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Lattice Supersymmetry — problems

Generic discretizations break SUSY completely

{Q,Q} ="pu — no p,!
Leads to fine tuning problem as a — 0
Try to find formulations which preserve an element of SUSY

Two approaches currently on market:

e Orbifold supersymmetric matrix model (Kaplan, Unsal et al. —
see Lattice 2003)

e Use twisted formulation of continuum SUSY theory.

Both ideas only work for extended SUSY N > 1




Motivation

SYM models with extended (maximal) SUSY conjectured to be
dual to gravitational theories eg.

e AD N =4 U(N) SYM dual to type IIB supergravity on
AdSs x S° in t'Hooft limit where A = g° N >> 1 held fixed and

N — o0.

e General conjecture: strongly coupled large N SYM theories in

p + 1 dims dual to black p-brane solutions in supergravity.

e Transitions between different black hole solutions have an
interpretation as thermal phase transitions in the Yang-Mills

system.




Basic Idea

o Extended SUSY — twist to decompose fermions as set of p-form
fields ( reinterpret as Kahler-Dirac field)

Consequence — expose scalar supercharge {@Q,Q} = 0 and find

action S = QA

e If can maintain Q% = 0 for lattice fields can build discrete

models exactly invariant under ) - reduce fine tuning

e Bonus — geometrical formulation of theory can be discretized

without inducing fermion doubling
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2D Twist

Consider theory with N' = 2 supersymmetry (Euclidean space)
Two Majorana supercharges ¢, with

a — SO(2) Lorentz index
I — SO(2) R-symmetry index

Twist — new rotation group (Witten — topological FT)
SO(2)'=diagonal subgroup(S0O(2) x SO(2)r)
Equivalent to I — 8 and

qg[ — dop
Natural to expand on basis of 2D gamma matrices

q= QI+ Quvyu+ Q127172

Original SUSY algebra implies twisted algebra

{0, 0}ap = 470"




2D Twist continued

In components

{Q,Q} {Q12,Q12} ={Q, Qi2} ={Qu, R} =0
1Q,Qu} P,
{QlZaQ,u} _e,l,LI/PI/

Momentum P is (Q-exact!
Plausible that T},, also then ()-exact.

Action is then Q-exact! S = QA

Notice: to match 4 supercharges of SUSY theory take twisted
supercharges to be real.

Implies reality condition on g:

g=q! in 2D




2D Twisted Fields

If supercharges form matrix so do fermions

U = gI + Yy + X127172

Abstract p-form components and consider the fermions as

represented by real Kahler-Dirac field (Kawamoto)

T = (3, % x12)

Original Dirac equation for 2 (Majorana) fermions equivalent to
(d—dH¥ =0

corresponding to action

1

1
Sp = 5%3%"7 + §XLV8[M¢V]

True also when gauged 0 — D




2D Twisted Fields continued

Fermions: ¥ = (Z,%,, x12)

Any @Q-invariant theory must also contain superpartners
b = (5, AIM Blg) with

Q?® = Q?¥ =0 mod possible G.T

Look like the fields of ' =2 SYM in 2D!
(take in adjoint eg @ = > P*T* with AH generators of U(N))
Expect

S = QTrA(¥, 3)




Twisted N =2 SYM in D = 2

Continuum twisted action:

S = BQTr/d% (in[qﬁ,qﬁ] + 2x12F12+

+ x12B12+v.D,9)

where Q? = G.T parametrized by ¢

QAL
QY.
Qe




Twisted SYM action continued

Vary, integrate out Bio:

s = om [ ({1097 - pulovn] - F
Du¢Du$ — X12[¢7 X12]

2x12 (D192 — Dap1) — 24, Dy /2
- ¢u [57 ¢u])

Points to note:

1. Scalar+gauge part positive definite along contour ¢ = (¢*)*
(AH generators) — recognise as bosonic sector of 2D N =2 SYM
2. Twisted fermion kinetic term = Kahler-Dirac action




Equivalence to spinor formulation

Use Euclidean chiral rep. for gamma matrices

0 1 0 =
Y1 = Yo = ,
1 0 —7 0

define spinor A as

% — 1X12

Y1 — it

Twisted fermion action = Dirac action

S = AN M(¢p)A




Lattice prescription (cubic)

Map continuum scalars to fields on sites, 1-forms to links,
2-forms to plaquettes.

2 orientations (p > 0) — 2 independent lattice fields for each
continuum field with non-zero spin. Represent using f and f.

Gauge transformations (2D):

flz) — Gz)fz)G™ (2)

(
ful@) — G(z)fu(@)G 'z + p)
fi2(z) = G(2)fi2(z)G 'z +1+2)

Au(@) = Uy(z) = el
Complex A — U, and U;ﬂ independent.




Lattice derivatives

Dif(x) = Uulx)f(z+p)— f@)Uu(z)
D:{f,,(x) = Uu@)fu(x+p) = fu(2)Uu(z +v)

Reduce to continuum derivatives as a — 0 (and preserve GT props)

D;fu(x) = fu(w)U;i(x) - Ui(w — ) fulz — 1)
D fu(x) = fu(@Ul(z+v) = Uiz = p) fu(z - p)

Avoid spectrum doubling (Rabin, Joos) if:

0, — DT if acts like d
0, — D~ if acts like dT

Notice also:

Fu(x) =D U, (x) = F™ asa — 0




Component lattice action

SBQTE Y (—in* 9,91 - 2x02 P

T

xl2Bi2 — ¥ D6 + hc)

Notice lattice G.T properties require complex fields

QU Yu
Q¢u —D:Rb
Qe




Lattice action continued

Carrying out ()-variation and int. B

St §Tr2 G[M}Q + F,Fio

i

1 _
71116, = xhal, X120 + 9L[6, 4, @

(D 9)' D} ¢ — 2x1, (DY Y2 — D 4n)

2¢LD:3 + h.c)

Invariant under @), finite gauge transformations and U(1)

¢u — eiaw,ua n, X12 — G_iaﬂa X12

5 N 6—21'045, ¢ N €2ioz¢




Gauge action

BTr > Fy(z)Fia(x)

ﬁTI‘Z(QI—UP—UITD) —|—ﬁTI‘Z(M12—|—M21 —2[)

x x

where

Up = Uy (z)Us(z + 1)UJ (& + 2)U] (2)
and

My = Uy (2)U] (2)Ul (z + 1)Us(z + 1)
Notice:
2nd term is zero if UJ(z)U,(z) = I.

Action collapses to usual Wilson action!




Twisted Fermions

[ n/2 )

X12

(031
\

Action UTM T

o [¢7 ](p) K
_ Kt (p,]P)

M =

Dy =Dy
-Dy -D;

K =

After integration — Pf(M).
In free limit Pf(M) = det(K) = det(D;} D;;)-no doubles!




Continuum Limit

Lattice formulation given in terms of complex fields.
Target continuum theory corresponds to setting

ImX;‘ = 0 all fields X bar scalars

7 = o
Question: are the Ward identities W.I corresponding to () satisfied
after this projection 7

Conjecture: yes (at least for large 3)

Why?

Q-exact S allows W.I to be computed exactly for 8 — oo

Use U,(z) = R, (z)u,(z) with R hermitian, pos def. and u unitary:
soln. of FJ,Fi5 = 0 is just R, (z) = 1!
Q trans. imply all fields (bar scalars) can be taken real.




Simulations

Use unitary U,(z). Add mass term m?¢'¢ to control L.R
divergence of scalars

Bosonic action gauge inv. and real, pos. def. still
Fermion weight det (MTM + m?) (neglect phase)

Use RHMC alg. to simulate exactly (Clark, Kennedy)
Parameters: L =2,4,8, m =0.1,0.05, 3 =0.5 — 4.0
(notice: equiv. to L = 4,8, 16 staggered lattices)
Q-symmetry allows us to compute bosonic action exactly

B < Sg>= %RL2 independent of 3!

(< S >=< QA >=0)













Twisting N = 4 SYM in D=4
4 Majorana spinors .. Kahler-Dirac twist:
SO(4)" = diag(SO(4) x SO(4)R)

Regard supercharges and fermions as matrices:

1
U= nl+uy,+ EXMV’V//YV +

1 1
+ gew/k’hﬂl/)’)\ - ﬂ"‘?uvkpfyu’YV’YXYp
16 real components needed for single Kahler-Dirac field!
Twisted fermions paired with superpartners
(6, Ay, Buw, Woun, Cuuap) through scalar @ supersymmetry
(B and C' multipliers)




4D Q) transformations

Simple generalization of D=2

Q¢ n Qn= (4,
QA Y QY =—Du¢
QB b, Xuv] @Xuv = Buy
0 QOuux = [0, W]
(9, Kpvap] QBuwrp = Cuvrp

0

Notice Q? = 6%




Gauge Fermion of N =4 SYM
S = QA with

1 1
/d4xTI' [X’uy (F’uy + §Buu — §[WM>‘P7 Wy)\p]
D)\Wkpw>

1 _
GuDud + 16,8 + 31000 Wir, 9

1 1
41 Fuv e (ﬂD[u Wig + §Cuvkp)}

Structure similar to N =2 in SYM D = 2
Carry out ()-variation and integrate out B, and C},,,

SZﬂ(SB—I—SF—I—SY)




Continuum geometric action

Sp = /d4£ETI‘ [_XW/D[,u ¢u] - X,LWDAQ)\W/

V2
— nDp, — ZRMVAPD[MQVAP]

1 1 i
/d433TI' —§ ((F,uy — §[Wu)\p7 WV}\P])

2 2 2
(DaWipw)”™ + Al (D[u vap]) )

D,ngbDug + i[qﬁa 5]2 o %[qﬁa WuuA] [57 Wuuk]]




Connection to Marcus twisting

Is this action N =4 SYM ?
(not appear to be standard topological twist)
Change variables:

Wi €uvipVp
eul/)\ — eul/)\pap
Ruvxp — eul/kpﬁ
rescale fermions ...

Obtain a well-known topological twist of N =4 SYM due to
Marcus.




Spinor formulation
Making another change of variables

Vi n=0...3

$1
¢2

SB — —1F2 — (DMXZ>2 — %Z[X'“XJP

2 K
i

where A\ and \? columns of KD matrix.




Lattice N =4in D =4
Use same presciption as for N =2 SYM in D = 2.

e Lattice p-form fields on elementary p-cubes. Complexity.

e Gauge transformation props similar to D = 2

e Replace d and d' by appropriate covariant lattice difference

operators (generalize results of D = 2)
e Modify commutators by point splitting to maintain G.I

Again, to target N' =4 SYM we will need to argue that Ward
identities are satisfied as 8 — oo after truncating the P.I to the real

line.




Conclusions

Theories with extended SUSY (in Eucl. space) can (often) be
discretized while preserving G.I and a (twisted) SUSY

Lattice theories are local and free of spectrum doubling.

Discretization proceeds from reformulation in geometrical
terms (Dirac-Kéahler fields)

Should be possible on curved spaces (simplicial manifolds)

Truly non-perturbative formulation — numerical simulation

possible




To do ...

Pert. checks of W.I after projection to real line — both in D=2
and D=4 theories

N = 4,8 theories in D = 2 and N = 8 theory in D = 3 should

be expressable in terms of KD twisted fields

Simulations ... check Q-supersymmetry, phase of fermion det,
study restoration of other supersymmetries, fine tuning etc

Make contact with black hole physics ?




