POSITIVE DEFINITE SOLUTION OF TWO KINDS OF NONLINEAR MATRIX EQUATIONS

Xuefeng Duan, Zhenyun Peng and Fujian Duan

Abstract. Based on the elegant properties of the Thompson metric, we prove that the following two kinds of nonlinear matrix equations $X = m \sum_{i=1}^{m} A_i^* X^\delta_i A_i$ and $X = m \sum_{i=1}^{m} (A_i^* X A_i)^\delta_i$, $(0 < |\delta_i| < 1)$ always have a unique positive definite solution. Iterative methods are proposed to compute the unique positive definite solution. We show that the iterative methods are more effective as $\delta = \max\{|\delta_i|, \ i = 1, 2, \cdots, m\}$ decreases. Perturbation bounds for the unique positive definite solution are derived in the end.

Full text

References

2000 Mathematics Subject Classification: 15A24; 65H05.
Keywords: Nonlinear matrix equation; Positive definite solution; Iterative method; Perturbation bound; Thompson metric.

The work was supported by National Natural Science Foundation of China (10861005), and Provincial Natural Science Foundation of Guangxi (0991238).

http://www.utgjiu.ro/math/sma

[13] Y. Lim, Solving the nonlinear matrix equation $X = Q + \sum_{i=1}^{m} A_i^{*}X^k A_i$ via a contraction principle, Linear Algebra Appl. 430 (2009), 1380-1383. MR2489400(2009j:15078). Zbl 1162.15008.

Surveys in Mathematics and its Applications 4 (2009), 179 – 190

http://www.utgjiu.ro/math/sma
Positive definite solution of two kinds of nonlinear matrix equations

Xuefeng Duan
College of Mathematics and Computational Science,
Guilin University of Electronic Technology,
Guilin 541004, P.R. China. and Department of Mathematics,
Shanghai University,
Shanghai 200444, P.R. China.
e-mail: duanxuefenghd@yahoo.com.cn; duanxuefeng@guet.edu.cn
http://www2.gliet.edu.cn/dept7/last/TeacherDetail.Asp?TeacherID=369

Zhenyun Peng
College of Mathematics and Computational Science,
Guilin University of Electronic Technology,
Guilin 541004, P.R. China.

Fujian Duan
College of Mathematics and Computational Science,
Guilin University of Electronic Technology,
Guilin 541004, P.R. China.

**

Surveys in Mathematics and its Applications 4 (2009), 179 – 190

http://www.utgjiu.ro/math/sma