FRACTIONAL ORDER DIFFERENTIAL INCLUSIONS ON THE HALF-LINE

Mouffak Benchohra and Naima Hamidi

Abstract. We are concerned with the existence of bounded solutions of a boundary value problem on an unbounded domain for fractional order differential inclusions involving the Caputo fractional derivative. Our results are based on the fixed point theorem of Bohnnenblust-Karlin combined with the diagonalization method.

1 Introduction

This paper deals with the existence of bounded solutions for boundary value problems (BVP for short) for fractional order differential inclusions of the form

\[
c^D_\alpha y(t) \in F(t, y(t)), \quad t \in J := [0, \infty),
\]

\[
y(0) = y_0, \quad y \text{ is bounded on } J,
\]

where \(c^D_\alpha\) is the Caputo fractional derivative of order \(\alpha \in (1, 2]\), \(F : J \times \mathbb{R} \to \mathcal{P}(\mathbb{R})\) is a multivalued map with compact, convex values (\(\mathcal{P}(\mathbb{R})\) is the family of all nonempty subsets of \(\mathbb{R}\)), \(y_0 \in \mathbb{R}\).

Fractional Differential equations have gained considerable importance due to their application in various sciences, such as physics, mechanics, chemistry, engineering, control, etc. (see [15, 17, 19, 18, 24, 27, 28]).

Recently, there has been a significant development in the study of ordinary and partial differential equations and inclusions involving fractional derivatives, see the monographs of Kilbas et al. [21], Lakshmikantham et al. [22], Miller and Ross [25], Podlubny [27], Samko et al. [29] and the papers by Agarwal et al. [1], Belarbi et al. [7, 8], Benchohra et al. [9, 10, 11, 12], Chang and Nieto [14], Diethelm et al. [15], and Ouahab [26].

Agarwal et al. [2] have considered a class of boundary value problems involving Riemann-Liouville fractional derivative on the half line. They used the diagonalization
process combined with the nonlinear alternative of Leray-Schauder type. This paper continues this study by considering a boundary value problem with the Caputo fractional derivative. We use the classical fixed point theorem of Bohnnenblust-Karlin [13] combined with the diagonalization process widely used for integer order differential equations; see for instance [3, 4]. Our results extend to the multivalued case those considered recently by Arara et al. [5].

2 Preliminary facts

We now introduce notations, definitions, and preliminary facts that will be used in the remainder of this paper.

Let $T > 0$ and $J := [0, T]$. $C(J, \mathbb{R})$ is the Banach space of all continuous functions from J into \mathbb{R} with the usual norm

$$\| y \| = \sup \{ |y(t)| : 0 \leq t \leq T \}.$$

$L^1(J, \mathbb{R})$ denote the Banach space of functions $y : J \rightarrow \mathbb{R}$ that are Lebesgue integrable with the norm

$$\| y \|_{L^1} = \int_0^T |y(t)| dt.$$

$AC^1(J, \mathbb{R})$ denote the space of differentiable functions whose first derivative y' is absolutely continuous.

2.1 Fractional derivatives

Definition 1. ([21, 27]). Given an interval $[a,b]$ of \mathbb{R}. The fractional (arbitrary) order integral of the function $h \in L^1([a,b], \mathbb{R})$ of order $\alpha \in \mathbb{R}_+$ is defined by

$$I^\alpha_a h(t) = \int_a^t \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} h(s) ds,$$

where Γ is the gamma function. When $a = 0$, we write $I^\alpha h(t) = [h * \varphi_\alpha](t)$, where $\varphi_\alpha(t) = \frac{t^{\alpha-1}}{\Gamma(\alpha)}$ for $t > 0$, and $\varphi_\alpha(t) = 0$ for $t \leq 0$, and $\varphi_\alpha \to \delta(t)$ as $\alpha \to 0$, where δ is the delta function.

Definition 2. ([21]). For a given function h on the interval $[a,b]$, the Caputo fractional-order derivative of h, is defined by

$$(^c D^\alpha_a h)(t) = \frac{1}{\Gamma(n-\alpha)} \int_a^t (t-s)^{n-\alpha-1} h^{(m)}(s) ds,$$

where $m = [\alpha] + 1$.

**

Surveys in Mathematics and its Applications 5 (2010), 99 – 111
http://www.utgjiu.ro/math/sma
More details on fractional derivatives and their properties can be found in [21, 27]

Lemma 3. (Lemma 2.22 [21]). Let \(\alpha > 0 \), then the differential equation

\[
^{c}D^{\alpha}h(t) = 0
\]

has solutions

\[
h(t) = c_0 + c_1 t + c_2 t^2 + \ldots + c_{m-1} t^{m-1},
\]

for arbitrary \(c_i \in \mathbb{R}, \ i = 0, 1, 2, \ldots, m - 1, \ m = \lfloor \alpha \rfloor + 1 \).

Lemma 4. (Lemma 2.22 [21]). Let \(\alpha > 0 \), then

\[
I^{\alpha}^{c}D^{\alpha}h(t) = h(t) + c_0 + c_1 t + c_2 t^2 + \ldots + c_{m-1} t^{m-1},
\]

(2.1)

for arbitrary \(c_i \in \mathbb{R}, \ i = 0, 1, 2, \ldots, m - 1, \ m = \lfloor \alpha \rfloor + 1 \).

2.2 Set-valued maps

Let \(X \) and \(Y \) be Banach spaces. A set-valued map \(G : X \to \mathcal{P}(Y) \) is said to be compact if \(G(X) = \bigcup \{ G(y) ; y \in X \} \) is compact. \(G \) has convex (closed, compact) values if \(G(y) \) is convex (closed, compact) for every \(y \in X \). \(G \) is bounded on bounded subsets of \(X \) if \(G(B) \) is bounded in \(Y \) for every bounded set \(B \) of \(X \). A set-valued map \(G \) is upper semicontinuous (usc for short) at \(z_0 \in X \) if for every open set \(O \) containing \(z_0 \) such that \(G(z_0) \subseteq O \). \(G \) is usc on \(X \) if it is usc at every point of \(X \) if \(G \) is nonempty and compact-valued then \(G \) is usc if and only if \(G \) has a closed graph. The set of all bounded closed convex and nonempty subsets of \(X \) is denoted by \(\mathcal{P}_{b,c}(X) \). A set-valued map \(G : J \to \mathcal{P}_{cl}(X) \) is measurable if for each \(y \in X \), the function \(t \mapsto dist(y, G(t)) \) is measurable on \(J \). If \(X \subseteq Y \), \(G \) has a fixed point if there exists \(y \in X \) such that \(y \in G(y) \). Also, \(\|G(y)\| = \sup\{|x| ; x \in G(y)\} \). A multivalued map \(G : J \to \mathcal{P}_{cl}(\mathbb{R}) \) is said to be measurable if for every \(y \in \mathbb{R} \), the function

\[
t \mapsto d(y, G(t)) = \inf\{|y - z| ; z \in G(t)|
\]

is measurable. For more details on multivalued maps see the books of Aubin and Frankowska [6], Deimling [16] and Hu and Papageorgiou [20].

Definition 5. A multivalued map \(F : J \times \mathbb{R} \to \mathcal{P}(\mathbb{R}) \) is said to be \(L^{1}\)-Carathéodory if

(i) \(t \mapsto F(t, y) \) is measurable for each \(x \in \mathbb{R} \);

(ii) \(x \mapsto F(t, y) \) is upper semicontinuous for almost all \(t \in J \);

(iii) for each \(q > 0 \), there exists \(\varphi_q \in L^{1}(J, \mathbb{R}_+) \) such that

\[
\|F(t, x)\| \leq \varphi_q(t) \text{ for all } |x| \leq q \text{ and for a.e. } t \in J.
\]

**

Surveys in Mathematics and its Applications 5 (2010), 99 – 111

http://www.utgjiu.ro/math/sma
The multivalued map \(F \) is said to be Carathéodory if it satisfies (i) and (ii). For each \(y \in \mathcal{C}(J, \mathbb{R}) \), define the set of selections of \(F \) by
\[
S^1_{F,y} = \{ v \in L^1(J, \mathbb{R}) : v(t) \in F(t, y(t)) \text{ a.e. } t \in J \}.
\]

Definition 6. By a solution of BVP (1.1)-(1.2) we mean a function \(y \in AC^1(J, \mathbb{R}) \) such that
\[
\begin{align*}
^cD^\alpha y(t) &= g(t), \quad t \in J, \quad 1 < \alpha \leq 2, \\
y(0) &= y_0, \quad y \text{ bounded on } J,
\end{align*}
\]
where \(g \in S^1_{F,y} \).

Remark 7. Note that for an \(L^1 \)-Carathéodory multifunction \(F : J \times \mathbb{R} \to \mathcal{P}_{cl}(\mathbb{R}) \), the set \(S^1_{F,y} \) is not empty (see [23]).

Lemma 8. (Bohnenblust-Karlin) (13). Let \(X \) be a Banach space and \(K \in \mathcal{P}_{cl,c}(X) \) and suppose that the operator \(G : K \to \mathcal{P}_{cl,c}(K) \) is upper semicontinuous and the set \(G(K) \) is relatively compact in \(X \). Then \(G \) has a fixed point in \(K \).

3 Main result

We first address a boundary value problem on a bounded domain. Let \(n \in \mathbb{N} \), and consider the boundary value problem
\[
\begin{align*}
^cD^\alpha y(t) &= F(t, y(t)), \quad t \in J_n := [0, n], \quad 1 < \alpha \leq 2, \\
y(0) &= y_0, \quad y'(n) = 0.
\end{align*}
\]

Let \(h : J_n \to \mathbb{R} \) be continuous, and consider the linear fractional order differential equation
\[
^cD^\alpha y(t) = h(t), \quad t \in J_n, \quad 1 < \alpha \leq 2.
\]

We shall refer to (3.1)-(3.2) as (LP).

By a solution to (LP) we mean a function \(y \in AC^1(J_n, \mathbb{R}) \) that satisfies equation (3.3) on \(J_n \) and condition (3.2).

We need the following auxiliary result:

Lemma 9. A function \(y \) is a solution of the fractional integral equation
\[
y(t) = y_0 + \int_0^t G_n(t, s)h(s)ds,
\]
if and only if \(y \) is a solution of (LP), where \(G(t, s) \) is the Green’s function defined by
\[
G_n(t, s) = \begin{cases}
\frac{-t(n-s)^{\alpha-2}}{\Gamma(\alpha-1)} + \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)}, & 0 \leq s \leq t \leq n, \\
\frac{-t(n-s)^{\alpha-2}}{\Gamma(\alpha-1)}, & 0 \leq t \leq s < n.
\end{cases}
\]
Proof. Let \(y \in C(J_n, \mathbb{R}) \) be a solution to (LP). Using Lemma 4, we have that
\[
y(t) = I^\alpha h(t) - c_0 - c_1 t = \int_0^t \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} h(s) ds - c_0 - c_1 t,
\]
for arbitrary constants \(c_0 \) and \(c_1 \). We have by derivation
\[
y'(t) = \int_0^t \frac{(t-s)^{\alpha-2}}{\Gamma(\alpha-1)} h(s) ds - c_1.
\]
Applying the boundary conditions (3.2), we find that
\[
c_0 = -y_0, \quad c_1 = \int_0^n \frac{(n-s)^{\alpha-2}}{\Gamma(\alpha-1)} h(s) ds.
\]
Reciprocally, let \(y \in C(J_n, \mathbb{R}) \) satisfying (3.4), then
\[
y(t) = y_0 + \int_0^t \frac{-(n-s)^{\alpha-2}}{\Gamma(\alpha-1)} + \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} h(s) ds + \int_0^n \frac{-(n-s)^{\alpha-2}}{\Gamma(\alpha-1)} h(s) ds.
\]
Then \(y(0) = y_0 \) and
\[
y'(t) = \int_0^n \frac{-(n-s)^{\alpha-2}}{\Gamma(\alpha-1)} h(s) ds + \int_0^t \frac{(t-s)^{\alpha-2}}{\Gamma(\alpha-1)} h(s) ds.
\]
Thus, \(y'(n) = 0 \) and
\[
c D^{\alpha-1} y(t) = c D^{\alpha} y(t) = c D^{\alpha-1} \int_0^t \frac{(t-s)^{\alpha-2}}{\Gamma(\alpha-1)} h(s) ds = c D^{\alpha-1} I^{\alpha-1} y(t).
\]

Remark 10. For each \(n > 0 \), the function \(t \in J_n \mapsto \int_0^n |G_n(t,s)| ds \) is continuous on \([0,n]\), and hence is bounded. Let
\[
\tilde{G}_n = \sup \left\{ \int_0^n |G_n(t,s)| ds, \ t \in J_n \right\}.
\]

Definition 11. A function \(y \in AC^1(J_n, \mathbb{R}) \) is said to be a solution of (3.1)–(3.2) if there exists a function \(v \in L^1(J_n, \mathbb{R}) \) with \(v(t) \in F(t, y(t)) \), for a.e. \(t \in J_n \), such that the differential equation \(c D^{\alpha} y(t) = v(t) \) on \(J_n \) and
\[
y(0) = y_0, \quad y'(n) = 0
\]
are satisfied.
Theorem 12. Assume the following hypotheses hold:

(H_1) \(F : J_n \times \mathbb{R} \to \mathcal{P}(\mathbb{R}) \) is Carathéodory with compact convex values,

(H_2) there exist \(p \in C(J, \mathbb{R}^+) \) and \(\psi : [0, \infty) \to (0, \infty) \) continuous and nondecreasing such that

\[
\|F(t, u)\|_P \leq p(t)\psi(|u|) \quad \text{for } t \in J_n \text{ and each } u \in \mathbb{R};
\]

(H_3) There exists a constant \(r > 0 \) such that

\[
r \geq |y_0| + p_n^*\psi(r)\hat{G}_n,
\]

where

\[
p_n^* = \sup\{p(s), s \in J_n\}.
\]

Then BVP (3.1)–(3.2) has at least one solution on \(J_n \) with \(|y(t)| \leq r \) for each \(t \in J_n \).

Proof. Fix \(n \in \mathbb{N} \) and consider the boundary value problem

\[
D^\alpha y(t) \in F(t, y(t)), \quad t \in J_n, \quad 1 < \alpha \leq 2, \quad (3.6)
\]

\[
y(0) = y_0, \quad y'(n) = 0. \quad (3.7)
\]

We begin by showing that (3.6)-(3.7) has a solution \(y_n \in C(J_n, \mathbb{R}) \) with

\[
|y_n(t)| \leq r \quad \text{for each } t \in J_n.
\]

Consider the operator \(N : C(J_n, \mathbb{R}) \to 2^{C(J_n, \mathbb{R})} \) defined by

\[
(Ny) = \left\{ h \in C(J, \mathbb{R}) : h(t) = y_0 + \int_0^n G_n(t, s)v(s)ds \right\}
\]

where \(v \in S_{F,y}^1 \), and \(G_n(t, s) \) is the Green’s function given by (3.5). Clearly, from Lemma 8, the fixed points of \(N \) are solutions to (3.6)–(3.7). We shall show that \(N \) satisfies the assumptions of Bohnenblust-Karlin fixed point theorem. The proof will be given in several steps.

Let

\[
K = \{ y \in C(J_n, \mathbb{R}), \|y\|_n \leq r \},
\]

where \(r \) is the constant given by \((H_3) \). It is clear that \(K \) is a closed, convex subset of \(C(J_n, \mathbb{R}) \).

Step 1: \(N(y) \) is convex for each \(y \in K \).
Indeed, if h_1, h_2 belong to $N(y)$, then there exist $v_1, v_2 \in S_{F,y}^1$ such that for each $t \in J_n$ we have

$$h_i(t) = y_0 + \int_0^t G_n(t,s)v_i(s)ds, \quad i = 1, 2.$$

Let $0 \leq d \leq 1$. Then, for each $t \in J$, we have

$$(dh_1 + (1 - d)h_2)(t) = \int_0^t G_n(t,s)(dv_1 + (1 - d)v_2(s)ds.$$

Since $S_{F,y}^1$ is convex (because F has convex values), we have

$$dh_1 + (1 - d)h_2 \in N(y).$$

Step 2: $N(K)$ is bounded.

This is clear since $N(K) \subset K$ and K is bounded.

Step 3: $N(K)$ is equicontinuous.

Let $\xi_1, \xi_2 \in J$, $\xi_1 < \xi_2$, $y \in K$ and $h \in N(y)$, then

$$|h(\xi_2) - h(\xi_1)| \leq \int_0^\xi |G(\xi_2, s) - G(\xi_1, s)|v(s)|ds \\ \leq p_n \psi(r) \int_0^\xi |G_n(\xi_2, s) - G_n(\xi_1, s)|ds.$$

As $\xi_1 \to \xi_2$, the right-hand side of the above inequality tends to zero. As a consequence of Steps 1 to 3 together with the Arzelá-Ascoli theorem, we can conclude that $N : K \longrightarrow \mathcal{P}(K)$ is compact.

Step 4: N has a closed graph.

Let $y_n \to y_*$, $h_n \in N(y_n)$ and $h_n \to h_*$. We need to show that $h_* \in N(y_*)$.

$h_n \in N(y_n)$ means that there exists $v_n \in S_{F,y_n}^1$ such that, for each $t \in J_n$,

$$h_n(t) = y_0 + \int_0^t G_n(t,s)v_n(s)ds.$$

We must show that there exists $v_* \in S_{F,y_*}^1$ such that, for each $t \in J_n$,

$$h_*(t) = y_0 + \int_0^t G_n(t,s)v^*(s)ds.$$

We consider the continuous linear operator

$$\Gamma : L^1(J_n, \mathbb{R}) \rightarrow C(J_n, \mathbb{R}).$$
defined by

\[(\Gamma v)(t) = \int_0^n G_n(t, s)v(s)ds.\]

Since \(h_n(t) - y_0 \in \Gamma(S^1_{F,y})\), \(|(h_n(t) - y_0) - (h_\ast(t) - y_0)| \to 0\) as \(n \to \infty\) and \(\Gamma \circ S^1_F\) has a closed graph, then

\[h_\ast - y_0 \in \Gamma(S^1_{F,y}).\]

So

\[h_\ast \in N(y_\ast).\]

Therefore, we deduce from Bohnenblust-Karlin fixed point theorem that \(N\) has a fixed point \(y_n\) in \(K\) which is a solution of BVP \((3.6)-(3.7)\) with

\[|y_n(t)| \leq r \text{ for each } t \in J_n.\]

Diagonalization process

We now use the following diagonalization process. For \(k \in \mathbb{N}\), let

\[u_k(t) = \begin{cases} y_k(t), & t \in [0, n_k], \\ y_k(n_k) & t \in [n_k, \infty). \end{cases} \tag{3.8}\]

Here \(\{n_k\}_{k \in \mathbb{N}}\) is a sequence of numbers satisfying

\[0 < n_1 < n_2 < \ldots < n_k < \ldots \uparrow \infty.\]

Let \(S = \{u_k\}_{k=1}^{\infty}\). Notice that

\[|u_k(t)| \leq r \text{ for } t \in [0, n_1], \quad k \in \mathbb{N}.\]

Also for \(k \in \mathbb{N}\) and \(t \in [0, n_1]\) we have

\[u_{n_k}(t) = y_0 + \int_0^{n_1} G_{n_1}(t, s)v_{n_k}(s)ds,\]

where \(v_{n_k} \in S^1_{F,u_{n_k}}\) and thus, for \(k \in \mathbb{N}\) and \(t, x \in [0, n_1]\) we have

\[u_{n_k}(t) - u_{n_k}(x) = \int_0^{n_1} [G_{n_1}(t, s) - G_{n_1}(x, s)]v_{n_k}(s)ds\]

and by \((H_2)\), we have

\[|u_{n_k}(t) - u_{n_k}(x)| \leq p^*_r(r) \int_0^{n_1} |G_{n_1}(t, s) - G_{n_1}(x, s)|ds.\]
The Arzelà-Ascoli Theorem guarantees that there is a subsequence N^*_1 of \mathbb{N} and a function $z_1 \in C([0, n_1], \mathbb{R})$ with $u_{n_k} \to z_1$ in $C([0, n_1], \mathbb{R})$ as $k \to \infty$ through N^*_1. Let $N_1 = N^*_1 \setminus \{1\}$. Notice that

$$|u_{n_k}(t)| \leq r \text{ for } t \in [0, n_2], k \in \mathbb{N}.$$

Also for $k \in \mathbb{N}$ and $t, x \in [0, n_2]$ we have

$$|u_{n_k}(t) - u_{n_k}(x)| \leq p^*_2 \psi(r) \int_0^{n_2} |G_{n_2}(t, s) - G_{n_2}(x, s)| ds.$$

The Arzelà-Ascoli Theorem guarantees that there is a subsequence N^*_2 of N_1 and a function $z_2 \in C([0, n_2], \mathbb{R})$ with $u_{n_k} \to z_2$ in $C([0, n_2], \mathbb{R})$ as $k \to \infty$ through N^*_2. Note that $z_1 = z_2$ on $[0, n_1]$ since $N^*_2 \subseteq N_1$. Let $N_2 = N^*_2 \setminus \{2\}$. Proceed inductively to obtain for $m \in \{3, 4, \ldots\}$ a subsequence N^*_m of N_{m-1} and a function $z_m \in C([0, n_m], \mathbb{R})$ with $u_{n_k} \to z_m$ in $C([0, n_m], \mathbb{R})$ as $k \to \infty$ through N^*_m. Let $N_m = N^*_m \setminus \{m\}$.

Define a function y as follows. Fix $t \in (0, \infty)$ and let $m \in \mathbb{N}$ with $s \leq n_m$. Then define $y(t) = z_m(t)$. Then $y \in C([0, \infty), \mathbb{R})$, $y(0) = y_0$ and $|y(t)| \leq r$ for $t \in [0, \infty)$.

Again fix $t \in (0, \infty)$ and let $m \in \mathbb{N}$ with $s \leq n_m$. Then for $n \in N_m$ we have

$$u_{n_k}(t) = y_0 + \int_0^{n_m} G_{n_m}(t, s) v_{n_k}(s) ds,$$

Let $n_k \to \infty$ through N_m to obtain

$$z_m(t) = y_0 + \int_0^{n_m} G_{n_m}(x, s) v_m(s) ds,$$

i.e

$$y(t) = y_0 + \int_0^{n_m} G_{n_m}(t, s) v(s) ds,$$

where $v_m \in S_{F, z_m}^1$.

We can use this method for each $x \in [0, n_m]$, and for each $m \in \mathbb{N}$. Thus

$$D^n y(t) \in F(t, y(t)), \text{ for } t \in [0, n_m]$$

for each $m \in \mathbb{N}$ and $\alpha \in (1, 2]$.

\[\square\]

4 An example

Consider the boundary value problem

$$^cD^n y(t) \in F(t, y(t)), \text{ for } t \in J = [0, \infty), \quad 1 < \alpha \leq 2, \quad (4.1)$$

Surveys in Mathematics and its Applications 5 (2010), 99 – 111
http://www.utgjiu.ro/math/sma
where \(cD^{\alpha} \) is the Caputo fractional derivative. Set
\[
F(t,y) = \{ v \in \mathbb{R} : f_1(t,y) \leq v \leq f_2(t,y) \},
\]
where \(f_1, f_2 : J \times \mathbb{R} \to \mathbb{R} \) are measurable in \(t \). We assume that for each \(t \in J \), \(f_1(t,\cdot) \) is lower semi-continuous (i.e, the set \(\{ y \in \mathbb{R} : f_1(t,y) > \mu \} \) is open for each \(\mu \in \mathbb{R} \)), and assume that for each \(t \in J \), \(f_2(t,\cdot) \) is upper semi-continuous (i.e the set \(\{ y \in \mathbb{R} : f_2(t,y) < \mu \} \) is open for each \(\mu \in \mathbb{R} \)). Assume that there exists \(p \in C(J,\mathbb{R}^+) \) and \(\delta \in (0,1) \) such that
\[
\max(|f_1(t,y)|, |f_2(t,y)|) \leq p(t)|y|^\delta, \quad t \in J, \text{ and all } y \in \mathbb{R}.
\]
It is clear that \(F \) is compact and convex valued, and it is upper semi-continuous (see [16]). Also conditions (\(\mathcal{H}_1 \)) and (\(\mathcal{H}_2 \)) are satisfied with
\[
\psi(u) = u^\delta, \quad \text{for each } u \in [0,\infty).
\]
From (3.5) we have for \(s \leq t \)
\[
\int_0^t G_n(t,s)ds = \frac{t}{\Gamma(\alpha-1)(\alpha-1)}[(n-t)^{(\alpha-1)} - n^{(\alpha-1)}] + \frac{t^\alpha}{\alpha\Gamma(\alpha)}
\]
and for \(t \leq s \)
\[
\int_t^s G_n(t,s)ds = -\frac{t}{(\alpha-1)\Gamma(\alpha-1)}(n-t)^{\alpha-1}.
\]
Also since
\[
\lim_{c \to \infty} \frac{c}{1 + p_n^* \psi(c)G_n} = \lim_{c \to \infty} \frac{c}{\psi(c)} = \lim_{c \to \infty} \frac{c}{c^\delta} = \infty,
\]
then there exists \(r > 0 \) such that
\[
\frac{r}{1 + p_n^* \psi(r)G_n} \geq 1.
\]
Hence (\(\mathcal{H}_3 \)) is satisfied. Then by Theorem 12, BVP (4.1)-(4.2) has a bounded solution on \([0,\infty)\).

Acknowledgement. The authors are grateful to the referee of his/her remarks.

References

Surveys in Mathematics and its Applications 5 (2010), 99 – 111
http://www.utgjiu.ro/math/sma

**

Surveys in Mathematics and its Applications 5 (2010), 99 – 111

http://www.utgjiu.ro/math/sma

Mouffak Benchohra
Laboratory of Mathematics,
University of Sidi Bel Abbès,
P.O Box 89, Sidi Bel-Abbès, 22000,
Algeria.
e-mail: benchohra@univ-sba.dz

Naima Hamidi
Laboratory of Mathematics,
University of Sidi Bel Abbès,
P.O Box 89, Sidi Bel-Abbès, 22000,
Algeria.
e-mail: hamidi.naima@yahoo.fr

**

Surveys in Mathematics and its Applications 5 (2010), 99 – 111

http://www.utgjiu.ro/math/sma