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Abstract. In the 1930s Chevalley and Weil gave a formula for decomposing the canonical
representation on the space of differential forms of the Galois group of a ramified Galois
cover of Riemann surfaces. In this article we prove an analogous Chevalley–Weil formula for
ramified Galois covers of orbifold curves. We then specialize the formula to the case when
the base orbifold curve is the (reduced) modular orbifold. As an application of this latter
formula we decompose the canonical representations of modular curves of full, prime level
and of Fermat curves of arbitrary exponent.
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1 Introduction

Let f : X → Y be a ramified Galois cover of compact Riemann surfaces of genus gX and gY , and
let G := AutX(Y ) be the Galois group of f . This is a finite group of automorphisms of X that
acts by pull-back on the space of holomorphic differential 1-forms of X, giving a gX -dimensional
complex representation

ρf : Gop → GL
(
H0
(
X,Ω1

X

))
,

the canonical representation of G. Given an irreducible representation ρ of G, Chevalley and
Weil [6, 22] gave a formula for the multiplicity of ρ inside ρf in terms of the genus of Y and the
ramification data of f . This is called the Chevalley–Weil formula. A modern account of this
result in the more general setting of algebraic curves over an algebraically closed field whose
characteristic does not divide |G| can be found in [14]. The formula has subsequently been
generalized by Nakajima [15] to any coherent sheaf and any ramified cover of algebraic varieties
over an any algebraically closed field (the generalization of the Chevalley–Weil formula for curves
over any algebraically closed field was also treated in [8]). The Chevalley–Weil formula can be
used in conjunction with the character table of G to write down explicit matrices for ρf without
having to compute a basis for H0

(
X,Ω1

X

)
. As an application, when gX ≥ 3 is small explicit

equations for the canonical embedding X → PgX−1 can be found using this model for ρf [19].

In this article we generalize the Chevalley–Weil formula to ramified Galois covers of orbifold
curves (also known as Deligne–Mumford curves or stacky curves), under the mild assumption
that the ramification locus is disjoint from the locus of orbifold points in Y . We work over
the complex numbers, but the same exact arguments go through unchanged for an arbitrary
algebraically closed field whose characteristic does not divide |G|. The proof is contained in
Section 3. The structure of the proof follows the excellent exposition in [14], with the necessary
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generalizations and extra computations needed in the orbifold case. We have also simplified the
arguments when possible by referring to the literature.

Suppose now that the base orbifold curve Y = X(1) is the compactification of the orbifold
quotient h/PSL2(Z), the reduced modular orbifold. The Galois covers of X(1) are modular
curves X(Γ) corresponding to normal subgroups Γ /PSL2(Z). The canonical representations ρΓ

in this case can be viewed as representations of PSL2(Z)op factoring through the finite quotient
G := PSL2(Z)/Γ. Our orbifold Chevalley–Weil formula in this case applies and we are able to
compute explicit matrices for ρΓ whenever all its factors are of dimension ≤ 6, by consulting
the wealth of information available on the representation theory of PSL2(Z) (e.g., [11, 12, 20]).
We do so in Section 4. In Section 5 we specialize to the case of principal congruence subgroups
Γ = Γ(p), for p ≥ 5 a prime. In this case G ' PSL2(Fp) and the character tables of these groups
have been known since Frobenius and Schur. For each irreducible representation ρ appearing in
the character table of PSL2(Fp), we find a formula for the multiplicity of ρ inside the canonical
representation ρΓ(p). We then apply our computations to compute the canonical representation
for the Klein quartic, which can be uniformized by the principal congruence subgroup Γ(7). In
Section 6, we present a uniformization of Fermat curves FN of exponent N by normal subgroups
Φ(N) / PSL2(Z), which exhibits FN as a Galois cover of X(1) with Galois group isomorphic
to (Z/NZ)2 o S3. This is known to be the full automorphism group of FN [21], and is thus
interesting to compute the decomposition of the canonical representation ρΦ(N). We do so using
our Chevalley–Weil formula in Theorems 6.2 and 6.4 below. As shown in [1], the decomposition
of ρΦ(N) into irreducible representations gives a corresponding ‘group algebra’ decomposition of
the Jacobian variety of FN . Decomposing the Jacobian variety of FN is an important problem
that has been previosuly considered by many in algebraic geometry and number theory, including
Noriko Yui [23].

2 Vector bundles over orbifold curves

In this section we recall a few basic facts about vector bundles on orbifold curves. Good references
for these facts are [7] and [16]. Alternatively, the reader may consult the literature on locally free
sheaves over Deligne–Mumford curves or stacky curves [2]. In this article an orbifold curve X
is a compact, connected, complex orbifold of dimension one with finitely many orbifold points
(P1, . . . , Pn) with non-trivial cyclic stabilizers of orders (p1, . . . , pn), respectively. We assume
that X is generically a Riemann surface (thus a reduced orbifold). The genus of X, denoted
by gX , is the genus of its underlying Riemann surface X̄ (this coincides with the coarse moduli
space if X is viewed as a Deligne–Mumford curve). Let α1, . . . , αgX , β1, . . . , βgX be a set of
standard generators for the fundamental group of X̄. The orbifold fundamental group of X
(with respect to some base-point b) can be defined as

π1(X; b) :=
{
α1, . . . , αgX , β1, . . . , βgX , γP1 , . . . , γPn :

γp1P1
= 1, . . . , γpnPn = 1, γP1 · · · γPn [α1, β1] · · · [αgX , βgX ] = 1

}
, (2.1)

where γPi is an oriented generator of the stabilizer of the orbifold point Pi, i = 1, . . . , n. Let
Pic(X) be the group under⊗ of all line bundles (i.e invertible sheaves) over X up to isomorphism,
and let

deg : Pic(X) −→ 1

m
Z, m = lcm(p1, . . . , pn)

be the usual ‘degree’ homomorphism, obtained by summing divisor multiplicities, possibly ratio-
nal numbers at the orbifold points [16, Section 1B]. For example, the sheaf Ω1

X of holomorphic
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differential 1-forms on X satisfies [7, Section 1], [16, Section 1A]

deg Ω1
X = 2gX − 2 +

n∑
i=1

pi − 1

pi
= 2gX − 2 + n−

n∑
i=1

1

pi
. (2.2)

Let V be a vector bundle over X (i.e., a locally free sheaf of finite rank). The degree of
a vector bundle is the rational number deg detV. The fiber of V at each orbifold point Pi gives
a rk(V)-dimensional representation

µ(V, Pi) : 〈γPi〉 −→ GLrk(V)(C),

which is entirely determined by the linear transformation µ(V, Pi)(γPi). This is of finite order,

hence diagonalizable, with eigenvalues of the form e
2πi
pi
νij , νij ∈ {0, . . . , pi− 1}, j = 1, . . . , rk(V).

Definition 2.1 ([7]). The integers νij ∈ {0, . . . , pi−1}, j = 1, . . . , rk(V) are called the isotropies
of V at Pi. The integer

ι(V, Pi) :=

rk(V)∑
i=1

νij ∈ Z≥0

is called the isotropy trace of V at Pi.

The cohomology groups H i(X,V) of a vector bundle V over X are defined as the sheaf coho-
mology over the site defined by X. Denote by

χ(X,V) := dimH0(X,V)− dimH1(X,V)

the Euler characteristic of the vector bundle V over X. We have:

Theorem 2.2 (Riemann–Roch theorem for orbifold curves). Let V be a vector bundle over an
orbifold curve X. Then

χ(X,V) = rk(V)(1− gX) + deg(V)−

(
n∑
i=1

ι(V, Pi)
pi

)
.

Proof. See, e.g., [7, Theorem 1.5] for the case of line bundles. The general case follows from
the splitting principle. �

In addition, the Serre duality theorem for orbifold curves [16, Theorem 1.7] gives a canonical
isomorphism

H1(X,V) ' H0
(
X,V∗ ⊗ Ω1

X

)∗
, (2.3)

where V∗ := HomOX (V,OX).

3 The Chevalley–Weil formula

Let f : X → Y be a degree d ramified Galois cover of orbifold curves of genus gX , gY , respectively.
By this we mean that f is a morphism that is generically a degree d finite étale Galois cover,
outside finitely many ramification points Q1, . . . , Qr ∈ Y , with ramification degrees e1, . . . , er,
respectively. We assume for simplicity that none of the Qi’s are orbifold points of Y .

Let

G := AutY (X)
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be the group of covering transformations of f . For each ramification point Q ∈ Y , the stabilizer

in G of any point R
f7−→ Q of X is a cyclic subgroup GR ⊆ G of order e, the ramification

degree of Q. Choose generators γR ∈ GR for all such ‘local monodromy’ groups. Note that if

R,R′
f7−→ Q are points of X lying over Q, then GR and GR′ are conjugate to each other and

there exists g ∈ G with

g−1γRg = γR′ . (3.1)

For each orbifold point Pj ∈ Y , j = 1, . . . , n, let γPj ∈ π1(Y \{Q1, . . . , Qr}; b) be an oriented
generator for the stabilizer of the point Pj , as in (2.1). We will abuse notation and also denote
by γPj the image via the quotient map π1(Y \{Q1, . . . , Qr}; b)→ G.

The sheaf f∗OX is a vector bundle over Y of rank d, together with a right action of G by
pull-back of functions. This vector bundle is generically a finite étale sheaf with right G-action,
which on the stalks is just the right regular representation of G on itself. The group G also acts
linearly on the line bundle Ω1

X (and on f∗Ω
1
X) by pull-back

gω := g∗ω,

giving the canonical representation

ρf : Gop −→ GL
(
H0
(
X,Ω1

X

))
' GLgX (C), (3.2)

by taking global sections. For ease of notation we will drop the ‘op’ super-script in what follows.
Since G is finite, the category of finite-dimensional representations of G is semi-simple. Let {ρi}
be the set of irreducible representations of G, and let di = d(ρi) be the multiplicity di of each ρi
occurring in ρf . The Chevalley–Weil formula for algebraic curves [6, 22] is a formula for each di in
terms of global invariants of f : X → Y and ramification data around each local monodromy γR.
To generalize the formula to orbifold curves, we first set some notation. For g ∈ G an element
of exact order N , a representation ρ of G, and k = 0, . . . , N − 1, let

Nk(ρ; g) := dim ker
(
ρ(g)− e

2πi
N
kI
)
.

Our goal is to prove the following:

Theorem 3.1 (Chevalley–Weil formula). Let ρi be an irreducible representation of G. For each

ramification point Qj ∈ Y choose some Rj
f7→ Qj. Then the multiplicity di = d(ρi) of ρi in ρf

is given by

di = ε+ dim ρi

gY − 1 + n−
n∑
j=1

1

pj

+

r∑
j=1

ej−1∑
k=1

Nk(ρi; γRj )

(
1− k

ej

)

−
n∑
j=1

pj−1∑
k=1

Nk

(
e
−2πi
pj ρi; γPj

) k
pj
,

where ε = 1 if ρi = 1 and ε = 0 otherwise.

Remark 3.2. Note that by (3.1) the integers Nρi(γRj ; k) do not depend on the choice of point

Rj
f7→ Qj .

To prove Theorem 3.1 we proceed by a series of reductions, as in the case of algebraic cur-
ves [14]. First, since f is generically étale we have an exact sequence

0→ f∗Ω1
Y → Ω1

X → Ω1
X/Y → 0.
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Applying f∗ to this exact sequence and the projection formula on the first term we get

0→ Ω1
Y ⊗ f∗OX → f∗Ω

1
X → f∗Ω

1
X/Y → 0. (3.3)

This is an exact sequence of OY -modules with right OY -linear G-action. For any irreducible
representation ρi of G we can take the ρi-isotypical component of this exact sequence and obtain
(note that the action of G on Y is trivial):

0→ Ω1
Y ⊗ f∗O

ρi
X →

(
f∗Ω

1
X

)ρi → (
f∗Ω

1
X/Y

)ρi → 0.

To prove Theorem 3.1 we have to compute

dimH0
(
Y,
(
f∗Ω

1
X

)ρi) = dimH0
(
X,Ω1

X

)ρi = di · dim ρi.

To do so we compute the Euler characteristic:

χ
(
Y,
(
f∗Ω

1
X

)ρi) = dimH0
(
X,Ω1

X

)ρi − dimH1
(
X,Ω1

X

)ρi .
Proposition 3.3. The action of G on H1

(
X,Ω1

X

)
is trivial. Therefore

dimH1
(
X,Ω1

X

)ρi = ε =

{
1 if ρi = 1,

0 if ρi 6= 1,

for any irreducible representation ρi of G.

Proof. By Serre duality (2.3) there is a canonical isomorphism H1
(
X,Ω1

X

)
' H0(X,OX)∗,

commuting with the linear G-action on both sides. Since H0(X,OX) ' C consists of constant
functions, the action of G on this vector space is trivial. Therefore its contragradient action on
H1
(
X,Ω1

X

)
is trivial as well. �

By Proposition 3.3, to compute di it suffices to compute χ
(
Y,
(
f∗Ω

1
X

)ρi). Since Euler cha-
racteristics are additive with respect to exact sequences, we must have

χ
(
Y,
(
f∗Ω

1
X

)ρi) = χ
(
Y,
(
f∗Ω

1
X/Y

)ρi)+ χ
(
Y,Ω1

Y ⊗ f∗O
ρi
X

)
,

by applying χ(Y,−) to (3.3). We compute each summand in Propositions 3.4 through 3.7 below.

Proposition 3.4. Let ρi be an irreducible representation of G. For each ramification point

Qj ∈ Y choose some Rj
f→ Qj. Then

χ
(
Y,
(
f∗Ω

1
X/Y

)ρi) = dim ρi

r∑
j=1

rk(ρi(γRj )− I).

Proof. The proof given in [14] for algebraic curves goes through unchanged, since the question
is localized at the ramification locus (and disjoint from the orbifold locus). �

It remains to compute the Euler characteristic χ
(
Y,Ω1

Y ⊗ f∗O
ρi
X

)
. Let V = Ω1

Y ⊗ f∗O
ρi
X . By

Theorem 2.2,

χ(Y,V) = rk(V)(1− gY ) + degV −

(
n∑
i=1

ι(V, Pi)
pi

)
.

We compute each term in turn.
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Proposition 3.5.

rkV = (dim ρi)
2.

Proof. The vector bundle f∗OX is a finite étale sheaf of rank d away from the ramification
points, and the same holds for f∗OρiX . At a point P ∈ Y , P /∈ {Q1, . . . , Qr}, the fiber of f∗OX
is the right regular G-representation. As is well-known, the representation ρi occurs inside the
regular representation dim ρi times. Therefore the fiber at P of f∗OρiX has dimension (dim ρi)

2

and that is also the rank of f∗OρiX as a vector bundle over Y . Since Ω1
Y has rank one, the rank

of V is also of rank (dim ρi)
2. �

To compute the degree of V, note that

deg(V) = (dim ρi)
2 deg

(
Ω1
Y

)
+ deg

(
f∗OρiX

)
= (dim ρi)

2

2gY − 2 + n−
n∑
j=1

1

pj

+ deg
(
f∗OρiX

)
by (2.2). It remains to compute deg(f∗OρiX ), as follows.

Proposition 3.6.

deg
(
f∗OρiX

)
= −dim ρi

r∑
j=1

ej−1∑
k=1

Nk(ρi; γRj )
k

ej
.

Proof. The vector bundle f∗OρiX is a direct sum of dim ρi-copies of the parabolic bundle canoni-
cally associated to the unitary representation ρi, viewed as a representation of π1(Y \{Q1, . . .,
Qr}; b) factoring through the finite quotient G [13]. The parabolic structure is supported at
the ramification points Q1, . . . , Qr and for each j it is determined by the local monodromy γRj ,

as follows. Since ρi(Rj) is a matrix of order ej , its eigenvalues are of the form e2πikw/ej , kw ∈
{0, . . . , ej−1}. The parabolic structure at Qj is given by the decreasing filtration of eigenspaces
of γRj , the weights are the rational numbers kw/ej , 0 ≤ kw/ej < 1, and each weight kw has
multiplicity dim ρiNkw(ρi; γRj ). The formula for the degree of f∗OρiX then just follows from the
well-known formula for the degree of a parabolic bundle [13, Corollary 1.10]. �

Finally we compute the isotropy term in χ(Y,V):

Proposition 3.7.

(
n∑
i=1

ι(V, Pi)
pi

)
=

n∑
j=1

pj−1∑
k=1

Nk

(
e
−2πi
pj ρi; γPj

) k
pj
.

Proof. Note that the action of γPj on the fiber of V = Ω1
Y ⊗ f∗O

ρi
X over the orbifold point Pj

is given by e−2πi/pjρi. The identity then follows from Definition 2.1. �

Theorem 3.1 now follows by putting together Propositions 3.3, 3.4, 3.5, 3.6 and 3.7.
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4 Applications to modular curves

We now apply Theorem 3.1 to the special case when the base orbifold Y is the compactifica-
tion X(1) of the orbifold quotient PSL2(Z)\h obtained by adding the cusp∞. The genus of this
orbifold curve is zero, π1(X(1)−∞; b) ' PSL2(Z) and X(1) has n = 2 orbifold points P1 = [i],
P2 = [e2πi/3] of orders p1 = 2, p2 = 3, with oriented stabilizers generated by

γP1 := S =

(
0 −1
1 0

)
, γP2 := R−1 =

(
1 1
−1 0

)
.

Any finite-index normal subgroup Γ / PSL2(Z) gives a Galois cover

f(Γ) : X(Γ)→ X(1),

where X(Γ) is the compactification of the quotient Γ\h obtained by adding finitely many cusps.
The map f(Γ) is of degree d = [Γ : PSL2(Z)], and it is ramified only above the cusp ∞. The
Galois group of the cover is therefore G = PSL2(Z)/Γ. To compute the ramification data, we
may choose the cusp ∞ of X(Γ), which lies above the cusp ∞ of X(1). The local monodromy
at ∞ is the image of

γ∞ := T =

(
1 1
0 1

)
under the quotient map PSL2(Z) → G. The ramification degree e of f(Γ) over ∞ is just the
order of the image of T in G (the ramification level of G / PSL2(Z)). There is a canonical
isomorphism

S2(Γ) −→ H0
(
X(Γ),Ω1

X(Γ)

)
,

f 7−→ fdτ,

so that the canonical representation ρΓ := ρf(Γ) (3.2) goes over to the representation PSL2(Z)→
GL(S2(Γ)) given by

ρΓ(γ)f = f |2γ = f

(
aτ + b

cτ + d

)
(cτ + d)−2, γ =

(
a b
c d

)
∈ PSL2(Z),

factoring through the finite group G. Note that if ρΓ(γ)f = f for all γ ∈ PSL2(Z) then
f ∈ S2(PSL2(Z)) = 0, therefore the trivial representation can never occur inside ρΓ. For the
remaining non-trivial representations of G Theorem 3.1 simplifies to

Theorem 4.1 (Chevalley–Weil formula for Γ / PSL2(Z)). Let Γ / PSL2(Z) be a finite-index
normal subgroup, and let G := PSL2(Z)/Γ. Let ρ 6= 1 be an irreducible representation of G.
Then the multiplicity of ρ in ρΓ is given by

d = − 5

12
dim ρ+

e−1∑
k=1

Nk(ρ;T )

(
1− k

e

)
− Tr(ρ(S))

4
+
ζ2

3 Tr
(
ρ
(
R−1

))
3(1− ζ2

3 )
+
ζ3 Tr(ρ(R))

3(1− ζ3)
,

where ζ3 := e2πi/3.

Proof. Using the notation of Theorem 3.1, note first that ε = 0 always since we are assuming
ρ 6= 1. We also have that gX(1) = 0, n = 2, p1 = 2, p2 = 3, which gives a contribution of dim ρ/6
in Theorem 4.1. As stated above, there is only one ramification point ∞ ∈ X(1) of index e and
with local monodromy given by the image of T in G, which gives the second term. As for the
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remaining terms, since the order of ρ(S) and ρ(R−1) is low it is more convenient computationally
to express the eigenvalue multiplicities in terms of traces. In particular, note that

Tr(ρ(S)) = N0(ρ(S))−N1(ρ(S)) = N1(−ρ(S))−N0(−ρ(S)) = 2N1(−ρ(S))− dim ρ

and similarly

N1

(
e−2πi/3ρ;R−1

)
3

+ 2 ·
N2

(
e−2πi/3ρ;R−1

)
3

=
dim ρ

3
−
ζ2

3 Tr
(
ρ
(
R−1

))
3
(
1− ζ2

3

) − ζ3 Tr(ρ(R))

3(1− ζ3)
,

yielding the simplified formula. �

The formula of Theorem 4.1 severely restricts which irreducible representations of PSL2(Z)
may occur inside a canonical representation. For example of the six characters of PSL2(Z) only
one may occur, namely the character χ defined by χ(T ) = e2πi/6. This character must therefore
be the canonical representation ρΓ corresponding to any genus one normal subgroup Γ/PSL2(Z)
(there are infinitely many of them).

Of the 27 two-dimensional irreducible representations of PSL2(Z) which factor through a finite
group (these have been classified in [12]) only four may appear in a canonical representation,
namely the ones with ρ(T ) equivalent to(

ζ12 0
0 ζ5

12

)
,

(
ζ8 0
0 ζ3

8

)
,

(
ζ20 0
0 ζ9

20

)
,

(
ζ3

20 0
0 ζ7

20

)
, (4.1)

where ζn := e2πi/n. For any one of the four representations ρ above, we can use GAP and a list
of normal subgroups of PSL2(Z) to identify the normal subgroup Γ of smallest index such that ρ
is a factor of ρΓ. The first representation appears as a factor inside the canonical representation
of the unique genus three subgroup of index 48, the second one is the canonical representation
corresponding to the unique genus two subgroup (also of index 48), the third one appears as
a factor inside the canonical representation of the unique genus 15 subgroup of index 240 and the
last representation appears as a factor inside the canonical representation of the unique genus 55
subgroup of index 720.

A similar analysis could in principle be applied to higher-dimensional irreducible representa-
tions of PSL2(Z) factoring through a finite group. If a given irreducible representation ρ satisfies
d(ρ) > 0 in Theorem 4.1, what is the minimal index of the normal subgroup Γ / PSL2(Z) such
that ρ is a factor of ρΓ?

Remark 4.2. Let {f1, . . . , fg} be a basis for S2(Γ), Γ / PSL2(Z) of finite-index and genus
g ≥ 1. Then F := (f1, . . . , fg) is a (non-zero) ρΓ-valued cusp form of weight two [5]. Since ρΓ is
unitarizable, this means that its minimal weight should be equal to two [3].

Example 4.3. Let Γ(8) / SL2(Z) be the principal congruence subgroup of level 8, and let Γ
be its image inside PSL2(Z). The quotient G = PSL2(Z)/Γ is a finite group of order 192,
isomorphic to SL2(Z/8Z). Its character table is easily computable using GAP, and for each
irreducible character we may compute its multiplicity inside ρΓ using Theorem 4.1. We obtain
the decomposition

ρΓ ' ρ1 ⊕ ρ2,

where ρ1 is irreducible of dimension two and ρ2 is irreducible of dimension three. According
to [20, Proposition 2.5], such irreducible representations of PSL2(Z) are entirely determined by
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their ρi(T )-eigenvalues. These can easily be computed again from the character table of G.
Using the formulas of [20, Proposition 2.5] we obtain the following model for ρΓ:

ρΓ(T ) =


ζ8 ζ8 0 0 0
0 ζ3

8 0 0 0
0 0 ζ8 i− 1 i
0 0 0 i i
0 0 0 0 ζ5

8

 , ρΓ(S) =


0 ζ5

8 0 0 0
ζ3

8 0 0 0 0
0 0 0 0 1
0 0 0 −1 0
0 0 1 0 0

 ,

where ζ8 := e2πi/8. Note in particular that ρ1 is equivalent to the second representation in (4.1).

5 The canonical representation of modular curves X(Γ(p))

We now apply Theorem 4.1 to a well-known family of normal subgroups of PSL2(Z). Let p be
a prime and let Γ(p) / SL2(Z) be the principal congruence subgroup of level p. For p ≥ 3 we
have and isomorphism G ' PSL2(Fp). The map X(Γ(p)) −→ X(1) is a Galois cover of degree

|G| = (p−1)p(p+1)
2 , ramified above∞ ∈ X(1). The local monodromy at∞ ∈ X(Γ(p)) is generated

by T , whose image in G has order p. Therefore the ramification degree is e = p.
By Theorem 4.1 we can use the character table of PSL2(Fp) to decompose the representation

ρΓ(p) : PSL2(Z) −→ GL(S2(Γ(p)))

into irreducible representations. Note that S2(Γ(3)) = 0, so assume p ≥ 5. In this case the images
of R and R−1 inside G are conjugate, therefore Tr(ρ(R)) = Tr(ρ(R−1)) for any representation ρ
of G. The formula of Theorem 4.1 then simplifies to

d = − 5

12
dim ρ+

p−1∑
k=1

Nk(ρ;T )

(
1− k

p

)
− Tr(ρ(S))

4
− Tr(ρ(R))

3
. (5.1)

The character table of PSL2(Fp), p ≥ 5 was originally computed by Frobenius and Schur
(a modern account can be found in [9, Section 8]) and it depends on whether p ≡ 1, 3 (4). We
therefore break down the computation into these two cases. For ease of notation, we let up
be a generator for F×p and we let up2 be a generator for F×

p2
. We also let ϕ ∈ G be the linear

transformation of Fp2 sending x 7→ up−1
p2

x.

5.1 Case p ≡ 1 (4)

In this case

S ∼

u p−1
4

p 0

0 u
− p−1

4
p

 , R ∼



u p−1
3

p 0

0 u
− p−1

3
p

 if p ≡ 1 (3),

ϕ
p+1
3 if p ≡ 2 (3),

and from the character table of [9, Theorem 8.9] we obtain the following table, displaying the
traces of each irreducible character of G evaluated at the matrices I2, S, R, T and

(
1 0
up 1

)
:

dim S R if p ≡ 1 (3) R if p ≡ 2 (3) T
(

1 0
up 1

)
λ p 1 1 −1 0 0

{µs}1≤s≤ p−5
4

p+ 1 2 · (−1)s ε3(s) 0 1 1

{θt}1≤t≤ p−1
4

p− 1 0 0 −ε3(t) −1 −1

χ1
p+1

2 (−1)
p−1
4 1 0

1+
√
p

2
1−√p

2

χ2
p+1

2 (−1)
p−1
4 1 0

1−√p
2

1+
√
p

2

(5.2)
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where

ε3(n) =

{
2 if n ≡ 0 (3),

−1 if n ≡ 1, 2 (3),

and the irreducible characters λ, µs, θt, χ1, χ2 are labelled as in [9, Theorem 8.9]. The table
contains all the data required to compute formula (5.1), including the ramification data at ∞,
which is derived below in Proposition 5.1. In order to state this computation, for any odd
prime p and any integer a such that gcd(a, p) = 1 let(

a

p

)
L

=

{
1 if a is a square mod p,

−1 if a is a not a square mod p

be the Legendre symbol.

Proposition 5.1. For each one of the irreducible representations appearing in Table 5.2, we
have

Nk(λ;T ) = 1, Nk(µs;T ) = 1, Nk(θt;T ) = 1,

Nk(χ1;T ) =


1 if

(
k

p

)
L

= 1,

0 if

(
k

p

)
L

= −1,

Nk(χ2;T ) =


0 if

(
k

p

)
L

= 1,

1 if

(
k

p

)
L

= −1,

where k = 1, . . . , p− 1.

Proof. For any representation ρ of G, let P (ρ;T ) be the characteristic polynomial of ρ(T ).
Since ρ(T )p = Idim ρ, we know that the roots of P (ρ;T ) are necessarily p-th roots of unity.
The polynomial itself can be computed from Table 5.2 by first computing the traces of ρ(T k),
k = 0, . . . , p− 1 and then compute from these traces the coefficients of P (ρ;T ) using Newton’s
identities. Now the subgroup

{
T k
}

breaks up into two conjugacy classes:{
T k
}
∩ [T ] =

{
( 1 r

0 1 ) : r is a square in Fp
}
,{

T k
}
∩
[ (

1 0
up 1

) ]
=
{

( 1 n
0 1 ) : n is not a square in Fp

}
,

therefore the coefficients of P (ρ;T ) are polynomials in the last two columns of Table 5.2. For
ρ = λ, µs and θt, it follows that P (ρ;T ) has coefficients in Q, and therefore

gcd
(
P (ρ;T ), xp − 1

)
=


x− 1

Φp

xp − 1

∈ Q[x],

where Φp is the p-th cyclotomic polynomial, which is irreducible over Q. Suppose first ρ = λ.
If gcd(P (λ;T ), xp− 1) = (x− 1) then necessarily λ(T ) = Ip, which is impossible since Table 5.2
gives Trλ(T ) = 0 6= p. If gcd(P (λ;T ), xp− 1) = Φp, then P (λ;T ) factors over Q as Φp · (x− ζp),
for some p-th root of unity ζp. But since p ≥ 5, the only such polynomial (x−ζp) defined over Q
is (x− 1), therefore P (λ;T ) = xp − 1 necessarily, which gives the formula

Nk(λ;T ) = 1, k = 1, . . . , p− 1.

For ρ = µs, again we cannot have gcd(P (µs;T ), xp − 1) = (x− 1) since none of the µs(T ) is the
identity, the trace being 1 6= 0. If gcd(P (µs;T ), xp − 1) = Φp then P (µs;T ) factors as Φp · q(x),
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for some quadratic polynomial q(x). The only Q-rational quadratic polynomials having only
p-th roots as their solutions are (x − 1)2 and Φ3. Since p ≥ 5, the latter cannot occur and
P (µs;T ) = Φp · (x − 1)2. A similar reasoning shows that P (θt;T ) = Φp, so the first row of
Proposition 5.1 is proved. It remains to compute P (ρ;T ) for ρ = χ1, χ2. Note that for these
two representations the last two columns of Table 5.2 have coefficients in Q(

√
p) and therefore

P (ρ;T ) is Q(
√
p)-rational. Now the p-th cyclotomic polynomial factors over Q(

√
p) as

Φp = Φ(r)
p · Φ(n)

p , ∈ Q(
√
p)[x],

where Φ
(r)
p (resp. Φ

(n)
p ) is the irreducible monic polynomial of degree (p−1)/2 over Q(

√
p) whose

roots are the p-th roots of unity of the form e2πir/p (resp. e2πin/p), with r (resp. n) a quadratic
residue mod p (resp. quadratic non-residue mod p). Let now ρ = χ1. Then gcd(P (χ1;T ), xp−1)
is a non-constant Q(

√
p)-rational polynomial and it cannot be (x− 1) for otherwise χ(T ) would

be the identity, which is impossible since Tr(χ1(T )) 6= p. Since degP (χ1;T ) = (p+1)/2, the only

other possibilities are that gcd(P (χ1;T ), xp − 1) = Φ
(r)
p or Φ

(n)
p , so that P (χ1;T ) = (x− 1)Φ

(r)
p

or (x−1)Φ
(n)
p . To determine which one it is, note that the sum of the roots of (x−1)Φ

(r)
p can be

computed by a Gauss sum and it is equal to 1/2(−1−√p). This must coincide with the negative
of Tr(χ1(T )), so by Table 5.2 we see that this is indeed the correct factorization. Similarly we

may deduce that P (χ2;T ) = (x− 1)Φ
(n)
p , which concludes the proof. �

Putting everything into formula (5.1) we get:

Theorem 5.2. Let p ≥ 5 be a prime, p ≡ 1 (4). Then the multiplicities of the irreducible
representations of PSL2(Fp) inside the canonical representation ρΓ(p) are given by

d(λ) =
p− 9

12
− 1

3

(p
3

)
L
,

d(µs) =
p− 11

12
− (−1)s

2
−
(

1 +
(p

3

)
L

) ε3(s)

6
, 1 ≤ s ≤ p− 5

4
,

d(θt) =
p− 1

12
+
(

1−
(p

3

)
L

) ε3(t)

6
, 1 ≤ t ≤ p− 1

4
,

d(χ1) =
p− 11

24
− (−1)

p−1
4

4
− 1

6

(
1 +

(p
3

)
L

)
,

d(χ2) =
p− 11

24
− (−1)

p−1
4

4
− 1

6

(
1 +

(p
3

)
L

)
.

Proof. The formulas follow from a straightforward insertion of the data of Table 5.2 into (5.1).
Note that for the multiplicities of χ1 and χ2 we have used the formulas

p−1∑
k=1(
k
p

)
L

=1

k

p
=
p− 1

4
=

p−1∑
k=1(

k
p

)
L

=−1

k

p
,

which are valid for p ≡ 1 (4). �

5.2 Case p ≡ 3 (4)

In this case

S ∼ ϕ
p+1
4 , R ∼


u p−1

3
p 0

0 u
− p−1

3
p

 if p ≡ 1 (3),

ϕ
p+1
3 if p ≡ 2 (3),
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and from the character table of [9, Theorem 8.11] we obtain the following data (note that
T ∼

(
1 0
up 1

)
in this case)

dim S R if p ≡ 1 (3) R if p ≡ 2 (3) T ( 1 0
1 1 )

λ p −1 1 −1 0 0
{µs}1≤s≤ p−3

4
p+ 1 0 ε3(s) 0 1 1

{θt}1≤t≤ p−3
4

p− 1 −2 · (−1)t 0 −ε3(t) −1 −1

γ1
p−1

2 −(−1)
p+1
4 0 −1 −1−

√
−p

2
−1+

√
−p

2

γ2
p−1

2 −(−1)
p+1
4 0 −1 −1+

√
−p

2
−1−

√
−p

2

where the irreducible characters λ, µs, θt, χ1, χ2 are labelled as in [9, Theorem 8.11]. Exactly
as in Proposition 5.1 we can derive from this table the ramification data at ∞:

Nk(λ;T ) = 1, Nk(µs;T ) = 1, Nk(θt;T ) = 1,

Nk(γ1;T ) =


1 if

(
k

p

)
L

= −1,

0 if

(
k

p

)
L

= 1,

Nk(γ2;T ) =


0 if

(
k

p

)
L

= −1,

1 if

(
k

p

)
L

= 1,

where k = 1, . . . , p− 1. Putting everything into formula (5.1) we get:

Theorem 5.3. Let p ≥ 5 be a prime, p ≡ 3 (4). Then the multiplicities of the irreducible
representations of PSL2(Fp) inside the canonical representation ρΓ(p) are given by

d(λ) =
p− 3

12
− 1

3

(p
3

)
L
,

d(µs) =
p− 11

12
−
(

1 +
(p

3

)
L

) ε3(s)

6
, 1 ≤ s ≤ p− 3

4
,

d(θt) =
p− 1

12
+

(−1)t

2
+
(

1−
(p

3

)
L

) ε3(t)

6
, 1 ≤ t ≤ p− 3

4
,

d(γ1) =
p− 1

24
− h(p)

2
+

(−1)
p+1
4

4
+

1

6

(
1−

(p
3

)
L

)
,

d(γ2) =
p− 1

24
+
h(p)

2
+

(−1)
p+1
4

4
+

1

6

(
1−

(p
3

)
L

)
,

where h(p) is the class number of Q(
√
−p).

Proof. Only the formulas for d(γ1), d(γ2) require justification. Note that since p ≡ 3 (4)

p−1∑
k=1(

k
p

)
L

=−1

k

p
−

p−1∑
k=1(
k
p

)
L

=1

k

p
= L

(
0,

(
·
p

)
L

)
6= 0

and clearly
p−1∑
k=1(

k
p

)
L

=−1

k
p +

p−1∑
k=1(
k
p

)
L

=1

k
p = (p− 1)/2. Using the functional equation for the L-function

and the analytic class number formula, we get

p−1∑
k=1(
k
p

)
L

=1

k

p
=
p− 1

4
− h(p)

2
,

p−1∑
k=1(

k
p

)
L

=−1

k

p
=
p− 1

4
+
h(p)

2
,

which gives the formulas for d(γ1), d(γ2). �
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Remark 5.4. We thank Cameron Franc for showing us how to simplify d(γ1) and d(γ2) using
Dirichlet’s L-functions and the class number formula. Similar computations, but in a different
context, have also appeared in [4].

Example 5.5. The formulas of Theorems 5.2 and 5.3 show that the only prime p for which
the canonical representation ρΓ(p) is irreducible is the prime p = 7. In this case the orbifold
curve X(Γ(7)) is an actual algebraic curve, and in fact it is a model for the Klein quartic, the
unique Hurwitz surface of genus 3. Applying Theorem 5.3 we get that d(γ2) = 1, since h(7) = 1,
while all the other multiplicities are zero. Therefore ρΓ(p) ' γ2. To write down explicit matrices
for ρΓ(p), we know by [20] that a three-dimensional irreducible representation of PSL2(Z) is
entirely determined by the eigenvalues of the matrix ρΓ(p)(T ). As in Theorem 5.3, we know

that these are ζ7, ζ2
7 , ζ4

7 , where ζ7 := e2πi/7. According to [20, Proposition 2.5], there is a basis
where ρΓ(p) is given by the matrices

ρΓ(7)(T ) =

ζ7 ζ2
7 + ζ3

7 ζ2
7

0 ζ2
7 ζ2

7

0 0 ζ4
7

 , ρΓ(7)(S) =

0 0 1
0 −1 0
1 0 0

 .

6 The canonical representation of Fermat curves

Let Γ(2) ⊆ SL2(Z) be the principal congruence subgroup of level two. This is isomorphic to the
free product on two generators, which can be chosen to be

A =

(
1 2
0 1

)
, B =

(
1 0
−2 1

)
.

For any integer N > 1, let Φ(N) be the kernel of the composition

Γ(2)
ϕab

−→ Z× Z −→ Z/NZ× Z/NZ,
( 1 2

0 1 ) 7−→ (1, 0),
(

1 0
−2 1

)
7−→ (0, 1),

where the first map ϕab is projection onto the abelianization and the second map is reduction
modulo N . The composition is clearly surjective, therefore Φ(N) is a normal subgroup of
index N2 in Γ(2). We also denote by Φ(N) the corresponding subgroup inside PSL2(Z).

Lemma 6.1. For all N > 1, Φ(N) is normal in PSL2(Z).

Proof. By definition, Φ(N) = ϕab,−1(NZ×NZ). For any γ ∈ PSL2(Z), the conjugate subgroup
g−1Φ(N)g is the kernel of a surjective homomorphism Γ(2) → Z/NZ × Z/NZ. This map
must factor through a map Γ(2)ab = Z × Z → Z/NZ × Z/NZ, by the universal property of
abelianizations. Any such map must have kernel equal to NZ × NZ, therefore g−1Φ(N)g =
ϕab,−1(NZ×NZ) = Φ(N). �

The normal subgroup Φ(N) can be described explicitly inside PSL2(Z) as the normal closure

Φ(N) =
〈
U3, V 2N

〉PSL2(Z)
, V := SR−1, U := TV ∈ PSL2(Z).

The quotient G := PSL2(Z)/Φ(N) is the semi-direct product (Z/NZ)2 o S3. The normal
subgroup (Z/NZ)2 is generated by the images of A and B while the S3-subgroup is generated
by the images of S and U . The action of S3 on (Z/NZ)2 is given explicitly by

SAS = B, UAU2 = B, UBU2 = A−1B−1 mod Φ(N).
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By Lemma 6.1, the curve X(Φ(N)) is a Galois cover

f(Φ(N)) : X(Φ(N)) −→ X(1)

with Galois group isomorphic to G. Since A = T 2 and AN ∈ Φ(N), the image of T in G has
order 2N , so the ramification level is 2N . For all N > 1, there is an embedding of X(Φ(N))
into P2 cut out by the equation XN + Y N = ZN in homogeneous coordinates [10]. In other
words, X(Φ(N)) is a uniformization of the Fermat curve FN of exponent N .

By construction, the group of automorphisms of the curve X(Φ(N)) contains G = (Z/NZ)2o
S3 and it is known that these are indeed all the automorphisms of the curve [21]. We now apply
Theorem 4.1 to compute the decomposition of the canonical representation

ρΦ(N) : G −→ GL(S2(Φ(N)))

into irreducible representations. The genus of X(Φ(N)) can easily be worked out to be 1
2(N −

2)(N − 1), so we may assume that N > 2. Note that Φ(N) is a non-congruence subgroup for
almost all N [17], therefore the decomposition of ρΦ(N) cannot be deduced from the calculations
of Section 5, even for N = p a prime.

All the irreducible representations of G can be computed using the ‘little subgroups method’
for semi-direct products by an abelian group [18, Section 8.2], [1, Table 2], which can be applied
as follows. Let S3 act on Hom((Z/NZ)2,C×) by gχ(x) = χ(g−1xg) and let {χi} be represen-
tatives for the cosets under this action. Let Hi ⊆ S3 be the stabilizer of χi, so that χi can be
extended to a character of Gi = (Z/NZ)2 · Hi. Let ρ̄ be any representation of Hi, viewed as
a representation of Gi under the quotient map Gi → Hi and let θi,ρ̄ = IndGGi ρ̄ ⊗ χi. It can be
shown that θi,ρ̄ is irreducible and that all the irreducible representations of G are obtained in this
way [18, Proposition 25]. These calculations in our case break down into two cases, according
to whether 3 |N .

6.1 Case 3 - N

In this case the orbits of the action of S3 on Hom((Z/NZ)2,C×) can only have order 1, 3 or 6
with stabilizers Hi isomorphic to S3, C2 or trivial, respectively. Write χα,β for the character in
Hom((Z/NZ)2,C×) uniquely determined by

χα,β(A) = ζαN , χα,β(B) = ζβN , ζN = e2πi/N .

Then the S3-orbit of size one is {χ0,0 = 1} and the S3-orbits of size three are of the form
{χα,α, χα,−2α, χ−2α,α} for α = 1, . . . , N −1. There are a total of 3(N −1) + 1 characters in these
orbits. The remaining N2 − 3N + 2 elements are partitioned into orbits of size 6, with trivial
stabilizers. We let

{χαi,βi}, i = 1, . . . ,
N2 − 3N + 2

6
=

1

6
(N − 2)(N − 1)

be a set of representatives of these orbits. It is easy to see that αi, βi can be chosen so that
αi, βi 6= 0. Assuming so in what follows slightly simplifies the formulas.

Now the orbit {χ0,0 = 1} produces via the small subgroup method 3 representations, corre-
sponding to the 3 irreducible representations of S3:

(i) the trivial representation ρ1,

(ii) 1 one-dimensional irreducible representation ρ2,

(iii) 1 two-dimensional irreducible representation ρ3.
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The orbits of cyclic stabilizer C2, with representatives χα,α produce

(iv) (N − 1)irreducible 3-dimensional representations ρ+
α , α ∈ {1, . . . , N − 1},

(v) (N − 1) irreducible 3-dimensional representations ρ−α , α ∈ {1, . . . , N − 1}.
Each class comes from inducing ρ̄±⊗χα to G, where ρ+ is the trivial representation of C2 and ρ−

is the non-trivial. Finally, the orbits of representative χαi,βi give

(vi) 1
6(N − 2)(N − 1) irreducible 6-dimensional representations ραi,βi ,

each representation being given by inducing χαi,βi to all of G. Explicit matrices for the genera-
tors S, U , A can easily be written down as in [1], from which we also borrowed the notation
(a slight correction is needed in Table 2 of [1] for the matrices ρ±α (A) and ρα,β(A)). Using the
relation

R = A−1U mod Φ(N)

the traces of ρ(S), ρ(R), ρ
(
R−1

)
and the eigenvalues of the ρ(T )-matrix can then be computed

from the explicit formulas and they are given in table

dim S R R−1 T − eigenvalues

ρ2 1 −1 1 1 −1
ρ3 2 0 −1 −1 1,−1
ρ+
α 3 1 0 0 ζ−αN , ζα2N ,−ζα2N
ρ−α 3 −1 0 0 −ζ−αN ,−ζα2N , ζα2N
ραi,βi 6 0 0 0 ±ζαi2N ,±ζ

βi
2N ,±ζ

−(αi+βi)
2N

where ζN = e2πi/N and ζ2N = e2πi/2N . Applying Theorem 4.1 we obtain the following.

Theorem 6.2. Let N > 2 be an integer such that 3 - N . Then the multiplicities of the irreducible
representations of G = (Z/NZ)2 o S3 inside the canonical representation ρΦ(N) are given by

d(ρ1) = d(ρ2) = d(ρ3) = 0, d(ρ+
α ) = 0, α = 1, . . . , N − 1,

d(ρ−α ) =


1 if α = 1, . . . ,

⌊
N − 1

2

⌋
,

0 if α =

⌊
N − 1

2

⌋
+ 1, . . . , N − 1,

d(ραi,βi) =

{
1 if αi + βi < N,

0 if αi + βi ≥ N,
αi, βi 6= 0.

Example 6.3. Let N = 7. There are 5 S3-orbits of size 6 in Hom((Z/7Z)2,C×), and the
representatives for these orbits can be chosen to be {χ6,1, χ5,2, χ4,3, χ2,1, χ6,3}. By Theorem 6.2
we deduce that

ρΦ(7) ∼ ρ−1 ⊕ ρ
−
2 ⊕ ρ

−
3 ⊕ ρ2,1.

An explicit model for ρΦ(7) can then be written down using the following formulas

ρ−α (T ) =

 0 0 ζ−α7

0 ζ−α7 0
−ζ2α

7 0 0

 , ρ−α (S) =

−1 0 0
0 0 −1
0 −1 0

 , α = 1, 2, 3,

ρ2,1(T ) =



0 0 0 0 ζ−1
7 0

0 0 0 0 0 ζ−2
7

0 0 0 ζ3
7 0 0

0 0 ζ−1
7 0 0 0

ζ3
7 0 0 0 0 0

0 ζ−2
7 0 0 0 0

 , ρ2,1(S) =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

 .
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6.2 Case 3 |N

In this case there are 3 characters with full stabilizer S3, given by {χ0,0}, {χN/3,N/3} and
{χ2N/3,2N/3} (and N − 3 remaining orbits with C2-stabilizers). The two additional characters
each produce

(vii) 2 one-dimensional (non-trivial) representations ρ1
N/3 and ρ1

2N/3,

(viii) 2 one-dimensional (non-trivial) representations ρ2
N/3 and ρ2

2N/3,

(ix) 2 two-dimensional representations ρ3
N/3 and ρ3

2N/3,

the first corresponding to the trivial representation of S3, the second to the sign representation,
and the third to the 2-dimensional representation of S3. For each one of these new representations
we can compute the following data:

dim S R R−1 T -eigenvalues

ρ1
N/3 1 1 ζ−1

3 ζ3 ζ−1
3

ρ1
2N/3 1 1 ζ3 ζ−1

3 ζ3

ρ2
N/3 1 −1 ζ−1

3 ζ3 −ζ−1
3

ρ2
2N/3 1 −1 ζ3 ζ−1

3 −ζ3

ρ3
N/3 2 0 −ζ−1

3 −ζ3 ζ6,−ζ6

ρ3
2N/3 2 0 −ζ3 −ζ−1

3 −ζ3, ζ3

Applying Theorem 4.1 we get

Theorem 6.4. Let N > 2 be an integer such that 3 |N . Then the multiplicities of the irreducible
representations of G = (Z/NZ)2 o S3 inside the canonical representation ρΦ(N) are given by

d(ρ1) = d(ρ2) = d(ρ3) = 0,

d(ρ+
α ) = 0, α = 1, . . . , N − 1, α 6= N/3, 2N/3,

d(ρ−α ) =


1 if α = 1, . . . ,

⌊
N − 1

2

⌋
,

0 if α =

⌊
N − 1

2

⌋
+ 1, . . . , N − 1,

α 6= N/3, 2N/3,

d(ραi,βi) =

{
1 if αi + βi < N,

0 if αi + βi ≥ N,
αi, βi 6= 0,

d
(
ρ1
N/3

)
= d
(
ρ1

2N/3

)
= d
(
ρ2

2N/3

)
= 0, d

(
ρ2
N/3

)
= 1, d

(
ρ3
N/3

)
= d
(
ρ3

2N/3

)
= 0.

Example 6.5. Let N = 6. There are 4 S3-orbits of size 6 in Hom
(
(Z/6Z)2,C×

)
, and represen-

tatives for these orbits can be chosen to be {χ5,1, χ4,2, χ5,4, χ3,2}. By Theorem 6.4 we deduce
that

ρΦ(6) ∼ ρ2
2 ⊕ ρ−1 ⊕ ρ3,2

and an explicit model for ρΦ(6) can be written down using

ρ2
2(T ) = e2πi/6, ρ2

2(S) = −1,

ρ−α (T ) =

 0 0 ζ−1
6

0 ζ−1
6 0

−ζ3 0 0

 , ρ−α (S) =

−1 0 0
0 0 −1
0 −1 0

 ,
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ρ3,2(T ) =



0 0 0 0 ζ−2
6 0

0 0 0 0 0 ζ−3
6

0 0 0 ζ5
6 0 0

0 0 ζ−2
6 0 0 0

ζ5
6 0 0 0 0 0

0 ζ−3
6 0 0 0 0

 , ρ3,2(S) =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

 .
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