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Abstract. For an odd prime p, let φ denote the quadratic character of the multiplicative
group F×

p , where Fp is the finite field of p elements. In this paper, we will obtain evaluations

of the hypergeometric functions 2F1

(
φψ ψ

φ
;x

)
, x ∈ Fp, x 6= 0, 1, over Fp in terms of Hecke

character attached to CM elliptic curves for characters ψ of F×
p of order 3, 4, 6, 8, and 12.
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1 Introduction

Given a prime power q = pk, let F := Fq denote the finite field of q elements and F̂× be the

group of multiplicative characters of F×. For a character χ in F̂×, we extend χ to a function
on F by setting χ(0) = 0. Following Greene [16], we define the hypergeometric function over the
finite field F by

n+1Fn

(
A0 A1 · · · An

B1 . . . Bn
;x

)
:=

q

q − 1

∑
χ∈F̂×

(
A0χ

χ

)(
A1χ

B1χ

)
· · ·
(
Anχ

Bnχ

)
χ(x),

where A0, A1, . . . , An and B1, . . . , Bn are multiplicative characters on F, and(
A

B

)
:=

B(−1)

q
J(A,B).

Here J(A,B) is the Jacobi sum defined by

J(A,B) =
∑
x∈F

A(x)B(1− x).

Equivalently, the hypergeometric functions can be defined inductively by

n+1Fn

(
A0 A1 · · · An

B1 . . . Bn
;x

)
:=
∑
y∈F

An(y)BnAn(1− y)nFn−1

(
A0 A1 · · · An−1

B1 . . . Bn−1
;xy

)
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with

2F1

(
A0 A1

B1
;x

)
:= ε(x)

A1B1(−1)

q

∑
y∈F

A1(y)B1A1(1− y)A0(1− xy),

where ε is the trivial character on F×. Being finite fields analogue of the classical hypergeometric
functions, the hypergeometric functions over finite fields have close connection to arithmetic
geometry and can be used to compute zeta functions of algebraic varieties of hypergeometric
type. The cases where the parameters Ai are all the quadratic character φ and Bj are all the
trivial character ε have particularly drawn a great deal of attention.

Assume that q = p is an odd prime. For convenience, we denote by n+1Fn(x) the hyperge-
ometric functions with Ai = φ and Bj = ε for all i and j. The evaluations of 2F1(x), 3F2(x)
at certain rational numbers have been studied by numerous mathematicians such as Barman–
Kalita [4, 5], Evans–Lam [9], Greene–Stanton [17], Koike [20, 21], and Ono [25]. They gave
explicit relationship between values of these hypergeometric functions and arithmetic of elliptic
curves. In some cases, the evaluations also have connection with congruence properties of the
Apéry numbers. In [1, 2], Ahlgren–Ono expressed the special value 4F3(1) in terms of Fourier
coefficients of the Hecke eigenform associated to a certain modular Calabi–Yau manifold. In [3],
Ahlgren, Ono, and Penniston studied the zeta functions of a certain family of K3-surfaces,
which lead to information about the special values of 3F2(x) at x = 1, 8, 1/8,−4,−1/4, 64,
and −1/64 in terms of the trace of Frobenius on suitable elliptic curves with complex multi-
plication over Q [14]. In other words, these values of the hypergeometric functions can also
be expressed in terms of Hecke characters on imaginary quadratic number fields. In [7, 8],
Evans and Greene obtained evaluations of 3F2-hypergeometric functions with more general
characters at x = 1/4,−1/8,−1, etc. Key ingredients in their approach are some transfor-
mation formulas of hypergeometric functions over finite fields, such as a finite field analogue
of Clausen’s theorem. In recent years, Frechette, Fuselier, Goodson, Lennon, Ono, Papaniko-
las, and Salerno [10, 11, 12, 13, 15, 22, 23, 26] investigated connections between hypergeometric
functions over finite fields and elliptic curves, algebraic varieties, and Hecke eigenforms. Very re-
cently, McCarthy–Papanikolas [24] linked the hypergeometric functions to Siegel modular forms.

The focus of this paper will be the evaluations of the hypergeometric function

2F1

(
φψ ψ

φ
;x

)
, x ∈ Fp, x 6= 0, 1, (1.1)

for a character ψ of F̂×p . We will see that if ψ has order N , then the values of this hypergeometric
function are related to the number of rational points on a certain superelliptic curve of degree N
or 2N , depending on whether N is even or odd, over Fp. In the case of N = 3, 4, 6, 8, 12, we
can explicitly construct morphisms from the superelliptic curve to several elliptic curves over Q
with complex multiplication. Since the L-functions of elliptic curves over Q with complex
multiplication are known to be equal to the L-functions of Hecke characters of the CM field, the
values of the hypergeometric function can be expressed in terms of the Hecke characters.

2 Main statements

To state our main results, we first recall that if N is a positive integer and p is a prime such that
p ≡ 1 mod N , then p splits completely in Q

(
e2πi/N

)
. In other words, if p is a prime of Q

(
e2πi/N

)
lying above p, then Z

[
e2πi/N

]
/p ' Fp. The integers 0, 1, . . . , p− 1 form a complete set of coset

representatives of p in Z
[
e2πi/N

]
. Thus, for a given element a in Fp, we may canonically regard

it as an element of Z
[
e2πi/N

]
/p. We now describe our main results.
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Theorem 2.1. Let p be a prime congruent to 1 modulo 4, and p be a prime of Z[i] lying above p.
Let ψp be the quartic multiplicative character of (Z[i]/p)× ' F×p satisfying ψp(x) ≡ x(p−1)/4
mod p, for every x ∈ Z[i]. Then, for a ∈ Fp with a 6= 0, 1, if one of a and 1− a is not a square
in F×p , we have

2F1

(
ψp ψp

φ
; a

)
= 0,

and if a = b2 for some b ∈ F×p , then

2F1

(
ψp ψp

φ
; a

)
= −2

p
φ (1 + b)χ(p),

where χ is the Hecke character associated to the elliptic curve E : y2 = x3−x satisfying χ(p) ∈ p
for all primes p of Z[i].

Remark 2.2. The Hecke character χ in the theorem has the following description. Suppose
that the prime ideal p is generated by a + bi, for some integers a and b. There exists a unique
fourth root ik of unity such that a+ bi ≡ ik mod (1 + i)3. Then

χ(p) = ik(a+ bi).

Alternatively, we can write χ as

χ(p) =


(−1)b/2

(
−1

a

)
(a+ bi), if a is odd and b is even,

i(−1)a/2
(
−1

b

)
(a+ bi), if a is even and b is odd.

Theorem 2.3. Let p be a prime congruent to 1 modulo 8, P a prime of Z
[√
−2
]

lying above p,

and p a prime of Z
[
e2πi/8

]
lying above P. Let ψp be the character of

(
Z
[
e2πi/8

]
/p
)× ' F×p

of order 8 such that x(p−1)/8 ≡ ψp(x) mod p for all x ∈ Z[ζ8]. Let χ be the Hecke character
associated to the elliptic curve y2 = x3 + 4x2 + 2x with CM by Z

[√
−2
]

satisfying χ(P′) ∈ P′

for all primes P′ of Z
[√
−2
]
. If a ∈ F×p is not a square in F×p , then

2F1

(
φψp ψp

φ
; a

)
= 0,

and if a = b2 for some b ∈ F×p , then

2F1

(
φψp ψp

φ
; a

)
= −1

p
(−1)(p−1)/8

(
ψ
2
p(1 + b) + ψ

2
p(1− b)

)
χ(P).

Remark 2.4. The character χ in the above theorem can be explicitly described as follows. If
a prime P′ of Z

[√
−2
]

lying above an odd prime is generated by c+ d
√
−2, then

χ(P′) =

(
−2

c

)(
c+ d

√
−2
)
·

{
(−1)d/2, if d is even,

−1, if d is odd.

Theorem 2.5. Let p be a prime congruent to 1 modulo 6, and p a prime ideal of Z[ζ6] lying
above p. Let ψp be the multiplicative character of order 6 on (Z[ζ6]/p)× ' F×p satisfying
ψp(x) ≡ x(p−1)/6 mod p, for every x ∈ Z[ζ6]. Let χ be the Hecke character associated to
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the elliptic curve E : y2 = x3 + 1 satisfying χ(p) ∈ p for all primes p of Z[ζ6]. If a 6= 1 is not
a square in F×p , we have

2F1

(
φψ2

p ψ2
p

φ
; a

)
= 2F1

(
φψp ψp

φ
; a

)
= 0

and if a = b2 is a square in F×p , then

2F1

(
φψ2

p ψ2
p

φ
; a

)
= −φ(−1)

p

(
ψ2
p(1 + b) + ψ2

p(1− b)
)
χ(p),

2F1

(
φψp ψp

φ
; a

)
= −1

p

(
ψ
2
p(1 + b) + ψ

2
p(1− b)

)
χ(p).

Remark 2.6. The Hecke character χ can be explicitly given as follows. Suppose that p is
generated by α ∈ Z[ζ6]. There exists a unique sixth root ζk6 of unity such that α ≡ ζk6 mod 2

√
−3.

Then we have

χ(p) = ζk6α.

Theorem 2.7. Let p be a prime congruent to 1 modulo 12, P a prime of Z[i] lying above p,

and p a prime of Z
[
e2πi/12

]
lying above P. Let ψp be the character of order 12 in F̂×p such that

x(p−1)/12 ≡ ψp(x) mod p for all x ∈ Z[ζ12]. Let χ be the Hecke character associated to the elliptic
curve y2 = x3 − 3x satisfying χ(P′) ∈ P′ for all primes P′ of Z[i]. If a ∈ F×p is not a square
in F×p , then

2F1

(
φψp ψp

φ
; a

)
= 0,

and if a = b2 for some b ∈ F×p , then

2F1

(
φψp ψp

φ
; a

)
= −1

p
(−1)(p−1)/12

(
ψ
2
p(1 + b) + ψ

2
p(1− b)

)
χ(p).

Remark 2.8. The elliptic curve y2 = x3 − 3x is isomorphic to the elliptic curve y2 = x3 − x
in Theorem 2.1 over Q( 4

√
3). From this fact, we may deduce an expression for χ as follows.

Assume that p is a prime congruent to 1 modulo 4 and p is a prime of Z[i] lying above p
generated by a+ bi. There exists a unique fourth root of unity ik such that

3(p−1)/4 ≡ ik mod p

Then

χ(p) =


i−k(−1)b/2

(
−1

a

)
(a+ bi), if a is odd and b is even,

i1−k(−1)a/2
(
−1

b

)
(a+ bi), if a is even and b is odd.

3 Preliminary lemmas

For any characters A,B,C ∈ F̂×q and any element z ∈ Fq, the 2F1-hypergeometric function
over Fq can be written as

2F1

(
A B

C
; z

)
= ε(z)

BC(−1)

q

∑
x∈Fq

B(x)CB(1− x)A(1− zx)

= ε(z)
BC(−1)

q

∑
x∈Fq

AC(x)CB(x− 1)A(x− z).
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Thus, if η ∈ F̂×q and z 6= 0, we have

2F1

(
φη η

φ
; z

)
=
φη(−1)

q

∑
x∈Fq

η(x)φη(x− 1)φη(x− z), (3.1)

and

2F1

(
φη η

φ
; z

)
=

q

q − 1

∑
χ∈F̂×q

(
φηχ

χ

)(
ηχ

φχ

)
χ(z)

χ 7→φχ
=

q

q − 1

∑
χ∈F̂×q

(
ηχ

φχ

)(
φηχ

χ

)
φχ(z)

= φ(z)2F1

(
φη η

φ
; z

)
. (3.2)

The value 2F1

(
φη η

φ
; z

)
hence equals to zero if φ(z) = −1.

In order to evaluate 2F1

(
φη η

φ
; z

)
when φ(z) = 1, we need to consider the character sum

Fη(z) =
∑
x∈Fq

η(x)φη(x− 1)φη(x− z),

on the right-hand side of (3.1) so that

2F1

(
φη η

φ
; z

)
=
φη(−1)

q
Fη(z). (3.3)

It is easy to see that

Fη(1) =
∑
x∈Fq

η(x)φη(x− 1)φη(x− 1) = J
(
η, η2

)
,

and if η2 = ε then

Fη(z) = −1− φ(z), z 6= 0, 1.

By a simple change of variables, one can derive a relation between the character sums Fη(z)
and Fφη(z) as follows.

Proposition 3.1. Let Fq be the finite field of q elements and η a character of order N with
N | (q − 1). For any z ∈ Fq with z 6= 1, we have

Fη(z) = η(1− z)2Fφη(z).

Proof. For z 6= 1, replacing x by (x− 1)/(x− z), we obtain

Fη(z) =
∑
x∈F

η(x)φη ((x− 1)(x− z))

=
∑
x∈F

η

(
x− 1

x− z

)
φη

((
x− 1

x− z
− 1

)(
x− 1

x− z
− z
))

= φη(−1)η(1− z)2
∑
x∈F

η ((x− z)(x− 1))φη(x− (1 + z))

= φη(−1)η(1− z)2
∑
x∈F

η ((x+ 1)(x+ z))φη(x)

= η(1− z)2
∑
x∈F

η ((1− x)(z − x))φη(x).

This gives the identity Fη(z) = η2(1− z)Fφη(z). �
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Assume that η is a character of order N > 2 and z 6= 1. When N is even, we have φ = ηN/2

and hence

Fη(z) = η(1− z)2Fφη(z) = η(1− z)2
∑
x∈Fq

φη(x)η(x− 1)η(x− z)

= η(1− z)2
∑
x∈Fq

η
(
xN/2−1(x− 1)(x− z)

)
.

When N is odd, φη is a character of order 2N and η = (φη)N−1. Consequently, we have

Fη(z) =
∑
x∈Fq

φη
(
xN−1(x− 1)(x− z)

)
.

Let η be a character of F×q of order N . Set

N ′ =

{
N, if N is even,

2N, if N is odd,
η′ =

{
η, if N is even,

φη, if N is odd,

and

Sη′(z) =
∑
x∈Fq

η′(xN
′/2−1(x− 1)(x− z)). (3.4)

We summarize the short discussion above in the following lemma.

Lemma 3.2. Let η be a character of F×q of order N > 2, and z ∈ Fq with z 6= 0, 1. Then we
have

2F1

(
φη η

φ
; z

)
=
φη(−1)

q

{
η(1− z)2Sη′(z), if N is even,

Sη′(z), if N is odd.

From the lemma, we see that the evaluation of our hypergeometric functions reduces to that
of Sη(z) for a character of even order N . It is natural to consider the following families of curves

CN,a,c :

{
yN = cxN/2−1(x− 1)(x− a), if N is even,

y2N = cx(x− 1)N−1(x− a)N−1, if N is odd
(3.5)

over Q. We will see that our sums Sη(a) appear in the L-functions of CN,a,c. By varying c, we
are able to determine Sη(a).

The decomposition of the Jacobian variety of CN,a,c will give us information about Sη(a)
with η of order N . For this purpose, we first consider the quotient curves of CN,a,c arising from
the automorphisms of CN,a,c.

Lemma 3.3. Let a and c be nonzero rational numbers and b be a square root of a in Q. Then
the curve CN,a,c admits the automorphisms

σ : (x, y) 7−→ (x, ζN ′y), τ : (x, y) 7−→ (a/x, by/x)

defined over Q(ζN ′ , b). Here for a positive integer M , we let ζM = e2πi/M .

Moreover, σ and τ commute with each other.
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Lemma 3.4. Let a and c be nonzero rational numbers. Let b denote a square root of a in Q.
For even N , the quotient of CN,a,c by 〈τ〉 gives rise to the morphism CN,a,c → cY 2 = XN/2+1 +
c(1 + b)2X with

(X,Y ) =

(
y2

x
,
y(x+ b)

x

)
.

For odd N , the corresponding morphism is CN,a,c → cY 2 = cXN + (1 + b)2 with

(X,Y ) =

(
(x− 1)(x− a)

y2
,
(x+ b)(x− 1)(N−1)/2(x− a)(N−1)/2

yN

)
.

These two lemmas can be verified by direct computation.
For a positive even integer N and nonzero integers c and d, let DN,c,d denote the curve

DN,c,d : cy2 = xN/2+1 + cdx.

The following lemma expresses the number of rational points of DN,c,d over a given finite field
in terms of Jacobi sums.

Lemma 3.5 ([6, Chapter 6]). Let N be a positive even integer and q = pr be an odd prime
power such that N | (q − 1). Assume that c is an integer with p - c. When N is of the form 4n,
we have

#DN,c,d(Fq) = q + 1 + φ(d)
∑

ψN=ε, ψN/2 6=ε

ψ(−cd)J(φ, ψ).

When N is of the form 4n+ 2, we have

#DN,c,d(Fq) = q + 1 + φ(c) + φ(d)
∑

ψN=ε, ψN/2 6=ε

ψ(−cd)J(φ, ψ).

Proof. When N = 4n, the curve DN,c,d has one point defined over Fq at infinity. Thus,

#DN,c,d(Fq) = 1 +
∑
x∈Fq

(
1 + φ

(
c
(
x2n+1 + cdx

)))
= q + 1 + φ(c)

∑
x∈Fq

φ(x)φ
(
x2n + cd

)
.

According to Theorem 6.1.14 of [6] (to be more precisely, the second to the last line of the proof),
we have∑

x∈Fq

φ(x)φ(x2n + cd) = φ(cd)
∑

ψN=ε, ψN/2 6=ε

ψ(−cd)J(φ, ψ),

which proves the case N = 4n. The proof of the other case is almost the same, the only
differences being that when N = 4n+ 2, there are 1 + φ(c) points over Fq at infinity. �

We are now ready to evaluate our hypergeometric functions.

4 Case N = 4

In this section, we consider the case where the character ψ in (1.1) has order 4. Let σ be the
non-trivial Galois element of Gal(Q(i)/Q). For a prime p congruent to 1 modulo 4 and a prime p
of Z[i] lying over p, we let ψp be the character of order 4 of Z[i]/p satisfying x(p−1)/4 ≡ ψp(x)
mod p for all x ∈ Z[i]. Also, let E be the elliptic curves y2 = x3 − x over Q. These are elliptic
curves with CM by Z[i]. We let χ be the Hecke character of Z[i] associated to E (that is,
L(E, s) = L(χ, s)) satisfying χ(P) ∈ P for all prime ideals P of Z[i].
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Lemma 4.1. Let c, d1, and d2 be nonzero integers. The elliptic curves cy2 = x3 + cd1x and
cy2 = x3 + cd2x defined over Q have the same L-function if and only if d1/d2 is a rational
number of the form e4 or −4e4 for some rational number e.

This Lemma follows from the fact that the isogeny class defined over Q of the elliptic curve
y2 = x3 + dx with some d ∈ Q contains the elliptic curves given by the equations y2 = x3 +Dx
and y2 = x3 − 4Dx, where with D/d is a fourth power of a rational number. For more detail,
please see [27, Chapters IX.7 and X.6] for example.

Proof of Theorem 2.1. In equation (3.2), we have seen that if a is not a square in F×p , then
the value of the 2F1-hypergeometric function is zero. Furthermore, the value also vanishes when
1− a is not a square in F×p due to Proposition 3.1. Therefore, in the rest of proof, we will only
consider the case where a and 1− a are both squares in F×p .

Let c be a nonzero squarefree integer and b be a rational number such that b2 = a in Fp. The
curve C4,a,c has genus 3 and it is a 2-fold cover of the following 3 elliptic curves

C2,a,c : y2 = cx(x− 1)(x− a),

E+,b,c : cy2 = x3 + c(1 + b)2x,

E−,b,c : cy2 = x3 + c(1− b)2x.

The morphisms are given by

C4,a,c −→ C2,a,c : (x, y) 7→
(
x, y2

)
,

C4,a,c −→ E±,b,c : (x, y) 7→
(
y2

x
,
y(x± b)

x

)
(see Lemma 3.4). We first claim that C2,a,c is not isogenous to any of E±,b,c. Indeed, the elliptic
curves E±,b,c have CM by Z[i]. If C2,a,c is isogenous to E±,b,c, then C2,a,c has CM by either Z[i]
or Z[2i] and hence has a j-invariant 123 or 66j . (Elliptic curves with CM by Z[ri] are not defined
over Q for r > 2.) The only rational numbers a such that C2,a,c has one of these j-invariants
are −1, 2, and 1/2, but neither of them is a square in Q. Thus, C2,a,c cannot be isogenous
to E±,b,c.

Moreover, we may assume that b is a number such that (1 + b)2/(1− b)2 is not of the form e4

or −4e4 for some e ∈ Q. Thus, these three elliptic curves are not isogenous to each other over Q.
The L-function of C4,a,c over Q therefore is equal to

L(C4,a,c/Q, s) = L(C2,a,c/Q, s)L(E+,b,c/Q, s)L(E−,b,c/Q, s).

In other words, for almost all primes p, we have

a4,p = a2,p + b+,p + b−,p,

where b±,p, a2,p, and a4,p are the coefficients in the local Lp-functions, the reciprocal of the Euler
p-factor of the L-functions,

Lp(E±,b,c, s) = 1− b±,pp−s + p1−2s,

Lp(C2,a,c, s) = 1− a2,pp−s + p1−2s,

and

Lp(C4,a,c, s) = 1− a4,pp−s + · · ·
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of these four curves at p, respectively. On the other hand, if the curve C4,a,c has good reduction
at a prime p with p ≡ 1 mod 4, then

#C4,a,c(Fp) = p+ 1 +
∑

χ∈F̂×p , χ4=ε, χ 6=ε

∑
x∈Fp

χ (cx(x− 1)(x− a)) = p+ 1− a4,p,

#C2,a,c(Fp) = p+ 1 +
∑
x∈Fp

φ (cx(x− 1)(x− a)) = p+ 1− a2,p,

and

#E±,b,c(Fp) = p+ 1− b±,p,

where ε denotes the trivial character of F̂×p . From these identities, we deduce that

p+ 1− a4,p = p+ 1− a2,p +
∑

χ4=ε, χ2 6=ε

∑
x

χ (cx(x− 1)(x− a)) ,

and thus

−b+,p − b−,p =
∑

χ4=ε, χ2 6=ε

∑
x

χ (cx(x− 1)(x− a))

= η(c)Sη(a) + η(c)Sη(a) = η(c)Sη
(
b2
)

+ η(c)Sη
(
b2
)
,

where η is a multiplicative character of order 4 of F×p and Sη is the character sum defined in (3.4).
On the other hand, by Lemma 3.5

−b+,p − b−,p = η(−1) (φ(1 + b) + φ(1− b)) (η(c)J(φ, η) + η(c)J(φ, η)) .

Since 1− a = 1− b2 is assumed to be a square in F×p , one has

φ(1− a) = φ(1− b)φ(1 + b) = 1

and one can simplify the identity above as

η(c)Sη
(
b2
)

+ η(c)Sη
(
b2
)

= 2η(−1)φ(1 + b) (η(c)J(φ, η) + η(c)J(φ, η)) .

Now we apply this identity with c = 1 and a nonzero integer c such that η(c) = i, respectively,
and obtain

iSη
(
b2
)
− iSη

(
b2
)

= 2η(−1)φ(1 + b) (iJ(φ, η)− iJ(φ, η)) ,

Sη
(
b2
)

+ Sη
(
b2
)

= 2η(−1)φ(1 + b) (J(φ, η) + J(φ, η)) ,

from which we conclude that

Sη
(
b2
)

= 2φ(1 + b)η(−1)J(φ, η). (4.1)

As the last piece of information needed for a proof of the theorem, we recall that when η = ψp,
one has

J(φ, ψp) = −χ(p), (4.2)

where χ is the Hecke character on Z[i] specified in the theorem (see [6, 19, 28, 29]). Com-
bining (3.3), (4.1), (4.2), and Lemma 3.2, we obtain

2F1

(
ψp ψp

φ
; a

)
= 2F1

(
φψp ψp

φ
; a

)
=
φψp(−1)

p
Fψp(a) =

ψp(−1)

p
ψp(1− a)2Sψp(a)

=
2

p
φ(1 + b)J(φ, ψp) = −2

p
φ(1 + b)χ(p),

where the deduction from the second line to the third line uses the assumptions that 1 − a is
a square in Fp and ψp is a character of order 4. This completes the proof of the theorem. �
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5 Case N = 8

In this section, we let ζ8 = e2πi/8 and σj ∈ Gal(Q(ζ8)/Q) be the Galois element satisfying

σj(ζ8) = ζj8 . For a prime p congruent to 1 modulo 8 and a prime p of Z[ζ8] lying over p, we

let ψp be the character of order 8 in F̂×p satisfying x(p−1)/8 ≡ ψp(x) mod p for all x ∈ Z. Also,
let E1 and E2 be the elliptic curves y2 = x3 + 4x2 + 2x and y2 = x3 − 4x2 + 2x over Q. These
are elliptic curves with CM by Z

[√
−2
]
. We let χ be the Hecke character of Z

[√
−2
]

associated
to E1 (that is, L(E1, s) = L(χ, s)) satisfying χ(P) ∈ P for all prime ideals P of Z

[√
−2
]
.

Lemma 5.1. We have the following properties about the L-function of D8,1,1 : y2 = x5 + x.

1. We have L(D8,1,1/Q, s) = L(E1/Q, s)L(E2/Q, s).
2. Let p be a prime congruent to 1 modulo 8. Let P be a prime of Z

[√
−2
]

lying over p and p
a prime of Z[ζ8] lying over P. We have

J(φ, ψp) = J
(
φ, ψ3

p

)
= −ψp(−1)χ(P),

J
(
φ, ψ5

p

)
= J

(
φ, ψ7

p

)
= −ψp(−1)χ(P).

Proof. Part (1) is proved in [18]. We now prove part (2).
To prove J(φ, ψp) = J

(
φ, ψ3

p

)
, we make a change of variable x 7→ x/(x− 1) in the definition

of J(φ, ψp) and obtain

J(φ, ψp) =
∑
x 6=0,1

φ(x)ψp(1− x) =
∑
x 6=0,1

φ

(
x

x− 1

)
ψp

(
− 1

x− 1

)
= ψp(−1)

∑
x 6=0,1

φ(x)ψp(x− 1)4−1 = J
(
φ, ψ3

p

)
. (5.1)

Likewise, we have J
(
φ, ψ5

p

)
= J

(
φ, ψ7

p

)
. Now from Stickelberger’s theorem (see [19, Chapter 14]),

we know that

J(φ, ψp) = J
(
φ, ψ3

p

)
∈ p1p3 = PZ[ζ8], J

(
φ, ψ5

p

)
= J

(
φ, ψ7

p

)
∈ p5p7 = PZ[ζ8].

Recalling that
∣∣J(φ, ψjp)∣∣2 = p, we see that

J(φ, ψp) = J
(
φ, ψ3

p

)
= u

(
a+ b

√
−2
)

for some root of unity u in Z[ζ8], where a + b
√
−2 is an element in Z

[√
−2
]

that generates P.
In view of

σj(J(φ, ψp)) =
∑
x

φ(x)ψp(1− x)j = J
(
φ, ψjp

)
, (5.2)

where σj , j = 1, 3, 5, 7, is the element in Gal(Q(ζ8)/Q) with σj(ζ8) = ζj8 , we find that u must be
either 1 or −1.

Now by Lemma 3.5,

#D8,1,1(Fp) = p+ 1 +
∑

j=1,3,5,7

ψp(−1)J
(
φ, ψjp

)
.

By Part (1), this is equal to

p+ 1− χ(P)− χ
(
P
)
− χ′(P)− χ′

(
P
)
,
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where χ′ is the Hecke character attached to E2. Since E2 is the twist of E1 by −1 and p is
assumed to be congruent to 1 modulo 8, we actually have χ′(P) = χ(P), and hence

2ψp(−1)
(
J(φ, ψp) + J

(
φ, ψ7

p

))
= −2χ(P)− 2χ

(
P
)
.

From this, we see that χ(P) + ψp(−1)J(φ, ψp) = −χ
(
P
)
− ψp(−1)J

(
φ, ψp

)
lies in PP =

pZ
[√
−2
]
, i.e.,

χ(P) + ψp(−1)J(φ, ψp) = −χ
(
P
)
− ψp(−1)J

(
φ, ψp

)
= pα

for some α ∈ Z
[√
−2
]
. As the absolute values of J(φ, ψp) and χ(P) are both

√
p, the only

possibility is that α = 0 and we have J(φ, ψp) = −ψp(−1)χ(P) and J
(
φ, ψp

)
= −ψp(−1)χ

(
P
)
.

This proves the lemma. �

Lemma 5.2. Let c, d, d1, and d2 be nonzero integers. If cd is not of the form ±e4 or ±4e4 for
some integer e, then for any prime ` not dividing 2cd, the Galois representation ρ` of Gal

(
Q/Q

)
associated to the curve D8,c,d : cy2 = x5 + cdx is irreducible.

Also, the L-functions of the curves cy2 = x5 + cd1x and cy2 = x5 + cd2x are equal if and
only if d1/d2 or d1/c

2d32 is a rational number of the form e8 or 16e8 for some nonzero rational
number e.

Proof. For a prime p congruent to 1 modulo 8, we know from Lemmas 3.5 and 5.1 that the
reciprocal of the p-factor of L(D8,c,d/Q, s) is(

1− φ(c)ψp(cd)χ(P)p−s
)(

1− φ(c)ψp(cd)3χ(P)p−s
)

×
(
1− φ(c)ψp(cd)5χ(P)p−s

)(
1− φ(c)ψp(cd)7χ(P)p−s

)
,

where P is a prime of Z
[√
−2
]

lying above p, and p is the prime of Z[ζ8] lying above P. We
claim that under the assumption of the lemma, there exists a prime p congruent to 1 modulo 8
such that ψp(cd) 6= ±1. Then the first part of the lemma follows since ψp(cd)χ(P) is an algebraic
number of degree 4.

Assume that ψp(cd) = ±1 for all primes p congruent to 1 modulo 8. Then (cd)(p−1)/4 ≡ 1
mod p for all such primes. It follows that the reduction modulo p of the polynomial x4−cd splits
into a product of 4 linear factors over Fp. Let E be the splitting field of x4 − cd over Q and G
be the Galois group of E over Q. Then by the Chebotarev density theorem, we have |G| ≤ 4.
Thus, cd must be of the form ±e4, ±4e4, or e2 for some integer e. However, the last possibility
cd = e2 cannot occur because we can always find a prime p congruent to 1 modulo 8 such that e
is a quadratic nonresidue modulo p. Thus, we conclude that if cd is not of the form ±e4 or ±4e4,
then there exists a prime p congruent to 1 modulo 8 such that ψp(cd) 6= ±1. This proves the
first part of the lemma.

Assume that the L-functions of D8,c,d1 and D8,c,d2 are equal. By Lemmas 3.5 and 5.1, this
implies that for all primes p congruent to 1 modulo 8 with p - cd1d2 and all characters ψ of

order 8 in F̂×p ,

ψ(cd1) + ψ(cd1)
3 = ψ(cd2) + ψ(cd2)

3.

As ψ takes values in the set of eighth roots of unity, we must have ψ(cd1) = ψ(cd2) or ψ(cd1) =
ψ(cd2)

3, which implies that d1x
8− d2 or d1x

8− c2d32 splits completely modulo p. Again, we can
use the Chebotarev density theorem to conclude that either d1/d2 or d1/c

2d32 is of the form e8

or 16e8 for some nonzero rational number e.
Conversely, if d1/d2 = e8 for some nonzero rational number e, then the map (x, y) 7→(

e2x, e5y
)

defines an isomorphism from D8,c,d1 to D8,c,d2 over Q. If d1/d2 = 16e8, then (x, y)→
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2e2x, 4

√
2ey
)

defines an isomorphism over Q
(√

2
)
. Since the curves D8,c,d1 and D8,c,d2 have

real multiplication by Q
(√

2
)
, this implies that the Galois representations are isomorphic. If

d1/c
2d32 = e8, then (x, y) 7→

(
cd2e

2/x, c2d22e
5y/x3

)
defines an isomorphism over Q. Finally, if

d1/c
2d32 = 16e8, then (x, y) 7→

(
2cd2e

2/x, 4
√

2c2d22e
5y/x3

)
yields an isomorphism over Q

(√
2
)
.

We conclude that the L-functions are equal under the assumption. �

Lemma 5.3. Let p be a prime congruent to 1 modulo 8, P a prime of Z
[√
−2
]

lying over p,
and p a prime of Z[ζ8] lying over P. Let b, c ∈ Fp with b 6= 0,±1 and c 6= 0. Set α =
ψp(1 + b)2 +ψp(1− b)2. For a character η of order 8 of F×p , let Sη(a) be the character sum given
in (3.4). Then we have∑

j=1,3,5,7

ψp(c)
jS

ψj
p

(
b2
)

= −
(
ψp(c)α+ ψp(c)

3α
)
χ(P)−

(
ψp(c)

5α+ ψp(c)
7α
)
χ(P).

Proof. We consider b, c as integers with p - b, c. Without loss of generality, we may assume
that c(1 + b)2 and c(1− b)2 are not integers of the form ±e4 or ±4e4 and that (1 + b)/(1− b) is
not the square of a rational number.

Let CN,a,c be the curve defined in (3.5). We have

#C8,b2,c(Fp) = p+ 1 +
∑

ψ8=ε, ψ 6=ε

ψ(c)Sψ
(
b2
)
.

Noticing that (X,Y ) =
(
x, y2/x

)
defines a morphism from C8,b2,c to C4,b2,c over Q and using

Lemma 3.4, we find that C8,b2,c admits morphisms to E1 : y2 = cx(x − 1)
(
x − b2

)
, E2 : cy2 =

x3+c(1+b)2x, E3 : cy2 = x3+c(1−b)2x, D8,c,(1+b)2 , and D8,c,(1−b)2 . Since c(1+b)2 and c(1−b)2
are not integers of the form±e4 or±4e4 and (1+b)/(1−b) is not the square of rational number, by
Lemmas 4.1 and 5.2, the L-functions of these five curves are all different. In particular, the Galois
representations of Gal

(
Q/Q

)
associated to these curves are all nonisomorphic. Furthermore,

the genus of C8,b2,c is 7, which is equal to the sum of the genera of these five curves. Thus, the

Galois representations of Gal
(
Q/Q

)
associated to D8,b2,c decomposes into the direct sum of the

Galois representations associated to these five curves. In other words, we have

L(C8,b2,c, s) = L(E1, s)L(E2, s)L(E3, s)L
(
D8,(1+b)2,c, s

)
L
(
D8,(1−b)2,c, s

)
.

On the other hand, we also have

#C4,b2,c(Fp) = p+ 1 +
∑

ψ4=ε, ψ 6=ε

ψ(c)Sψ
(
b2
)

and

L(C4,b2,c, s) = L(E1, s)L(E2, s)L(E3, s).

It follows that if we assume that the p-factors of L
(
D8,(1+b)2,c, s

)
and L

(
D8,(1−b)2,c, s

)
are 1 −

up−s + · · · and 1− vp−s + · · · , respectively, then∑
ψ8=ε, ψ4 6=ε

ψ(c)Sψ
(
b2
)

= −u− v.

By Lemma 3.5,

−u− v =
∑

ψ8=ε, ψ4 6=ε

(
ψ
(
−c(1 + b)2

)
+ ψ

(
−c(1− b)2

))
J(φ, ψ).

Then from Lemma 5.1, we deduce the formula immediately. �
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Proof of Theorem 2.3. In equation (3.2), we have shown that if a is not a square in F×p , then
the value of the 2F1-hypergeometric function is 0.

Now assume that a = b2 for some b ∈ F×p . Let g be a generator of F×p with ψp(g) = ζ8. We
apply Lemma 5.3 with c = 1, g, g2, g3. Setting ζ = ζ8, α = ψp(1 + b)2 + ψp(1 − b)2, χ = χ(P),
and Sj = S

ψj
p

(
b2
)

for j = 1, 3, 5, 7, we have

S1 + S3 + S5 + S7 = −(α+ α)χ− (α+ α)χ,

ζS1 + ζ3S3 + ζ5S5 + ζ7S7 = −
(
ζα+ ζ3α

)
χ−

(
ζ5α+ ζ7α

)
χ,

iS1 − iS3 + iS5 − iS7 = −(iα− iα)χ− (iα− iα)χ,

ζ3S1 + ζS3 + ζ7S5 + ζ5S7 = −(ζ3α+ ζα)χ−
(
ζ7α+ ζ5α

)
χ.

From the relations, we deduce that

S1 = −αχ, S3 = −αχ, S5 = −αχ, S7 = −αχ.

By (3.3) and Lemma 3.2, it follows that

2F1

(
φψp ψp

φ
; a

)
= −φψp(−1)

p
ψp

(
1− b2

)2
αχ

= −1

p
(−1)(p−1)/8

(
ψp(1 + b)2 + ψp(1− b)2

)
χ(P).

This completes the proof of the theorem. �

6 Case N = 3, 6, 12

Using similar arguments as in the cases of N = 4 and 8, we can also obtain the evaluations of
hypergeometric functions when the order N of the character is 3, 6, or 12.

For N = 3, 6, we let ζ6 = e2πi/6 and σ be the nontrivial element in Gal(Q(ζ6)/Q). For
a prime p congruent to 1 modulo 6 and a prime p of Z[ζ6] lying over p, we let ψp be the

character of order 6 in F̂×p satisfying x(p−1)/6 ≡ ψp(x) mod p for all x ∈ Z. Also, let E be the
elliptic curve y2 = x3 + 1. This elliptic curve has CM by Z[ζ6]. We let χ be the Hecke character
of Z[ζ6] associated to E satisfying χ(P) ∈ P for all prime ideals P of Z[ζ6].

Let C6,a,c : y6 = cx2(x− 1)(x− a) be the curve in (3.5), where a and c are integers such that
a = b2 is square, a 6≡ 0, 1 mod p, and c 6≡ 0 mod p. Count the number of points of C6,a,c over Fp
in two ways. Firstly, from the equation, we have

#C6,a,c(Fp) = p+ 1 + 2φ(c) +
5∑

k=1

ψp(c)
kSψk

p
(a), (6.1)

where for a character ψ of F×p , Sψ is defined by (3.4). (The points ∞ and (0, 0) are singular
points on C6,a,c. The resolution of singularity at each of the two points yields 1 + φ(c) points.
The term 2φ(c) accounts for the discrepency.)

On the other hand, similar to the case of N = 8, if b is suitably chosen, then

L
(
C6,a,c/Q, s

)
= L

(
C3,a,c/Q, s

)
L
(
E+,b,c/Q, s

)
L
(
E−,b,c/Q, s

)
where

C3,a,c : y3 = cx2(x− 1)(x− a)
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is a curve of genus 2 and the elliptic curves

E+,b,c : cy2 = x4 + c(1 + b)2x,

E−,b,c : cy2 = x4 + c(1− b)2x

are given in Lemma 3.4. Assume that the p-factor of L
(
E±,b,c/Q, s

)
is 1 − u±p−s + p1−2s and

that of L(C3,a,c/Q, s) is 1− vp−s + · · · , so that

#C6,a,c(Fp) = p+ 1− u+ − u− − v.

Counting #C3,a,c(Fp), we obtain

p+ 1 +
∑
k=2,4

ψp(c)
kSψk

p
(a) = p+ 1− v.

Combining (6.1), (6), (6), we find∑
k=1,3,5

ψp(c)
kSψk

p
(a) = −u+ − u− − 2φ(c). (6.2)

Now for k = 3, we have ψ3
p = φ and

Sψ3
p
(a) =

∑
x∈Fp

φ
(
x2
)
φ(x− 1)φ(x− a) =

∑
x 6=0

φ(x− 1)φ(x− a).

Using the fact that J(φ, φ) = −φ(−1), we can show that the sum above is −1− φ(a), which, by
assumption that a = b2, is equal to −2. Thus, (6.2) reduces to

ψp(c)Sψp(a) + ψp(c)Sψp
(a) = −u+ − u−. (6.3)

Recall from Lemma 3.5 that

p+ 1− u± = p+ 1 + φ(c) +
∑

k=1,3,5

ψkp
(
−c(1± b)2

)
J
(
φ, ψkp

)
.

Again, for k = 3, we have ψ3
p = φ and

ψ3
p

(
−c(1± b)2

)
J
(
φ, ψkp

)
= φ(−c)J(φ, φ) = −φ(c).

It follows that

u± = −ψp

(
−c(1± b)2

)
J(φ, ψp)− ψp

(
−c(1± b)2

)
J
(
φ, ψp

)
.

Plugging this into (6.3), we see that

ψp(c)Sψp(a) + ψp(c)Sψp
(a) = ψp(−c)

(
ψ2
p(1 + b) + ψ2

p(1− b)
)
J(φ, ψp)

+ ψp(−c)
(
ψ
2
p(1 + b) + ψ

2
p(1− b)

)
J
(
φ, ψp

)
.

By choosing two suitable c, one with φp(c) = 1 and one with ψp(c) = e2πi/3, we can determine
the value of Sψp(a). We find that

Sψp(a) = ψp(−1)
(
ψp(1 + b)2 + ψp(1− b)2

)
J(φ, ψp)

= −
(
ψp(1 + b)2 + ψp(1− b)2

)
χ(p).



Evaluation of Certain Hypergeometric Functions over Finite Fields 15

From the discussion in [6, Chapters 3 and 6], we see ψp(−1)J(φ, ψp) = J
(
φ, ψ2

p

)
= −χ(p). Then

by Lemma 3.2,

2F1

(
φψ2

p ψ2
p

φ
; a

)
=
φψp(−1)2

p
Sψp(a) = −φ(−1)

p

(
ψp(1 + b)2 + ψp(1− b)2

)
χ(p)

and

2F1

(
φψp ψp

φ
; a

)
=
φψp(−1)

p
ψp(1− a)2Sψp(a)

= −1

p
ψp

(
(1 + b)(1− b)2

)(
ψp(1 + b)2 + ψp(1− b)2

)
χ(p)

= −1

p

(
ψp(1 + b)2 + ψp(1− b)2

)
χ(p).

We now consider the case N = 12. Let ζ12 = e2πi/12 and assume that p is a prime con-
gruent to 1 modulo 12. Let p be a prime of Z[ζ12] lying over p, and ψp be the character of
(Z[ζ12]/p)× ' F×p of order 12 satisfying x(p−1)/12 ≡ ψp(x) mod p for all x ∈ Z[ζ12].

For a generic integer c, and rational numbers a, b with a = b2, the L-function of the curve

C12,a,c : y12 = cx5(x− 1)(x− a)

is equal to

L(C12,a,c/Q, s) = L(C/Q, s)L(D+,b,c/Q, s)L(D−,b,c/Q, s),

where

C : y6 = cx5(x− 1)(x− a),

D+,b,c : cy2 = x7 + c(1 + b)2x,

D−,b,c : cy2 = x7 + c(1− b)2x,

which are of genus 5, 3, and 3, respectively. Furthermore, the curve D±,b,c is a 3-fold cover of
the elliptic curve

E±,b,c : cY 2 = X3 + c(1± b)2X

with the covering given by

D±,b,c −→ E±,b,c, (x, y) 7→
(
x3, xy

)
.

Hence, by Lemma 3.5, we have∑
j=1,5,7,11

ψp(c)
jSj =

∑
j=1,5,7,11

ψp(−c)jJ
(
φ, ψjp

)(
ψ2j
p (1 + b) + ψ2j

p (1− b)
)
, (6.4)

where we let Si denote Sψi
p
(a). The main task here is to evaluate J

(
φ, ψip

)
.

For j = 1, 5, 7, 11, let σj denote the element of Gal(Q(ζ12)/Q) such that σ(ζ12) = ζj12 and set

pj = σj(p).

Let also P be the prime of Z[i] lying below p and assume that a + bi is a generating element
of P. Arguing as in the proof of Lemma 5.1, we find that

J(φ, ψp) = J
(
φ, ψ5

p

)
∈ p1p5 = PZ[ζ12], J

(
φ, ψ7

p

)
= J

(
φ, ψ11

p

)
∈ p7p11PZ[ζ12].
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Since |J
(
φ, ψjp

)
| = p, it follows that

J(φ, ψp) = J
(
φ, ψ5

p

)
= u(a+ bi), J

(
φ, ψ7

p

)
= J

(
φ, ψ11

p

)
= u(a− bi)

for some root of unity u in Z[ζ12]. As in (5.1), we can show that this root of unity must be one
of ±1 and ±i. In particular,

J(φ, ψp) + J
(
φ, ψ5

p

)
+ J

(
φ, ψ7

p

)
+ J

(
φ, ψ11

p

)
= ±4a or ± 4b. (6.5)

On the other hand, consider the hyperelliptic curve y2 = x7 + x. We can easily find two
morphisms to the two elliptic curves

E1 : Y 2 = X3 +X, with (X,Y ) =
(
x3, xy

)
,

E2 : Y 2 = X3 − 3X, with (X,Y ) =

(
x2 + 1

x
,
y

x2

)
.

Let χ1 and χ be the Hecke characters attached to the elliptic curve E1 and E2, respectively.
Then the reciprocal of the Euler p-factor of the L-function is(

1− χ1(P)p−s
)(

1− χ1

(
P
)
p−s
)(

1− χ(P)p−s
)(

1− χ
(
P
)
p−s
)(

1− tp−s + p1−2s
)

for some integer t. Applying Lemma 3.5 to the curves y2 = x7 + x and y2 = x3 + x, we obtain

ψp(−1)
∑

j=1,3,5,7,9,11

J
(
φ, ψjp

)
= −χ1(P)− χ1

(
P
)
− χ(P)− χ

(
P
)
− t,

ψp(−1)
(
J
(
φ, ψ3

p

)
+ J

(
φ, ψ9

p

))
= −χ1(P)− χ1

(
P
)

and consequently

ψp(−1)
∑

j=1,5,7,11

J
(
φ, ψjp

)
= −χ(P)− χ

(
P
)
− t.

Now the value of χ(P) is one of ±a ± bi and ±b ± ai and by (6.5),
∑

j=1,5,7,11 J
(
φ, ψjp

)
is one

of ±4a and ±4b. Therefore, we must have t = χ(P) + χ
(
P
)
. It follows that

ψp(−1)J(φ, ψp) + χ(P) = −ψp(−1)J
(
φ, ψ11

p

)
− χ

(
P
)
,

which lies in PP = pZ[i]. Since the absolute values of J
(
φ, ψjp

)
and χ(P) are all

√
p, the only

possibility is that

ψp(−1)J(φ, ψp) = −χ(P), ψp(−1)J
(
φ, ψ11

p

)
= −χ

(
P
)
.

Now choose an integer g such that ψp(g) = ζ12. Set ζ = ζ12, α = ψp(1 + b)2 +ψp(1− b)2, and
χ = χ(P). Applying (6.4) with c = 1, g, g2, g3, we obtain

S1 + S5 + S7 + S11 = −(α+ α)χ− (α+ α)χ,

ζS1 + ζ5S5 + ζ7S7 + ζ11S11 = −
(
ζα+ ζ5α

)
χ−

(
ζ7α+ ζ11α

)
χ,

ζ2S1 + ζ10S5 + ζ2S7 + ζ10S11 = −
(
ζ2α+ ζ10α

)
χ−

(
ζ2α+ ζ10α

)
χ,

iS1 + iS5 − iS7 − iS11 = −(iα+ iα)χ+ (iα+ iα)χ.

From these identities, we deduce that

S1 = −αχ, S5 = −αχ, S7 = −αχ, S11 = −αχ.
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Using Lemma 3.2, we finally arrive at

2F1

(
φψp ψp

φ
; a

)
=
φψp(−1)

p
ψp(1− a)2Sψp(a)

= −(−1)(p−1)/12

p
ψp(1− a)2

(
ψp(1 + b)2 + ψp(1− b)2

)
χ(P)

= −(−1)(p−1)/12

p

(
ψp(1 + b)2 + ψp(1− b)2

)
χ(P).

This proves Theorem 2.7.
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(1993), 27–35.

[22] Lennon C., Gaussian hypergeometric evaluations of traces of Frobenius for elliptic curves, Proc. Amer.
Math. Soc. 139 (2011), 1931–1938, arXiv:1003.4421.

[23] Lennon C., Trace formulas for Hecke operators, Gaussian hypergeometric functions, and the modularity of
a threefold, J. Number Theory 131 (2011), 2320–2351, arXiv:1003.1157.

[24] McCarthy D., Papanikolas M.A., A finite field hypergeometric function associated to eigenvalues of a Siegel
eigenform, Int. J. Number Theory 11 (2015), 2431–2450, arXiv:1205.1006.

[25] Ono K., Values of Gaussian hypergeometric series, Trans. Amer. Math. Soc. 350 (1998), 1205–1223.

[26] Salerno A., Counting points over finite fields and hypergeometric functions, Funct. Approx. Comment. Math.
49 (2013), 137–157, arXiv:1201.3335.

[27] Silverman J.H., The arithmetic of elliptic curves, Graduate Texts in Mathematics, Vol. 106, Springer-Verlag,
New York, 1986.

[28] Silverman J.H., Advanced topics in the arithmetic of elliptic curves, Graduate Texts in Mathematics,
Vol. 151, Springer-Verlag, New York, 1994.
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