FIXED POINTS OF MAPPINGS WITH
DIMINISHING PROBABILISTIC ORBITAL
DIAMETERS

Irshad Aalam, Naresh Kumar and B. D. Pant

Abstract. In this paper we prove a fixed point theorem for a pair of mappings with probabilis-
tic diminishing orbital diameters on Menger spaces and introduce the notion of generalized joint
diminishing probabilistic orbital diameters (gjdpod) for a quadruplet of mappings.

1 Introduction

The notion of ‘diminishing orbital diameters’ (dod) was introduced by Belluce and
Kirk [1]. Subsequently, Fisher [3], Huang, Huang and Jeng [4], Liu [7], Ranganathan,
Srivastva and Gupta [9], Singh [10], Wong [12] etc. obtained some more results in
this settings.
Istrătescu and Săcuiu [5] introduced the concept of non-expansive mappings and
mapping with ‘diminishing probabilistic orbital diameters’ (dpod) on probabilistic
metric spaces (PM-spaces). Singh and Pant [11] have shown that a non-expansive
mapping on PM-space having dpod has a fixed point. They have also investigated
that the condition of non-expansiveness of the mapping may be relaxed to the con-
dition of the mapping being with relatively compact orbits.
In this paper we introduce the notion of dpod and gjdpod for a pair of mappings
and established a fixed point theorem. Subsequently, we introduced the concept of
gjdpod for a quadruplet of mappings and prove a fixed point theorem. Some of the
previously results of [7], [9], [10], [11] (in different settings) may be derived from our
results.

1.1 Preliminaries

Definition 1. [2].Let A be a non-empty subset of X. The function $D_A(\cdot)$ defined
by

$$D_A(x) = \sup_{\varepsilon < x} \inf_{u,v \in A} F_{u,v}(\varepsilon)$$

2010 Mathematics Subject Classification: 47H10; 54H25.
Keywords: PM Space; Diameter; Orbit.

http://www.utgjiu.ro/math/sma
is called the probabilistic diameter of A.

Definition 2. [2] The function $E_{A,B}(\cdot)$ defined by

$$E_{A,B}(\varepsilon) = \text{lub} \{ \text{glb} \{ \text{lub} F_{u,v}(x) \} : u \in A, v \in B \}$$

is called the probabilistic distance between A and B.

Let $P : X \rightarrow X$ and $u \in X$, then $O_P(u) = (u, Pu, P^2u, \ldots)$ is called the orbit of u with respect to P and $\overline{O_P(u)}$ denotes the closure of $O_P(u)$.

Definition 3. [5] Let P be a self map on a PM-space X. P is said to have dpod at u if for $D_{O_P(P(u))}(\varepsilon) > 0$

$$\lim_{n \to \infty} D_{O_P(P^0(u))}(\varepsilon) > D_{O_P(u)}(\varepsilon)$$

where H is a distribution function.

We now introduce the following definitions:

Definition 4. A pair of mappings P,Q of a PM-space X is said to have diminishing probabilistic orbital diameters (dpod) if

$$\lim_{n \to \infty} E_{O_P(P^n(u)),O_Q(Q^n(u))}(\varepsilon) > E_{O_P(u),O_Q(u)}(\varepsilon), \varepsilon > 0,$$

for all $u \in X$ with $E_{O_P(P^n(u)),O_Q(Q^n(u))}(\varepsilon) \neq H$.

Definition 5. A pair of mappings P,Q on a PM-space X is said to have generalized diminishing probabilistic orbital diameters (gdpod) if

$$\lim_{n \to \infty} E_{O_P(P^n(u)),O_Q(Q^n(v))}(\varepsilon) > E_{O_P(u),O_Q(v)}(\varepsilon), \varepsilon > 0,$$

for all $u \in X$ with $E_{O_P(P^n(u)),O_Q(Q^n(v))}(\varepsilon) \neq H$.

It is clear that (P,Q) has a dpod if (P,Q) has a gdpod. Also (P,P) has a dpod if and only if P has dpod.
2 Main Result

Theorem 6. Let P and Q are continuous self mappings of a compact Menger space. If the pair (P,Q) has a gdpod on X, then for each $u,v \in X$, there exists some subsequences $\{P^n(u)\}$ of $P_n(u)$ and $\{Q^n(u)\}$ of $Q_n(u)$ converge to a common fixed point for P and Q.

Proof. Let $u \in X$, $L(u)$ denotes the set of all points of X which are the limits of the subsequence $P_n(u)$ Since $L(u) \neq \emptyset$ because X is compact, $L(u)$ is mapped into itself by P. Also $L(u)$ is closed, so by Zorn’s lemma there exists a minimal P-invariant non-empty subset $A \subset L(u)$ such that A is closed and mapped into itself by P. Similarly we can find a minimal Q-invariant non-empty subset $B \subset L(v)$ such that B is closed and mapped into itself by Q. For $u_0 \in A$, $O_P(u_0)$ is mapped into itself by P. Therefore minimality of A implies that $A = O_P(u_0)$. Similarly for $v_0 \in B$, we have $B = O_Q(v_0)$.

We now prove that $E_{A,B}(\varepsilon) = H$, $\varepsilon > 0$. Suppose $E_{A,B}(\varepsilon) \neq H$, $\varepsilon > 0$. Since P,Q has a dpod, we have

$$E_{A,B}(\varepsilon) = E_{O_P(u_0),O_Q(v_0)}(\varepsilon) < \lim_{n \to \infty} E_{O_P(P_n(u_0)),O_Q(Q_n(v_0))}(\varepsilon)$$

This implies

$$E_{O_P(u_0),O_Q(v_0)}(\varepsilon) < \lim_{n \to \infty} E_{O_P(P_n(u_0)),O_Q(Q_n(v_0))}(\varepsilon) = E_{A,B}(\varepsilon)$$

contradiction. Hence $E_{A,B}(\varepsilon) = H$, which implies that $A = B = (w)$ (say). Then it is clear that w is a common fixed point of P and Q. If z is another fixed point of P and $z \neq w$ Then we have

$$\lim_{n \to \infty} E_{O_P(P_n(z)),O_Q(Q_n(w))}(\varepsilon) > E_{O_P(z),O_Q(w)}(\varepsilon), \varepsilon > 0, \quad \text{or } E_{z,w}(\varepsilon) > E_{z,w}(\varepsilon),$$

a contradiction. Hence w is a unique fixed point of P. Similarly, we may show that w is a unique fixed point of Q.

This completes the proof of the theorem.

Remark 7. If in the above theorem condition gdpod is replaced by the condition dpod, then it no longer assures the existence of a common fixed point for P and Q. (see [7])

Corollary 8. Let P be a continuous self mapping of a compact Menger space X. If (P,P) has a gdpod, then P has a unique fixed point. Furthermore, for each $u \in X$, there exists some subsequences of $P^n(u)$ converge to a unique fixed point of P.

Pant, Dimri and Chandola [8] have introduced the concept of joint sequence of iterates for a quadruplet of mappings as follows:

Surveys in Mathematics and its Applications **5** (2010), 83 – 88

http://www.utgjiu.ro/math/sma
Definition 9. [8] Let $B = (P,Q,S,T)$ be a quadruplet of self mappings on a PM-space X. For u_0 in X, let $Tu_n = QPu_{n-1}$, if n is odd and $Tu_n = SQPu_{n-1}$ if n is even, then the sequence

$$J_B(u_0) = \{u_0, Pu_0, QPu_0, SQPu_0, TSQPu_0, \cdots\}$$

is called the joint sequence of iterates of B at u_0.

We now introduce the notion of gjdpod for a quadruplet of mappings in PM-space.

Let $\delta_u(\varepsilon) = \lim\limits_{n\to\infty} D_{J_B^n(u)}(\varepsilon)$.

Definition 10. B will be called to have gjdpod at u if for $D_{J_B^n(u)}(\varepsilon) \neq H, \varepsilon > 0$,

$$\delta_u(\varepsilon) > D_{J_B(u)}(\varepsilon).$$

Theorem 11. Let X be a compact Menger space and $B = (P,Q,S,T)$ be a quadruplet of continuous self mappings on X such that B have gjdpod on X. Then for each $u_0 \in X$, a subsequence of $J_B(u_0)$ converges to a common fixed point of P,Q,S and T.

Proof. For $u_0 \in X$, let $A(u_0)$ denote the set of all points of X which are limit of subsequences of the sequence $J_B(u_0)$. Since X is compact, $A(u_0) \neq \phi$ Also $A(u_0)$ is closed and mapped into itself by P,Q,S and T. Let some subsequence of $J_B(u_0)$ converge to a point u in X, so $u \in A(u_0)$. Further P,Q,S and T are continuous, therefore $J_B(u_0) \subset A(u_0)$. By Zorn’s Lemma, there exists a minimal nonempty subset $K \subset A(u_0)$ such that K is closed and mapped into itself by P,Q,S and T. Also for $q_0 \in K$, $J_B(q_0)$ is mapped into itself by P,Q,S and T. Therefore minimality of K implies that $K = J_B(q_0)$. Suppose $D_K(\varepsilon) \neq H, \varepsilon > 0$. Since B have gjdpod, then we have

$$\delta_{q_0}(\varepsilon) > D_{J_B(q_0)}(\varepsilon).$$

This implies that $D_{J_{B,n}(q_0)}(\varepsilon) > D_{J_B(q_0)}(\varepsilon)$, for some integer n. Thus

$$D_{J_{B,n}(q_0)}(\varepsilon) > D_{J_B(q_0)}(\varepsilon), \varepsilon > 0$$

This shows that $J_{B,n}(q_0)$ is a proper subset of K, contradicting the minimality of K. Hence $D_K(\varepsilon) = H, \varepsilon > 0$ Thus K consists of a single point q_0. So we have $P(q_0) = Q(q_0) = R(q_0) = S(q_0) = q_0$. Therefore q_0 is the common fixed point of P,Q,S and T.

Remark 12. With $Q = S = T = I$ (Identity mapping), the notion of gjdpod is same as dpod and then result of Kirk (Th. A, [6]) follow.
Remark 13. If any two of P, Q, S, T are taken as identity maps then gdpo_{d} reduces to jdpo_{d} and the result of Singh and Pant (Th. 4, [11]) is obtained as corollary.

Remark 14. It is not necessary that any continuous mapping P in Theorem 11 has dpo_{d} on X, since in such a case it might be possible to obtain a family B of continuous self mappings on X such that $B \cup P$ has a gdpo_{d} (see, for illustration [9]).

References

Irshad Aalam
Department of Mathematics, R. H. G. P. G. College Kashipur, U. S. Nagar, Uttarakhand, India.
e-mail: aalam_math @ rediffmail.com

Naresh Kumar
Department of Mathematics, R. H. G. P. G. College Kashipur,
U. S. Nagar, Uttarakhand, India.
e-mail: knaresh.math @ gmail.com

B. D. Pant
G. P. G. College Champavat
Uttarakhand, India.
e-mail: bd_math @ rediffmail.com