AN INTRODUCTION TO THE CHEEGER PROBLEM

Enea Parini

Abstract. Given a bounded domain $\Omega \subset \mathbb{R}^n$ with Lipschitz boundary, the Cheeger problem consists of finding a subset E of Ω such that its ratio perimeter/volume is minimal among all subsets of Ω. This article is a collection of some known results about the Cheeger problem which are spread in many classical and new papers.

1 Introduction

In 1970, Jeff Cheeger established in his work [9] the following inequality:

$$\lambda_1(\Omega) \geq \left(\frac{h_1(\Omega)}{2} \right)^2,$$

where $\Omega \subset \mathbb{R}^n$ is a bounded domain, $\lambda_1(\Omega)$ is the first eigenvalue of the Laplacian under Dirichlet boundary conditions, and $h_1(\Omega)$ is defined as

$$h_1(\Omega) := \inf_{E \subset \Omega} \frac{P(E; \mathbb{R}^n)}{V(E)}.$$

Here $P(E; \mathbb{R}^n)$ is the perimeter of E in distributional sense (see [14]) measured with respect to \mathbb{R}^n, while $|E|$ is the n-dimensional Lebesgue measure of E. $h_1(\Omega)$ is called Cheeger constant of Ω, and a set $C \subset \Omega$ such that

$$\frac{P(C; \mathbb{R}^n)}{|C|} = h_1(\Omega)$$

is a Cheeger set. The task of determining the Cheeger constant of a given domain and of finding a Cheeger set has been considered by many authors. Since the related results are spread in many classical and new papers, it makes sense to collect them in this introductory survey.

2010 Mathematics Subject Classification: 49Q20

Keywords: Cheeger problem.

The author acknowledges partial support from the DFG - Deutsche Forschungsgemeinschaft

http://www.utgjiu.ro/math/sma
The paper is structured as follows: after introducing the functions of bounded variation in Section 1, we study existence and regularity properties of Cheeger sets (Sections 3 and 4). In Section 5 uniqueness and nonuniqueness issues are discussed, while in Section 6 we treat a quantitative isoperimetric estimate. Finally, we discuss some applications of the Cheeger problem.

2 Functions of bounded variation

Let $\Omega \subset \mathbb{R}^n$ be an open set. The total variation in Ω of a function $u \in L^1(\Omega)$ is defined as

$$|Du|(\Omega) := \sup \left\{ \int_{\Omega} u \text{div} \varphi \, \vline \, \varphi \in C^1_c(\Omega; \mathbb{R}^n), \|\varphi\|_\infty \leq 1 \right\}.$$

A function u such that $|Du|(\Omega) < +\infty$ is said to be of bounded variation. The space of the functions of bounded variation will be denoted by $BV(\Omega)$. It turns out that $BV(\Omega)$ endowed with the norm

$$\|u\|_{BV} := \|u\|_1 + |Du|(\Omega)$$

is a Banach space. A set $E \subset \mathbb{R}^n$ has finite perimeter in Ω if its characteristic function χ_E belongs to $BV(\Omega)$, so that

$$P(E; \Omega) := |D\chi_E|(\Omega) < +\infty.$$

If Ω has Lipschitz boundary, then a set E of finite perimeter in Ω has also finite perimeter in \mathbb{R}^n,

$$P(E; \mathbb{R}^n) = P(E; \Omega) + \mathcal{H}^{n-1}(\partial \Omega \cap \partial E),$$

where \mathcal{H}^{n-1} stands for the $(n-1)$-dimensional Hausdorff measure in \mathbb{R}^n. In particular,

$$P(\Omega; \mathbb{R}^n) = \mathcal{H}^{n-1}(\partial \Omega).$$

Similarly, if $u \in BV(\Omega)$, then $u \in BV(\mathbb{R}^n)$ (extending it to zero outside Ω), and

$$|Du|(\mathbb{R}^n) = |Du|(\Omega) + \int_{\partial \Omega} |u| \, d\mathcal{H}^{n-1}.$$

We will make use of the following results.

Proposition 2.1. [14, Theorem 1.9] Let $\{u_k\}$ be a sequence of functions in $BV(\Omega)$ converging in $L^1_{\text{loc}}(\Omega)$ to a function u. Then

$$|Du|(\Omega) \leq \liminf_{k \to \infty} |Du_k|(\Omega).$$
Proposition 2.2. [14, Theorem 1.19] Let $\Omega \subset \mathbb{R}^n$ be a domain with Lipschitz boundary, and let $\{u_k\}$ be a sequence of functions in $BV(\Omega)$ such that
\[\|u_k\|_{BV} \leq M \]
for some $M > 0$. Then there exists a subsequence $\{u_{k_j}\}$ and a function $u \in BV(\Omega)$ such that $u_{k_j} \to u$ in $L^1(\Omega)$.

Proposition 2.3. [14, Theorem 1.23] Let $u \in BV(\Omega)$, and define
\[E_t := \{ x \in \Omega \mid u(x) > t \}. \]
Then,
\[|Du|(\Omega) = \int_{-\infty}^{+\infty} P(E_t; \Omega) \, dt. \]

3 Existence of a Cheeger set

In the following, $\Omega \subset \mathbb{R}^n$ will be a bounded domain with Lipschitz boundary. The perimeter of a set will be always measured with respect to \mathbb{R}^n, so that we will write
\[P(E) := P(E; \mathbb{R}^n). \]
We recall that the Cheeger constant is defined as
\[h_1(\Omega) := \inf_{E \subset \Omega} \frac{P(E)}{|E|}, \]
with the convention that
\[\frac{P(E)}{|E|} = +\infty \]
whenever $|E| = 0$.

Proposition 3.1. For every bounded domain $\Omega \subset \mathbb{R}^n$ with Lipschitz boundary, there exists at least one Cheeger set.

Proof. Let us define
\[\tilde{h}_1(\Omega) := \inf_{v \in BV(\Omega) \setminus \{0\}} \frac{|Dv|(\mathbb{R}^n)}{\|v\|_1}. \]
By definition, $\tilde{h}_1(\Omega) \leq h_1(\Omega)$. Moreover, applying the direct method of the Calculus of Variations, the existence of a function $u \in BV(\Omega)$, $u \neq 0$, such that
\[\frac{|Du|(\mathbb{R}^n)}{\|u\|_1} = \tilde{h}_1(\Omega) \]
follows readily from Propositions 2.1 and 2.2. Since $|D|u||\mathbb{R}^n| \leq |Du|\mathbb{R}^n|$ (see [2, Exercise 3.12]), we can consider without loss of generality $u \geq 0$. Define $E_t := \{x \in \Omega | u(x) > t\}$.

From Proposition 2.3 and Cavalieri’s principle, we have

$$0 = |Du|\mathbb{R}^n - \tilde{h}_1(\Omega)\|u\|_1 = \int_0^{+\infty} [P(E_t) - \tilde{h}_1(\Omega)|E_t|] dt \geq \int_0^{+\infty} [P(E_t) - h_1(\Omega)|E_t|] dt \geq 0.$$

It follows that for almost every $t \in \mathbb{R}$ (in the sense of the Lebesgue measure on \mathbb{R}),

$$P(E_t) - \tilde{h}_1(\Omega)|E_t| = 0. \quad (3.2)$$

Since $u \not\equiv 0$, there must exist $s \in \mathbb{R}$ such that $|E_s| > 0$ and for which (3.2) holds. This yields at once

$$\tilde{h}_1(\Omega) = h_1(\Omega)$$

as well as the existence of a Cheeger set for Ω. □

Remark 3.2. From the proof of Proposition 3.1, it follows that if u is a minimizer for $\tilde{h}_1(\Omega)$, then almost every level set of u with positive Lebesgue measure is a Cheeger set for Ω. In fact, by [6, Theorem 2] this is actually true for all its level sets of positive Lebesgue measure.

Proposition 3.3. Let $\Omega \subset \mathbb{R}^n$ have a boundary of class Lipschitz. Then

$$h_1(\Omega) = \inf_{E \subset \subset \Omega} \frac{P(E)}{|E|}.$$

This is a straightforward consequence of the following proposition.

Proposition 3.4 ([23], Theorem 2). Let $\Omega \subset \mathbb{R}^n$ have a boundary of class Lipschitz, and let $E \subset \Omega$ be a set of finite perimeter. Then there exists a sequence of sets of finite perimeter $\{E_k\}$ such that:

(i) $E_k \subset \subset \Omega$ for every k;

(ii) $\chi_{E_k} \rightarrow \chi_E$ in $L^1_{\text{loc}}(\mathbb{R}^n)$ as $k \rightarrow \infty$;

(iii) $P(E_k) \rightarrow P(E)$ as $k \rightarrow \infty$.

Proof (of Proposition 3.3). Let C be a Cheeger set for Ω. Then there exists a sequence $\{E_k\}$ of sets of finite perimeter satisfying (i), (ii) and (iii) in Proposition 3.4. By classical results, each E_k can be in its turn be approximated in a similar way by a sequence of sets compactly contained in Ω, but not necessarily in E_k, and with smooth boundary (see [14, Theorem 1.24]). Hence the claim follows. □
However, a Cheeger set can not be compactly contained in Ω, as the following proposition states.

Proposition 3.5. Let C be a Cheeger set for Ω. Then, $\partial C \cap \partial \Omega \neq \emptyset$.

Proof. Suppose, by contradiction, that $C \subset \subset \Omega$. Then it would be possible to find a $t > 1$ such that the set

$$tC := \{x \in \mathbb{R}^n \mid t^{-1}x \in C\}$$

is still contained in Ω. But then

$$\frac{P(tC)}{|tC|} = \frac{t^{n-1}P(C)}{t^n|C|} = \frac{1}{t} \frac{P(C)}{|C|} < \frac{P(C)}{|C|},$$

a contradiction to the definition of Cheeger set. Hence, the boundary of C must intersect the boundary of Ω. \hfill \Box

4 Regularity of Cheeger sets

Let C be a Cheeger set for Ω, and set $V_0 := |C|$. Then, C will be in particular a set which minimizes the perimeter among all the subsets of Ω with volume V_0. Hence, some classical regularity results find application.

Proposition 4.1. Let C be a Cheeger set for Ω. Then $\partial C \cap \Omega$ is analytic, possibly except for a closed singular set whose Hausdorff dimension does not exceed $n - 8$.

Proof. If $V_0 = |\Omega|$, then $C = \Omega$ and $\partial C \cap \Omega = \emptyset$, so that there is nothing to prove. If $V_0 < |\Omega|$, the result is stated in [15, Theorem 1] (one has to set $\Gamma = \emptyset$ in the notation used there). The idea of the proof is the following: let E be a set of finite perimeter in Ω, $x \in \partial E$, $r > 0$ such that $B_r(x) \subset \Omega$. We define

$$\psi(x, r) := |D\chi_{E}|(B_r(x)) - \inf\{|D\chi_{F}|(B_r(x)) \mid F \Delta E \subset \subset B_r(x)\}$$

The quantity ψ gives a measure of how far the set E is from being a perimeter-minimizing set (without volume constraints). A result of Tamanini ([27, Lemma 3]) states that, if E is a set of finite perimeter with $\psi(x, r) \leq Cr^{n-1+2\alpha}$ for some $x \in \partial E$ and all $0 < r < R$ with given constants C, R and $0 < \alpha < 1$, then the tangent cone to ∂E in x, as defined in [14, Theorem 9.3], is area-minimizing. This is what actually happens in this case, since it can be proved (see [16]) that for a set minimizing perimeter under a volume constraint we have

$$\psi(x, r) \leq Cr^{n}$$

for a constant $C > 0$, for each $x \in \partial E$ and for all sufficiently small $r > 0$. The properties of area minimizing tangent cones, which can be found in [14, Chapter

**

Surveys in Mathematics and its Applications 6 (2011), 9 – 22

http://www.utgjiu.ro/math/sma
9], allow us to reason in a way similar to [22] and finally state the claim. The dimension $n - 8$ appearing in the theorem is linked to the following fact: $x \in \partial E$ is a regular point if and only if the tangent cone in x is a half-space. In \mathbb{R}^n, $n \leq 7$, the only possible area minimizing tangent cones are half-spaces, while in \mathbb{R}^8 there exist nontrivial area minimizing cones such as the so-called Simon’s cone (see [4]).

Another important property of Cheeger sets is the constancy of the mean curvature of $\partial C \cap \Omega$; the result is stated for instance in [13, Theorem 1.22].

Proposition 4.2. The mean curvature of $\partial C \cap \Omega$ is constant at every regular point, and equal to $\frac{1}{n-1} \cdot h_1(\Omega)$.

Proof. The fact that the mean curvature is constant at every regular point of $\partial C \cap \Omega$ follows from [15, Theorem 2]. To show that it is exactly equal to $h_1(\Omega)$, take a regular point $x_0 \in \partial C \cap \Omega$. Then there exist a ball B, an open interval I and a function $f \in C^\infty(B;I)$ such that, if we set $F = B \times I$, then $x_0 \in B$ and $E \cap F$ is the epigraph of $-f$. Take now $g \in C^2_c(B;I)$, and set

$$E_t = (E \setminus F) \cup epi(-(f + tg))$$

where $t \in (-\varepsilon, \varepsilon)$, with ε so small that E_t is still contained in Ω. As E is a Cheeger set, it follows that the functional

$$I(t) = P(E_t) - h_1(\Omega)|E_t|$$

satisfies $I(0) = 0$, and $I(t) \geq 0$ for $t \in (-\varepsilon, \varepsilon)$. So we have

$$0 \leq I(t) - I(0) = \int_B \sqrt{1 + |D(f + tg)|^2} - h_1(\Omega) \int_B (f + tg)$$

$$- \int_B \sqrt{1 + |Df|^2 + h_1(\Omega)} \int_B f = J(t) - J(0)$$

for every $t \in (-\varepsilon, \varepsilon)$, where

$$J(t) := \int_B \sqrt{1 + |D(f + tg)|^2} - h_1(\Omega) \int_B (f + tg)$$

It follows $J'(0) = 0$, which means, after integrating by parts,

$$- \int_B \text{div} \left(\frac{Df}{\sqrt{1 + |Df|^2}} \right) g = h_1(\Omega) \int_B g$$

and since this relation is valid for every $g \in C^2_c(B;I)$, the theorem is finally proved. \square
A Cheeger set enjoys also boundary regularity. More precisely, the following result holds.

Proposition 4.3. [15, Theorem 3] Let \(C \) be a Cheeger set for \(\Omega \), and let \(x \in \partial \Omega \) be such that \(\partial \Omega \cap B_r(x) \) is of class \(C^1 \) for some \(r > 0 \). Then there exists a \(\rho \in (0, r) \) such that \(\partial C \cap B_\rho(x) \) is also of class \(C^1 \).

In particular, this implies that \(\partial C \) and \(\partial \Omega \) must meet tangentially at regular points of \(\partial \Omega \).

5 Uniqueness and nonuniqueness

A relevant question is whether there can exist more than one Cheeger set for a given domain \(\Omega \). This is not the case if \(\Omega \) is convex. A first result in this direction concerns planar convex domains. Given two sets \(A, B \subset \mathbb{R}^n \), we define

\[
A \oplus B := \{ x \in \mathbb{R}^n \mid x = a + b, \ a \in A, \ b \in B \}.
\]

Proposition 5.1. Let \(\Omega \subset \mathbb{R}^2 \) be a convex domain. Then there exists a unique Cheeger set \(C \) for \(\Omega \). Moreover, \(C \) is convex, has boundary of class \(C^{1,1} \), and

\[
C = C_R \oplus B_R,
\]

where

\[
C_R = \{ x \in \Omega \mid \text{dist}(x; \partial \Omega) \leq R \},
\]

\(B_R \) is the disc of radius \(R \), and \(R \) is such that \(|C_R| = \pi R^2 \).

Proof. Let \(H_\Omega \) be the union of all discs with largest radius contained in \(\Omega \). If \(C \) is a Cheeger set for \(\Omega \), it follows from [12, Theorem 33] that \(|C| \geq |H_\Omega| \). It is then possible to apply [26, Theorem 3.32] to state the uniqueness and the regularity result. The characterization of \(C \) as union of balls of suitable radius has been established in [19, Theorem 1].

The result was generalized to higher dimensional domains some years later.

Proposition 5.2. [1, Theorem 1] Let \(\Omega \subset \mathbb{R}^n \) be a convex domain. Then there exists a unique Cheeger set \(C \) for \(\Omega \). Moreover, \(C \) is convex and has boundary of class \(C^{1,1} \).

In general, if \(n \geq 3 \) it does not hold true that the Cheeger set of a convex domain is the union of balls of suitable radius (see [18, Remark 13]).

If \(\Omega \) is not convex, one can not expect in general uniqueness of the Cheeger set, as shown by simple examples such as the "barbell domain" (see [19]). We observe that the star-shapedness of \(\Omega \) is not a sufficient condition for uniqueness of the Cheeger
set; indeed, there exist L-shaped domains which admit infinitely many Cheeger sets (see [24]). However, an interesting result states that if Ω is a domain admitting more than one Cheeger set, then it is possible to find a set $\tilde{\Omega}$ arbitrarily close to Ω and admitting only one Cheeger set. Here is the precise statement.

Proposition 5.3. [7, Theorem 1] Let $\Omega \subset \mathbb{R}^n$ be an open set with finite volume. Then, for any compact set $K \subset \Omega$ there exists a bounded open set $\tilde{\Omega}$ such that $K \subset \tilde{\Omega} \subset \Omega$ and $\tilde{\Omega}$ has a unique Cheeger set.

Another property of the class of Cheeger sets is the fact that it is stable under countable union: if $\{C_n\}$ is a sequence of Cheeger sets for Ω, then also $C := \bigcup_n C_n$ is a Cheeger set ([6, Theorem 3]). This allows to define the notion of maximal Cheeger set ([5, Proposition 1.1]), which is a Cheeger set C such that, if \tilde{C} is another Cheeger set, then $\tilde{C} \subset C$. The maximal Cheeger set is always unique. Similarly one can define the notion of minimal Cheeger set ([7, Lemma 2.5]); in this case, there may be more than one minimal Cheeger set, but they are always finitely many.

6 Quantitative isoperimetric estimates

A celebrated result of De Giorgi ([10]) states that, if E is a set of finite perimeter in \mathbb{R}^n, and E^* is a ball such that $|E^*| = |E|$, then $P(E^*) \leq P(E)$, with equality holding if and only if E is itself a ball. This implies that

$$h_1(\Omega) \geq h_1(\Omega^*).$$
In fact, if C is a Cheeger set for Ω, then Ω^* contains a ball C^* with the same volume as C. Hence,

$$h_1(\Omega) = \frac{P(C)}{|C|} \geq \frac{P(C^*)}{|C^*|} \geq h_1(\Omega^*).$$

The equality sign holds if and only if Ω is a ball. However, by means of a so-called quantitative isoperimetric inequality, it is possible to say that if the difference $h_1(\Omega) - h_1(\Omega^*)$ is small, then Ω must be somehow ”near” to be a ball. More precisely, one defines the Fraenkel asymmetry of a set Ω as

$$A(\Omega) := \inf \left\{ \frac{|\Omega \Delta B|}{|\Omega|} \bigg| B \text{ is a ball with } |B| = |\Omega| \right\}.$$

Observe that $A(\Omega) = 0$ if and only if Ω is a ball. Then the following result holds.

Proposition 6.1. [11] Let $A(\Omega)$ be defined as above. Then,

$$h_1(\Omega) \geq h_1(\Omega^*) \left[1 + \frac{A(\Omega)^2}{C} \right],$$

where $C = C(n) > 0$ depends only on the dimension n.

7 Applications of the Cheeger problem

Besides the well-known Cheeger’s inequality mentioned in the introduction, the Cheeger problem appears in several mathematical contexts. One example is the study of plate failure under stress (see [20]). If Ω represents the shape of a planar plate subject to a constant uniform pressure p, we want to determine the minimal value of p for which the plate breaks down; here we do not consider bending or buckling effects. Let $E \subset \Omega$; the vertical force acting on E will be equal to $p|E|$, while the opposing force exerted on E by the portion of the plate surrounding it can be supposed to have the form $\sigma P(E)$, where $\sigma > 0$ is a constant. Hence, failure will not occur if for every subdomain $E \subset \Omega$ one has

$$p \frac{|E|}{\sigma} \leq \inf_{E \subset \Omega} \frac{P(E)}{|E|} = h_1(\Omega) \Leftrightarrow p \leq \sigma h_1(\Omega).$$

This is equivalent to ask that

$$p \leq \frac{\inf_{E \subset \Omega} P(E)}{|E|} = h_1(\Omega) \Leftrightarrow p \leq \sigma h_1(\Omega).$$

Thus, failure will occur for $p = \sigma h_1(\Omega)$ along a Cheeger set for Ω.

Another application concerns the asymptotic behaviour of the first eigenvalue of the p-Laplacian for $p \to 1$, as shown in [18]. Define for $p > 1$

$$\lambda_1(p; \Omega) := \inf_{v \in W_{\alpha,p}(\Omega) \setminus \{0\}} \frac{\int_{\Omega} |\nabla v|^p}{\int_{\Omega} |v|^p}.$$
One can easily show that the infimum is actually attained, and that a minimizer is a weak solution of the equation

$$\begin{cases}
-\Delta_p u &= \lambda |u|^{p-2} u \quad \text{in } \Omega, \\
u &= 0 \quad \text{on } \partial \Omega,
\end{cases}$$

where $\lambda = \lambda_1(p; \Omega)$ and $\Delta_p u = \text{div}(|\nabla u|^{p-2} \nabla u)$ is the p-Laplacian. On one hand, it is possible to generalize Cheeger’s inequality to the p-Laplacian as follows (see [21, Appendix]):

$$\lambda_1(p; \Omega) \geq \left(\frac{h_1(\Omega)}{p} \right)^p.$$

On the other hand, one can show ([18, Corollary 6]) that

$$\limsup_{p \to 1} \lambda_1(p; \Omega) \leq h_1(\Omega),$$

which finally yields

$$\lim_{p \to 1} \lambda_1(p; \Omega) = h_1(\Omega).$$

Moreover, the first eigenfunctions converge in $L^1(\Omega)$ to a minimizer of (3.1), and hence to a function whose level sets are Cheeger sets for Ω. Consequently, if Ω admits only one Cheeger set C, then the first eigenfunctions converge to a suitably scaled characteristic function of C.

We also mention the interpretation given by Gilbert Strang in [25] in the context of maximal flow-minimal cut problems. Given a bounded, planar domain Ω, and given two functions $F, c : \Omega \to \mathbb{R}$, we want to find the maximal value of $\lambda \in \mathbb{R}$ such that there exists a vector field $v : \Omega \to \mathbb{R}^2$ satisfying

$$\begin{cases}
\text{div } v &= \lambda F \\
|v| &\leq c.
\end{cases}$$

The problem can be interpreted as follows: given a source or sink term F, we want to find the maximal flow in Ω under the capacity constraint given by c. It turns out that if $F \equiv 1$ and $c \equiv 1$, then the maximal value of λ is equal to the Cheeger constant of Ω, while the boundary of a Cheeger set is the associated minimal cut. This kind of results have found an interesting application in medical image processing (see [3]).

The Cheeger problem can be extended by considering its weighted version. More precisely, given a function $g \in C^1(\overline{\Omega})$ with $g \geq g_0$ for a constant $g_0 > 0$, one defines the weighted total variation of a function $u \in L^1(\Omega)$:

$$|Du|_g(\Omega) := \sup \left\{ \int_{\Omega} u \text{div}(g\varphi) \left| \varphi \in C^1_c(\Omega; \mathbb{R}^n), \|\varphi\|_{\infty} \leq 1 \right. \right\}.$$

Then one tries to find

$$h_{g}^{f}(\Omega) := \inf_{u \in BV_g(\Omega)} \frac{|Du|_g(\mathbb{R}^n)}{\int_{\Omega} fu},$$

Surveys in Mathematics and its Applications 6 (2011), 9 – 22

http://www.utgjiu.ro/math/sma
where $f \in L^\infty(\Omega)$ with $f \geq f_0$ for a constant $f_0 > 0$, and $BV_g(\Omega)$ is the space of functions with finite weighted total variation. This problem was introduced in [17] in connection to landslide modelling. Extentions of the Cheeger problem involving anisotropic norms and anisotropic total variation turned out to be useful in image processing (see [8]).

References

**

Surveys in Mathematics and its Applications 6 (2011), 9 – 22

http://www.utgjiu.ro/math/sma

Enea Parini
Mathematisches Institut, Universität zu Köln
Weyertal 86-90
D-50931 Köln, Germany.
e-mail: eparini@math.uni-koeln.de

**

Surveys in Mathematics and its Applications 6 (2011), 9 – 22
http://www.utgjiu.ro/math/sma