Fluorescence-enhanced optical tomography in small volume: Telegrapher and Diffusion models

Ranadhyr Roy

Abstract. Small animal fluorescence-enhanced optical tomography has possibility for restructuring drug discovery and preclinical investigation of drug candidates. However, accurate modeling of photon propagation in small animals is critical to quantitatively obtain accurate tomographic images. The diffusion approximation is commonly used for biomedical optical diagnostic techniques in turbid large media where absorption is low compared to scattering system. Unfortunately, this approximation has significant limitations to accurately predict radiative transport in turbid small media and also in a media where absorption is high compared to scattering systems. A radiative transport equation (RTE) is best suited for photon propagation in human tissues. However, such models are quite expensive computationally. To alleviate the problems of the high computational cost of RTE and inadequacies of the diffusion equation in a small volume, we use telegrapher equation (TE) in the frequency domain for fluorescence-enhanced optical tomography problems. The telegrapher equation can accurately and efficiently predict ballistic as well as diffusion-limited transport regimes which could simultaneously exist in small animals. The accuracy of telegrapher-based model is tested by comparing with the diffusion-based model using stimulated data in a small volume. This work demonstrates the use of the telegrapher-based model in small animal optical tomography problems.

Full text

References

2010 Mathematics Subject Classification: 47A07; 26D15.

Keywords: Fluorescence-enhanced optical tomography; Small animals optical tomography; Diffusion equation; Radiative transport equation; Telegrapher equation; High absorption; Small scattering.

http://www.utgjiu.ro/math/sma

**

Surveys in Mathematics and its Applications 6 (2011), 67 – 88

http://www.utgjiu.ro/math/sma

2215.

McGhee, *Radiative transport-based frequency-domain fluorescence tomography*,

[19] A. D. Kim and I. Ishimaru, *Optical diffusion of continuous wave, pulsed and
density waves in scattering media and comparison with radiative transfer*, Appl.

the time-independent equation of radiative transfer, Part 1: forward model*, J.

lem based on the radiative transfer equation in molecular optical imaging*, J.

beyond the diffusion limit: The role of ballistic transport and anisotropic scat-

the diffusion equation to describe photon migration through an infinite medium:
1373.

cence reconstruction of diffuse media by use of a normalized Born approxima-

body fluorescence tomography of probe bio-distributions in mice*, Opt. Express
13 (2005), 2564-2577.

**
Surveys in Mathematics and its Applications 6 (2011), 67 – 88
http://www.utgjiu.ro/math/sma
Fluorescence-enhanced optical tomography

Ranadhyr Roy Department of Mathematics, The University of Texas-Pan American, 1201 West University, Edinburg, Tx, 78541, USA. e-mail: rroy@utpa.edu

**
Surveys in Mathematics and its Applications 6 (2011), 67 – 88
http://www.utgjiu.ro/math/sma