/0507009 and Kim et al, hep-lat/0507006 (See talks of Changhoan Kim and Takeshi Yamazaki) recently did this.
- Luscher:
 - Field theory (Center of mass frame) →
 - two-particle quantum mechanics →
 - finite/inifinte volume normalisation problem
- Last step already done: Rummukainen and Gottlieb, hep-lat/9503028

Results

Takeshi Keneko will present a poster covering a numerical simulation using this result



- Quenched using DBW2 gauge action
- NPR
- $\beta = 0.87$; $a^1 = 1.3$ GeV
- Lab frame result currently has large error-bar (momentum insertion).

ullet Can use polynomial anzatz to extrapolate in p^2 and m_π^2

$$1.6(1.3) \times 10^{-8} \text{ GeV}$$

• Good first step, but need to beat down the errors.

ϵ-regime

See talks of P. Hernandez, C. Pena, and Hartmut Wittig.

- Idea of project: study the charm effects on $\Delta I = 1/2$ rule
- Start with SU(4) symmetric theory:

$$\frac{A_0}{A_2} = \frac{1}{\sqrt{2}} \left(\frac{1}{2} + \frac{3}{2} \frac{g_1^-}{g_1^+} \right)$$

• Chiral perturbation theory in ϵ -regime

$$m\Sigma V \sim O(1), F_{\pi}L \gg 1$$

(no order ϵ^2 counter-terms).

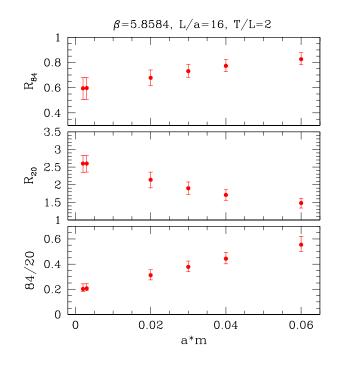
- relate LEC's to transition amplitudes via ChPT at LO
- mean-field improved perturbation theory
- non-trivial to calculate in ϵ -regime (need to handle zero-modes carefully).

ϵ -regime...

 A_0 : factor \sim 2 too small

 A_2 : factor \sim 2 too large

 A_0/A_2 : factor \sim 4 too small



• Discrepancy? : Breakdown of LO ChiPT, Quenching, Charm quark, finite volume corrections.

Summary

- 1. $K \rightarrow l$ 3
 - Three new results (Twisted Boundary Conditions could be useful to improve)
- $2. B_K$
 - Good agreement of quenched results
 - Preliminary dynamical results: need to beat down errors
- 3. $K \rightarrow \pi\pi$
 - Twisted mass formulated at maximal twist for $\Delta S = 1$.
 - Lellouch-Luscher formula extended to lab frame
 - ullet First results shown from ϵ -regime study of $\Delta=1/2$ rule.