THE \(n\)-DIMENSIONAL CONTINUOUS WAVELET TRANSFORMATION ON GELFAND AND SHILOV TYPE SPACES

S. K. Upadhyay, R. N. Yadav and Lokenath Debnath

Abstract. In this paper the wavelet transformation on Gelfand and Shilov spaces of type \(W_M(\Box^n)\), \(W^\Omega(\Delta^n)\) and \(W^\Omega_M(\Delta^n)\) is studied. It is shown that \(W_\psi \phi : W_M(\Box^n) \to W_M(\Box^n \times \Box^n)\), \(W_\psi \phi : W^\Omega(\Delta^n) \to W^\Omega(\Delta^n \times \Box^n)\) and \(W_\psi \phi : W^\Omega_M(\Delta^n) \to W^\Omega_M(\Delta^n \times \Box^n)\) is linear and continuous where \(\Box^n\) and \(\Delta^n\) are \(n\)-dimensional real numbers and complex numbers. A boundedness result in a generalized Sobolev space is derived.

Full text

References

2000 Mathematics Subject Classification: 42C40; 46F12.

Keywords: Continuous wavelet transformation; Sobolev space; Fourier transformation; \(W\)-spaces.

**

http://www.utgjiu.ro/math/sma

S. K. Upadhyay
Department of Applied Mathematics,
I. T. and C I M S, D S T, B. H. U., Varanasi - 221005,
India.
e-mail: sk_upadhyay2001@yahoo.com

R. N. Yadav
Department of Mathematics and Statistics, D. D. U. Gorakhpur University, Gorakhpur, India.

e-mail: debnathl@utpa.edu

Lokenath Debnath
Department of Mathematics, The University of Texas-Pan American, 1201 West University Drive, Edinburg, 78539, USA.
e-mail: debnathl@utpa.edu